
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018 2929

Weighted Quantization-Regularization in DNNs
for Weight Memory Minimization Toward

HW Implementation
Matthias Wess, Sai Manoj Pudukotai Dinakarrao , Member, IEEE, and Axel Jantsch , Member, IEEE

Abstract—Deployment of deep neural networks on hardware
platforms is often constrained by limited on-chip memory and
computational power. The proposed weight quantization offers
the possibility of optimizing weight memory alongside trans-
forming the weights to hardware friendly data types. We apply
dynamic fixed point (DFP) and power-of-two (Po2) quantiza-
tion in conjunction with layer-wise precision scaling to minimize
the weight memory. To alleviate accuracy degradation due to
precision scaling, we employ quantization-aware fine-tuning. For
fine-tuning, quantization-regularization (QR) and weighted QR
are introduced to force the trained quantization by adding the
distance of the weights to the desired quantization levels as a
regularization term to the loss-function. While DFP quantiza-
tion performs better when allowing different bit-widths for each
layer, Po2 quantization in combination with retraining allows
higher compression rates for equal bit-width quantization. The
techniques are verified on an all-convolutional network. With
accuracy degradation of 0.10% points, for DFP with layer-
wise precision scaling we achieve compression ratios of 7.34 for
CIFAR-10, 4.7 for CIFAR-100, and 9.33 for SVHN dataset.

Index Terms—Convolutional neural networks, memory
minimization, quantization, regularization.

I. INTRODUCTION

STARTING with AlexNet [1] deep convolutional neural
networks (DCNNs) have been gaining attention by deliver-

ing impressive results on challenging problems, such as object
recognition on ImageNet dataset [2] or facial recognition [3].
The adaptation of such DCNNs and deep neural networks
(DNNs) in various applications including autonomous driv-
ing, medical diagnosis [4], [5], and machine translation [6]

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. Date of publication July 18, 2018; date of current ver-
sion October 18, 2018. This article was presented in the International
Conference on Hardware/Software Codesign and System Synthesis 2018 and
appears as part of the ESWEEK-TCAD special issue. (Corresponding author:
Matthias Wess.)

M. Wess is with the Institute of Computer Technology, TU
Wien, 1040 Vienna, Austria, and also with the Department of
Corporate Technology, Siemens AG, 1210 Vienna, Austria (e-mail:
matthias.wess@student.tuwien.ac.at).

S. M. P. Dinakarrao is with the Electrical Engineering Department,
George Mason University, Fairfax, VA 22030 USA (e-mail:
saimanoj.p.2013@ieee.org).

A. Jantsch is with the Institute of Computer Technology, TU Wien,
1040 Vienna, Austria (e-mail: axel.jantsch@tuwien.ac.at).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857080

led to an ever increasing amounts of data to process under
high performance requirements.

Most of these applications can be described as super-
vised learning tasks, split into training phase and inference.
In the training phase, the algorithm is optimized to solve
a certain task for the training data. The architecture of a
DCNN or DNN is defined by the number of layers and their
functionality (e.g., convolutional, fully connected, pool, and
batch-normalization) and the layer-specific parameters which
define the dimensions and behavior of the layer in forward
and backward-propagation. To train the defined architecture
on a given training data, the labeled data is fed through the
network and in back-propagation, the layer-specific weights
are adjusted to decrease the error between the output and orig-
inal label. For inference, DNN employs the model derived
during training phase on the test or unknown data. The abil-
ity to correctly process the new data based on training data is
called generalization ability.

Despite the state-of-the-art DNNs taking one or several
high-end graphics processing units (GPUs) and up to several
days to train, inference can be performed on a broad spectrum
of platforms including CPUs, GPUs, field-programmable gate
arrays (FPGAs), and application specific integrated circuits.
With the increasing size of DNNs (e.g., ResNet [7] up to 152
layers), even the complexity of inference is also exacerbat-
ing due to more critical requirements and constraints such as
limited power consumption, high throughput or hard real-time
processing. There are several challenges that hinder the effi-
cient deployment and inference of the state-of-the-art DNNs
on embedded resource constrained platforms. The two biggest
challenges are the large size of the networks and the total
number of necessary operations in feed-forward computation,
since a hardware accelerator design can be bound either by
the limit of parallel operations, or by the memory interface
transmission rate [8], [9]. As a consequence, model compres-
sion and increasing the efficiency of computations, are two
legitimate ways to reach hardware requirements.

Recent works [10], [11] have proven the robustness of
DNNs to compression of weights and simplification of acti-
vation functions with high number of parameters and the
resulting redundancy [5], [10], [12]–[14]. This enables several
techniques including weight sharing [10], [15], pruning [16],
and Huffman encoding [10] to reduce external memory access.
Pruning not only reduces the memory footprint of a DNN
model, but also allows skipping of multiplications with 0,

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4417-2387
https://orcid.org/0000-0003-2251-0004

2930 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

thus reducing the amount of total multiplications [17], [18].
To reduce also power consumption within operations, the
model parameters have to be quantized in specific formats
a dedicated hardware can make use of. Dynamic fixed
point (DFP) [14], [19] and power of two quantization [11]
are two hardware friendly formats that enable performing
multiplications either as low-precision multiplications or sim-
ple shift operations.

There are several approaches on how to best prepare a DNN
for inference with low precision data types. On one side when
employing the state-of-the-art DNNs it is desirable to directly
make use of pretrained models without architectural adjust-
ments. Lin et al. [13] and Zhou et al. [20] proposed methods
for layer-wise bit-width optimization without retraining but not
for bit-width optimization followed by retraining. Furthermore,
to fully leverage optimized hardware accelerators for efficient
inference (e.g., [21]) it can be desirable to force certain quan-
tization [11], compression or pruning schemes [17] in an addi-
tional fine-tuning step. Zhou et al. [11] proposed incremental
weight quantization while incorporating a power-of-two (Po2)
data type and achieve almost lossless quantization for several
DNNs. Other works such as [19] and [22] employ stochastic
quantization methods to during training. In stochastic training
the algorithm stores a floating point value and the quantized
value at the same time and for each feed forward computa-
tion the quantized weights are newly computed on a stochastic
basis.

This paper makes the following contributions.
1) We propose weighted quantization-regularization

(WQR), a method for trained low precision quantization
of weights in neural networks to any given quantization
scheme.

2) We combine layer-wise precision scaling [20] with
WQR to reduce the loss in classification performance
while increasing the compression rate.

3) We analyze the benefits of Po2 and DFP-based quanti-
zation in our setting and in combination with WQR and
layer-wise bit-width optimization.

Aiming at highly efficient implementation in FPGAs, we
perform evaluation for quantization-regularization (QR) for
DFP [22] and power of two quantization [11] schemes on con-
volutional neural networks (CNNs). We apply the proposed
algorithm on SVHN CIFAR-10 and CIFAR-100 dataset for
two different quantization schemes and show that WQR
decreases loss in classification performance in comparison to
direct weight quantization for all-convolutional network on
CIFAR-10 from 1.5% to 0%. The results suggest that the
proposed algorithm reduces accuracy loss due to quantization.

II. MOTIVATIONAL CASE STUDY

Fig. 1 explains with a simple example the two main parts
of this paper. Assuming a two-layer neural network with two
layers with 600 and 900 weights, respectively, we want to
achieve model compression by reducing the number of bits
stored per weight and specific quantization of the weights to
enhance the computational energy efficiency.

First note, that layer 2 has a stronger impact on the size
of the weight memory, as it contains more weights. Thus, it

(a)

(b)

Fig. 1. Example network with two layers demonstrating (a) layer-wise
precision scaling and (b) retraining with QR. Starting with two layer network
at first (a) bit-widths of both layers are adjusted by defining a lower precision
format with the quantization levels marked as dotted lines in the histogram
charts. To reduce the quantization error, (b) retraining with additional regu-
larization, decreasing the average distance of the weights to the quantization
levels, is performed.

is beneficial in terms of memory footprint to reduce the bit-
width of its weights more than those of layer 1. However,
quantization also negatively affects the accuracy of the algo-
rithm, due to weight quantization errors. Therefore, we apply
layer-wise precision scaling [Fig. 1(a)] to find the best trade-
off between compression due to quantization and accuracy
degradation. While for the example in Fig. 1 uniform 3-bit
quantization leads to 4.5-kB weight memory, with layer-wise
precision scaling applied according to Fig. 1(a) only 3.6-kB
weights need to be stored, allowing us to increase compression
ratio by a factor 1.25.

To alleviate the accuracy degradation, performing trained
quantization by applying additional regularization with the
goal of reducing the weight quantization error results in an
increase the accuracy. For state-of-the-art DNNs layer-wise
precision scaling shows even higher efficiency due to the
higher variation of numbers of weights per layer (Table III).

III. PROPOSED METHOD

Fig. 2 illustrates the entire quantization flow for learned
model compression which can be separated into three steps.

1) Quantization Scheme Evaluation: We define and analyze
two quantization strategies in terms of their effective-
ness for hardware-friendly execution their advantages
and disadvantages during fine-tuning and the resulting
performance.

2) Layer-Wise Precision Scaling: To increase the model
compression ratio we apply layer-wise precision scal-
ing, meaning that for each layer different bit-widths are
used for weights. Thereby, we study the influence of

WESS et al.: WQR IN DNNs FOR WEIGHT MEMORY MINIMIZATION TOWARD HW IMPLEMENTATION 2931

Fig. 2. Learned weight quantization step by step.

selecting different bit-widths per layer on the resulting
classification accuracy.

3) Retraining With WQR and QR: The last task focuses on
reducing accuracy degradation occurring due to quan-
tization. As loss of accuracy is induced due to the
change of weight magnitudes when approximating them
by rounding to the nearest quantization level, we aim
to force weights to reduce their distance to such quanti-
zation levels in retraining, thus increasing classification
accuracy of the quantized network.

While the first two steps serve for finding the best quan-
tization method and bit-width for each layer when applying
quantization without retraining, in the third step we perform
retraining aiming to reduce the accuracy loss caused by quan-
tization. In our flow, the weights are not first quantized and
then retrained, but we always start from the high accuracy
model, fine-tune weights with modified loss-functions and then
perform quantization. This approach has the advantage that
the network parameters are trained in full precision but with
the additional regularization terms which cause the weights to
reduce their distance to the desired quantization levels before
performing the actual quantization step. To better distinguish
we use the term direct quantization for quantization without
any fine-tuning. Trained quantization on the other hand con-
sists of fine-tuning, followed by the actual quantization step.
Input for the quantization process is a DNN with N con-
volutional and/or fully connected layers and weight-tensors
Wn, 0 < n < N of arbitrary resolution. Details on the network
used for evaluation can be found in Table III. Table I lists the
variables used in this paper.

A. Direct Quantization

In direct quantization, the original network M is expressed
as Mq where the weights Wn of each layer are represented
as Wqn . The values of Wqn are determined by rounding each

TABLE I
VARIABLES USED IN THIS PAPER

element of Wn to the quantization level with the smallest
absolute distance of a defined quantization scheme Q.

1) Quantization Scheme Evaluation: Here, we present
Po2 [11] and DFP [19], [22], two different quantization
schemes and compare their properties for direct and trained
quantization.

a) Power-of-Two Quantization: We implement Po2
quantization similar as in [11]. Qp2 is given as

Qp2 = {±2n1 , . . . ,±2n2 , 0
}
. (1)

n1 and n2 are integers with

n1 = �log2
4s

3
� (2)

s = max(abs(W)). (3)

For a given bit-width b and n2 are defined by

n2 = n1 −
(

2b−1 − 1
)
. (4)

Thus, the quantization levels depend on the distribution
of weights, especially on the weight with the highest abso-
lute value. By adding “0” as a quantization level, we enable
Po2 quantization to also serve as a pruning mechanism when
applied to weight matrices, as small weights are rounded to
zero. In experiment symmetrical quantization schemes lead
to higher classification accuracies for the quantized networks,
therefore we only use 2b−1 of 2b possible quantization levels.

b) Dynamic Fixed Point: DFP data type is successfully
used in several works for either direct quantization or retrained
model compression [19], [22]. For DFP quantization, we first
define a set of 2b − 1 equidistant quantization levels

B =
{
±2b−1 − 1,±2b−1 − 2, . . . , 0

}
. (5)

Similar to Po2 quantization, we prefer a symmetric quantiza-
tion scheme. Next B is normalized and scaled, depending on
the distribution of weights

Qdfp = B

2b−1
∗ 2n1 . (6)

2932 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a)

(b)

Fig. 3. Distributions before and after direct weight quantization for (a) DFP
and (b) Po2 quantization.

Fig. 4. MSE for an example layer when applying Po2 and DFP quantization
with different bit-widths. While DFP quantization decreases the quantiza-
tion error exponentially with increasing bit-width, with Po2 quantization the
quantization error reaches the minimum already at bit-width 4.

Fig. 3 depicts the distribution of weights for an example
layer of a CNN, before and after quantization. While Fig. 3(a)
shows the distribution for Po2 quantization, Fig. 3(b) illustrates
the distribution for DFP quantization. As can be seen that po2
has much irregular quantization values compared to DFP, and
also considers the values close to 0 which might help to retain
the information with lower weights and aid in improving the
accuracy.

As accuracy degradation of the quantized model Mq in
comparison to the original model M is a result of the quanti-
zation error, it is necessary to understand the relation between
bit-width and quantization error for both data types.

With DFP quantization, the mean square error (MSE) can
be reduced with increasing bit-width, since every additional bit
divides the intervals in half [see Fig. 3(a)]. Meanwhile when
increasing bit-width in Po2 quantization, the new quantiza-
tion levels are always added close to 0 [see Fig. 3(b)]. As a
consequence with Po2 quantization, the quantization error can
only be reduced to a certain extent. Fig. 4 shows the result-
ing MSEs for one weight-tensor of an example layer when
applying different bit-widths.

Fig. 5. With increasing bit-widths the sparsity due to quantization decreases
for DFP and Po2 quantization. Sparsity denotes the amount of weights that
are 0 relative to the total amount of weights.

In addition, we consider the amount of pruned weights as
an important factor for model compression. In comparison to
DFP, Po2 quantization decreases sparsity within the weight
matrices as a result of quantization, due to the higher density
of levels close to 0. Therefore to fully benefit from the advan-
tages of sparsity, an additional pruning step before retraining
is recommended. In Fig. 5, the number of pruned weights
depending on the selected bit-width is shown for Po2 and DFP
quantization.

Figs. 4 and 5 suggest that for direct Po2 quantization bit-
widths higher than 4 bits do not further decrease the �acc but
4 bits in comparison to 5 bits slightly increase sparsity. On
the other hand, by scaling the bit-width of DFP the resulting
MSE can be reduced exponentially (Fig. 4) meaning that even
bit-widths higher than 8 bits deliver more accurate results.
In terms of sparsity, DFP prunes more weights than Po2 for
bit-widths of four and higher.

Based on these observations we expect that for direct DFP
quantization �acc can be reduced to almost 0, based on layer-
wise precision scaling. For direct Po2 quantization we expect
a higher �acc and no significant increase of accuracy for bit-
widths higher than five. It can be seen in Figs. 6 and 10 that
these expectations are confirmed.

2) Layer-Wise Precision Scaling: Second, to further reduce
the model-size, we apply different quantization schemes per
layer by optimizing bit-widths. In comparison to choosing
equal bit-width for each layer, due to the varying amount of
parameters and varying distribution of weights between lay-
ers, selecting fitting quantization schemes for each layer can
enable lower bit-widths per layer without reducing the result-
ing accuracy. For the experiments we assume either DFP or
Po2 quantization. For an arbitrary network M with accuracy
accM applying weight quantization with the set of bit-widths
bn leads to accuracy accMq and weight memory bits

Wmem =
N∑

n

card(Wn) ∗ bn (7)

where card(A) denotes the cardinality of set A. For each bn,
we compute the resulting accuracy degradation

�acc = accM − accMq (8)

and iteratively decrease the bit-width of the layer where a
lower bit-width leads to the smallest product of �acc ∗ Wmem
(see Algorithm 1).

WESS et al.: WQR IN DNNs FOR WEIGHT MEMORY MINIMIZATION TOWARD HW IMPLEMENTATION 2933

Algorithm 1 Layer-Wise Precision Scaling

procedure LAYER-WISE PRECISION SCALING(M)
initialize bn

while �acc < ε do
for all n in layers do

bitwidth of layern - 1
Compute AccMq , �acc and Wmem

bitwidth of layern + 1
end for
Decrease bitwidth of layer with min(�acc ∗ Wmem)

end while
end procedure

Fig. 6. Layer-wise precision scaling compared with equal bit-width quanti-
zation for DFP and Po2 quantization. Compression ratio is the ratio between
32-bit weight memory and the weight memory for the quantized network.
Point (i) indicates DFP with bn = [7 7 7 4 4 3 3 7 7] and point (ii) indicates
Po2 with bn = [4 4 4 4 3 3 4 4 4].

Fig. 6 shows the results for layer-wise precision scaling
performed by Algorithm 1 on all-convolutional network [23]
for CIFAR-10. We can deduce that while DFP quantization
also allows direct quantization, whereas for Po2 quantization
almost always an additional fine-tuning step is necessary to
achieve high accuracy results.

B. Trained Quantization

The used datasets (CIFAR-10, CIFAR-100, and SVHN) are
already divided into test data and training data. While with
layer-wise precision scaling as described in Section III-A2
focuses on decreasing �acc∗Wmem without retraining, we can
additionally reduce �acc by retraining the original network
on the training data with the goal of increasing accuracy
of the classifier on test data. As a consequence we use the
performance metrics in Table II.

1) Quantization-Regularization: To decrease �acc for a
selected set of bit-widths bn, we need to find the best set
of Wn so that approximation with Wqn achieves a maximum
of accMq. As shown in [13] and [24], the degradation of clas-
sification accuracy of a DNN due to quantization is directly
related to the signal to quantization-noise ratio (SQNR) and the
amount of weights per layer, as both influence the SQNR of
the intermediate layer outputs and as a consequence the result-
ing network outputs. Therefore, retraining network weights

TABLE II
PERFORMANCE METRICS USED FOR FINE-TUNING

to achieve lower SQNR without reducing accM , leads to
an increased accuracy of the quantized network. To enforce
weight quantization during the training phase we define the
QR term as

QR =
N∑

n

card(Wn)∑

i

| Wni − Wqni |
max(Qn) ∗ card(Wn)

(9)

which expresses the mean of the absolute weight distances of
each weight to the corresponding quantized value.

By adding the QR-term to the loss function (10) weights
are forced closer to the quantization levels during retraining

Modified Loss = Loss + λ1 ∗ QR (10)

During fine-tuning with the parameter λ1 the tradeoff between
min(Loss) and min(QR) and, as a consequence, between
min(�accuracy) and max(accM) can be adjusted. For the
experiments we applied fixed λ1 and linearly increasing λ1
(e.g., λ1 = 10 ∗ epoch). Fig. 7 depicts the trained quantization
process. With each epoch the weights are pulled closer to the
quantization levels, thus decreasing QR and �acc.

While choosing a high (>1000) λ1 leads to fast quantization
with strong accuracy degradation, a low λ1 value (< 1) does
not enforce quantization. Either way, much like weight decay
low λ1 values can help avoiding overfitting during training.

2) Weighted Quantization-Regularization: While in normal
QR each weight within one layer is considered equally impor-
tant for reaching high classification accuracy, the efficiency of
pruning [15]–[17] shows that especially weights with small
magnitudes can be changed without reducing the accuracy of
the network. Similarly to [8], the weights can be divided into
two disjoint subsets, where QR is applied on one of the subsets
while the other weights are being retrained without QR. Going
one step further we can multiply the QR value of each weight
with the absolute magnitude of the weight.2 This strategy
forces quantization stronger on weights with higher magni-
tudes which can be especially useful for Po2 quantization,
where density of quantization levels decreases with increasing

1For the computation of quantized test accuracy, the weights of the network
are directly quantized after each epoch.

2Previously the sum of weights is normalized to 1 for each layer.

2934 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a)

(b)

(c)

Fig. 7. Illustration of QR. The first column shows the floating point values
of the weights on which the actual training is performed. The second column
shows the quantized weights, and the third column the element-wise abso-
lute difference of floating point and quantized weights. Changes of quantized
weights are marked in the second column. Weight update for Wf is performed
based on backpropagation of the modified loss function (10). Successfully
quantized weights are marked in the third column. After Epoch 1 (a) the
weights are hardly regularized and QR is relatively large. Epoch 2 (b) shows
that due to regularization, weights are pulled closer to the quantization levels
Qn = {0,±0.25,±0.5,±0.75} and QR gets smaller. For three of the weights
the resulting quantization level changed, and weights decrease their distance
to the next quantization level. Epoch 3 (c) shows further reduction of the
QR term.

weight values. Therefore, we define the WQR term as

WQR =
N∑

n

card(Wn)∑

i

(| Wni − Wqni || Wni |
max(Qn)

2 ∗ card(Wn)

)
(11)

and similarly to (10) we can weight the tradeoff between
accuracy and weight regularization with λ1 and λ2 (12)

Modified Loss = Loss + λ1 ∗ QR + λ2 ∗ WQR. (12)

Again during training the parameters λ1 and λ2 have to be
adjusted carefully to reach the desired improvement of AccMq,
without at the same time decreasing AccM . In our experiments
we found a linear increasing λ2 to work best (e.g., λ2 = 10 ∗
epoch). For fine-tuning, we use Algorithm 2.

Fig. 8 illustrates the fine-tuning process for 4-bit equal
bit-width Po2 quantized all-convolutional net for CIFAR-
10. At the beginning of the fine-tuning process the term
λ2 ∗ WQR increases due to the increasing λ2 value, while
the WQR-Term decreases exponentially. At epoch 200, learn-
ing rate is decreased from 1e−4 to 1e−5 leading to the drop of
λ2 ∗WQR. This can be explained by fact that a larger learning
rate leads to larger weight changes. If the weights are already
close to the quantization levels a lower learning rate can lead to
better approximation of the weights to the quantization levels.

C. Summary and Analysis

In combination, the discussed techniques for quan-
tization (Section III-A), layer-wise precision scaling
(Section III-A2), fine-tuning with QR (Section III-B1), and
WQR (Section III-B2) facilitate DNN weight compression.

Algorithm 2 Fine-Tuning With QR and WQR

procedure TRAINED QUANTIZATION(M, bn, λ1, λ2)
for epochs do

for all Mini Batches do � Train on Training Data
for n >= N do � Quantize all Layers

Wqn = Quantize(Wn,Qn)
end for
Loss + λ1 ∗ QR(Wn, Wqn) + λ∗WQR(Wn, Wqn)

Backpropagation(Loss,QR,WQR,λ1,λ2)
end for
Compute AccM � Test Accuracy
Compute AccMq � Quantized Test Accuracy

end for
return Mq � Return Quantized Model

end procedure

Fig. 8. Fine-tuning of all-convolutional net for CIFAR-10 with linear
increasing λ2 for 4 bits equal bit-width Po2 quantization. �Acc is decreased
from 14.09% to 0.14% resulting in quantized test accuracy of 90.18% in
comparison to initial floating point test accuracy 90.83%.

The above discussed two quantization schemes behave dif-
ferently during the quantization process and require different
quantization strategies. For bit-widths higher than 7-bit DFP
can be applied without any retraining and still achieves almost
floating point accuracy. For equal bit-width DFP quantization
with 7 bits and less, �acc increases and fine-tuning is neces-
sary to reach the accuracy of the original network. On the other
hand Po2 quantization always requires retraining, as even the
use of bit-widths higher than five reduce the quantization error
only to a certain extent.

To increase the compression ratio when applying DFP quan-
tization, layer-wise precision scaling is an effective method,
since not all layers require the same the bit-width for high
accuracy. For instance, in modern convolution-only networks,
layers with fewer parameters require larger bit-widths [13].
As a result, when applying layer-wise precision scaling the
weights of the output and input layers are kept at high
precision, as they usually have the fewest parameters. In com-
parison to DFP, for Po2 quantization, layer-wise precision
scaling does not proof to be as effective, as almost the same
bit-width is recommended throughout the network to achieve
best accuracy.

For fine-tuning of Po2 and DFP quantized networks, QR
and WQR can be added to the loss function as regularization

WESS et al.: WQR IN DNNs FOR WEIGHT MEMORY MINIMIZATION TOWARD HW IMPLEMENTATION 2935

(a)

(b)

Fig. 9. Distribution of weights in layer 5 of AllConvNet (CIFAR-10) during
fine-tuning with WQR and QR to (a) 4-bit DFP and (b) 4-bit Po2. DFP
(a) is trained with λ2 = epoch ∗ 10. Region (i) shows the faster quantization
of weights with high magnitudes and slower quantization of weights close
to 0. At epoch 150, QR is applied with λ1 = 100 to quantize also weights
with smaller values (ii). Po2 (b) is trained with λ2 = epoch ∗ 10. Region
(iii) also shows slower quantization for small magnitude weights. Due to the
distribution of quantization levels, weights around 0 are already close to the
next quantization level (iv).

terms to force quantization during retraining. While the QR
term forces all weights equally to reduce the distance to the
next quantization level, the WQR term is reduced for weights
with small magnitudes. Therefore, WQR operates less restric-
tive than QR, as the QR value is multiplied with a factor
from 0 to 1 (normalized weight magnitude). As a consequence
it is an effective strategy to apply WQR followed by QR
fine-tuning.

Fig. 9 shows the distribution of weights in layer 5 during
Fig. 9(a) 4-bit DFP and Fig. 9(b) 4-bit Po2 quantization of

TABLE III
ALL-CNN-C ARCHITECTURE AND THE NUMBER OF WEIGHTS AND

MAC-OPERATIONS FOR ONE FORWARD COMPUTATION WITH

BATCH-SIZE ONE

the all-convolutional network for the CIFAR-10 dataset. For
fine-tuning to 4-bit DFP quantization [Fig. 9(a)] λ2 is increased
linearly by a factor of 10 with each epoch. As QR scale factor
λ1 we use 0 before and 100 starting at epoch 150. Region (i) in
Fig. 9(a) shows the decelerated quantization of small magni-
tude weights. Starting with epoch 150, also weights close to 0
are quantized, due to the application of QR [Fig. 9(a)ii]. For 4-
bit Po2 quantization only WQR is necessary (λ2 = epoch∗10)
to achieve quantization. Due to the nonequidistant distribu-
tion of quantization levels in Po2 quantization, the weights
with high magnitudes take longer than in DFP quantization to
reach the quantization levels [Fig. 9(b)iii]. Additional QR is
not necessary since, due to the high density of quantization
levels close to 0, the weights with smaller magnitudes induce
a very small quantization error [Fig. 9(b)iv].

QR and WQR enable trained quantization to improve
performance in comparison to direct quantization.
Regularization-based quantization is very simple to implement
and applicable for any quantization scheme. As a consequence
QR and WQR could be employed alongside other effective
quantization techniques such as stochastic quantization.
Besides the simplicity of the approach, it also allows a deeper
analysis of quantization schemes by recording the weight
distribution during training.

While enabling compression for more efficient inference,
during training QR and WQR add overhead due to the manda-
tory quantization step after each mini-batch and the necessary
computations for calculation of QR and WQR. The fact that
all weights have to be stored as floating point values and quan-
tized values, increases the weight memory during training by
a factor of 2.

IV. EXPERIMENTAL RESULTS

The following section describes the experimental results for
direct and trained quantization of All-CNNs on three datasets.

A. Experimental Setup

For experimental evaluation, we apply the proposed
methods on all-convolutional networks for the datasets

2936 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

TABLE IV
RESULTS IN COMPARISON TO FLOATING POINT BASELINE OF ALL-CNN FOR CIFAR-100 (CR = COMPRESSION RATIO)

TABLE V
RESULTS IN COMPARISON TO FLOATING POINT BASELINE OF ALL-CNN FOR CIFAR-10

TABLE VI
RESULTS IN COMPARISON TO FLOATING POINT BASELINE OF ALL-CNN FOR SVHN

CIFAR-10 [25], CIFAR-100 and SVHN [26]. We use all-
convolution network model All-CNN-C from [23] for evalua-
tion. The CNN architecture summed up in Table III consists
of nine convolution layers and a global average pooling layer.
Due to the similar filter-width and height the number of
weights in the convolution layers mainly depends on the
filter-depths. The number of operations also depends on the
layer-output dimensions. However, it needs to be noted that the
proposed technique is neither architecture nor dataset bound.

For the three datasets, we use the predefined training and
test sets. For the floating point baselines we trained the CNN
for 350 epochs with initial learning rate 10−3 multiplied by
a fixed multiplier after epochs 200 and 300. To avoid over-
fitting, we use dropout with dropout rate 0.5 after layers. In
contrast to the original All-CNN paper [23], the models are
not regularized by weight decay to avoid interfering with the
studied regularization methods. In terms of data augmentation
we only apply horizontal flipping and random shifting by a
maximum of 3 pixels.

B. Performance Analysis

We evaluate the performance of the proposed method
comparing the test accuracy of the original network with
the resulting accuracies after direct and trained quantiza-
tion. For Tables IV–VI, we make use of the abbreviations
in Table II. We aim to achieve high compression rates in
terms of weight memory while maintaining high test accu-
racy. In addition to bit-width reduction we also consider the

resulting sparsity as an important factor for possible further
compression. Assuming skipping of multiplications with 0
weights, sparsity also reduces the amount of required multiply-
accumulate (MAC)-operations for forward computation.3 For
all experiments except the two marked, bit-width for activa-
tions is 32-bit fixed point.

1) CIFAR-100: CIFAR-100 is an image classification
dataset consisting of a training set of 50 000 and a test set
of 10 000 32×32 color images representing 100 different cat-
egories such as airplanes, automobiles, birds, cats, deers, dogs,
frogs, horses, ships, and trucks [25]. The training batches con-
tain exactly 5000 images from each class. Table V shows the
resulting accuracies after fine-tuning with 200 epochs of WQR
with λ2 = epoch × 10. In addition, λ1 is set to 100 starting at
epoch 150. This setup is not optimal for all configurations, as
in some cases training with only QR would be sufficient, but
it allows using the same parameterization for each iteration
increasing comparability. Compared to a full implementation
(32 bits), the proposed layer-wise quantization (DFP-lw) saves
∼4×–8× in terms of weight memory and has an accuracy loss
by ∼0.1%–4.5%. Compared to the reduced equal bit-width
quantization, the proposed layer-wise quantization has higher
sparsity and smaller weight memory.

3The number of skipped MACs due to a pruned weight depends on the
layer-input dimensions. Therefore, sparsity in weights is unequal to sparsity
in MACs.

48-bit DFP for activations.

WESS et al.: WQR IN DNNs FOR WEIGHT MEMORY MINIMIZATION TOWARD HW IMPLEMENTATION 2937

Fig. 10. Results for direct and trained DFP and Po2 quantization with equal
bit-widths on ALL-CNN for CIFAR-100. For DFP also layer-wise precision
scaling with direct and trained quantization is illustrated.

In addition, Fig. 10 depicts the results of trained quan-
tization in comparison to direct quantization. We can see
that retraining with QR and WQR in all cases increases
classification accuracy in comparison to direct quantization.

Comparing equal bit-width quantization with layer-wise
precision scaling for DFP data type, we can see that for simi-
lar compression ratios, equal bit-width (DFP-eq) never reaches
the accuracy of layer-wise precision scaling (DFP-lw), even
when retraining with WQR/QR is applied. For Po2 quanti-
zation, we found equal 4-bit quantization (Po2-eq) the most
effective method as higher bit-widths did not increase accuracy
and layer-wise precision scaling for lower than 4 bits leads to
drastic accuracy drop.

2) CIFAR-10: CIFAR-10 is a benchmark image classifica-
tion dataset equal to CIFAR-100 in terms of image and dataset
sizes, which instead of 100 classes divides the images into ten
classes. We use the same training method as for CIFAR-100.
The results for trained quantization of All-CNN for CIFAR-10
are shown in Table V. To allow comparing to other works for
the two marked configurations, we also quantized the activa-
tions to 8-bit DFP. In contrast to ALL-CNN for CIFAR-100,
for this dataset higher compression rates can be achieved. For
compression ratio ∼8, DFP-lw gives lowest accuracy degra-
dation of 0.51% points. For equal bit-with quantization Po2
outperforms DFP by 1.55% points. For compression ratio
7.38 classification accuracy of DFP with layer-wise precision
scaling is only 0.01% points below the floating point baseline.

3) SVHN: The SVHN image classification dataset consists
of 694K 32×32 color images for training and 26K images for
testing. The images represent digits form 0 to 9. Similarly to
CIFAR-100 and CIFAR-10 we perform layer-wise precision
scaling and retraining with WQR and QR for model com-
pression. The results are shown in Table VI and Fig. 11. For
the SVHN dataset at compression ratio ∼ 8, Po2 quantization
and DFP with layer-wise precision scaling both outperform
the original baseline model.

Comparing the results for the datasets CIFAR-100, CIFAR-
10, and SVHN, we can conclude that the attainable compres-
sion ratio for lossless trained quantization with QR/WQR not
only depends on the selected data type and bit-widths, but also
on the selected datasets. While for CIFAR-10 and SVHN, loss-
less trained quantization achieves compression ratio 8.0 and

Fig. 11. Results for direct and trained DFP and Po2 quantization with equal
bit-widths on ALL-CNN for SVHN. For DFP also layer-wise precision scaling
with direct and trained quantization is illustrated.

9.4, respectively, for CIFAR-100 the maximum compression
ratio is 4.7 for lossless compression. In the case of CIFAR-100
further increasing compression ratio up to 8.0 reduces accu-
racy by 2.09% points. In contrast to this tradeoff, stronger
compression for CIFAR-10 and SVHN immediately leads to
drastic accuracy reduction. We suspect that this difference can
be explained by the relation between complexity of the dataset
and the selected network. To better understand this relation,
in future the techniques have to be applied for further datasets
and network topologies.

While with DFP lossless compression can always be
achieved, Po2 can sometimes lead to slight performance degra-
dation. layer-wise precision scaling turns out to be more
effective for DFP than for Po2. Po2 still reaches maximum
accuracy at uniform 4-bit bit-width while achieving higher
accuracy than uniform 4-bit and even 5-bit DFP.

V. COMPARISON WITH RELATED WORK

The proposed method of WQR presents a novel technique
for trained quantization of DNNs. However, in some works
performing weight-binarization similar regularization methods
are used to achieve weights with values “+1” or “−1” [27].
Today trained quantization is mostly performed by stochastic
rounding during training [14], [19], [28], [29]. Gupta et al. [29]
applied stochastic training for CIFAR-10 dataset to achieve
fixed point quantization to 16 and 12 bits. Their accuracy
is reduced by 0.8% and 4.2% points, respectively, compared
to the floating point baseline. In comparison to that with
our method we reach 8-bit DFP quantization without any
performance drop.

Courbariaux et al. [14] performed quantization based on
stochastic round for 10-bit DFP weights and activations. Their
accuracy drops in comparison to the baseline networks 3.14%
points for CIFAR-10 and 2.58% points for SVHN since in con-
trast to us, they also perform weight-update with 12-bit DFP
which decreases comparability. For our CIFAR-10 and SVHN
network, we experimentally also applied 8-bit DFP for weights
and activations, and found that accuracy even increased after
QR/WQR retraining. Gysel et al. [19] used their CAFFE-based
tool Ristretto for layer-wise precision scaling and fine-tuning
with stochastic rounding. On CIFAR-10, their accuracy lies

2938 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

0.3% below the floating point baseline accuracy, when quan-
tizing not only weights but also activations to 8-bit DFP.
By applying layer-wise precision scaling we are able to
increase compression ratio from 4 to 7.38 and after QR/WQR-
retraining achieve equal to baseline accuracy while inducing
higher sparsity due to the stronger compression. Other than
fine-tuning with stochastic rounding, Zhou et al. [11] presented
an incremental retraining method to perform Po2 weight
quantization. They achieved lossless 5-/4-bit quantization for
several DNNs for the ImageNet dataset. Even for lower bit-
rates incremental quantization achieves state-of-the-art results.
Even though this method seems highly promising, in contrast
to this paper, it is only verified to work for Po2 quantization.

VI. CONCLUSION

We propose QR and WQR as techniques for improving
accuracy after bit-width reductions inflicted by a quantiza-
tion scheme. WQR/QR allow fine-tuning for weights in any
quantization scheme and also works for nonuniform bit-widths
(layer-wise precision scaling). For ALL-CNN with the CIFAR-
10 benchmark WQR reaches lossless compression up to a
ratio of 7.38× with DFP and layer-wise precision scaling.
Compared to the 32-bit floating point baseline in the All-
CNN network, WQR with DFP obtains a weight memory
compaction of 8.0×–10.23× and a MAC sparsity of 37.9%–
64.4% in the benchmark tasks. For these cases with maximal
compaction we observe between 0.48% and 4.45% points
reduction of classification accuracy. A high MAC sparsity ben-
efits HW implementations because it potentially reduces the
number of multiply accumulate operations.

Note, that WQR/QR is not a stand-alone tool, but can be
combined with other techniques and is typically complemen-
tary to those. We have observed, that it has some limitations
when applied to very low bit-widths; hence, its combination
with stochastic rounding methods is considered as future work.

Furthermore, we have studied two quantization schemes,
DFP and Po2, and we find that DFP is usually preferable
to Po2 because it is as good as or better than Po2 in most
cases, it can reach floating point accuracy when increasing bit-
width, and it does not necessarily require retraining (retraining
improves accuracy but for Po2 it is absolutely necessary).
However, in a few special cases with low bit-width Po2 is
slightly better and it might be preferred for HW implemen-
tations because it requires only shift operations instead of
multiplications. Thus, when an optimized HW implementation
is developed, Po2 could be considered as a useful option.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Miami, FL, USA,
2009, pp. 248–255.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing
the gap to human-level performance in face verification,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, 2014,
pp. 1701–1708.

[4] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and
A. Y. Ng, “Cardiologist-level arrhythmia detection with convo-
lutional neural networks,” Stanford Univ. Mach. Learn. Group,
Stanford, CA, USA, Project Rep. 17, 2017. [Online]. Available:
https://arxiv.org/pdf/1707.01836.pdf

[5] M. Wess, P. D. S. Manoj, and A. Jantsch, “Neural network based ECG
anomaly detection on FPGA and trade-off analysis,” in Proc. IEEE Int.
Symp. Circuits Syst., Baltimore, MD, USA, 2017, pp. 1–4.

[6] J. Zhang and C. Zong, “Deep neural networks in machine translation: An
overview,” IEEE Intell. Syst., vol. 30, no. 5, pp. 16–25, Sep./Oct. 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, 2016, pp. 770–778.

[8] C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, Monterey, CA, USA, 2015, pp. 161–170.

[9] P. D. S. Manoj et al., “A scalable network-on-chip microprocessor with
2.5D integrated memory and accelerator,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 64, no. 6, pp. 1432–1443, Jun. 2017. [Online].
Available: https://ieeexplore.ieee.org/document/7819521/

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[11] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless CNNs with low-precision weights,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2017. [Online]. Available:
https://openreview.net/pdf?id=HyQJ-mclg

[12] X. Chen, X. Hu, H. Zhou, and N. Xu, “FxpNet: Training a deep convo-
lutional neural network in fixed-point representation,” in Proc. IEEE Int.
Joint Conf. Neural Netw., Anchorage, AK, USA, 2017, pp. 2494–2501.

[13] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” in Proc. Int. Conf. Mach. Learn.,
New York, NY, USA, 2016, pp. 2849–2858.

[14] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep
neural networks with low precision multiplications,” in Proc.
Int. Conf. Learn. Represent. (ICLR), 2015. [Online]. Available:
https://arxiv.org/pdf/1412.7024.pdf

[15] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 4860–4874.

[16] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Montreal, QC, Canada, 2015, pp. 1135–1143.

[17] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5687–5695.

[18] J. Yu et al., “Scalpel: Customizing DNN pruning to the underlying
hardware parallelism,” in Proc. ACM Annu. Int. Symp. Comput. Archit.,
Toronto, ON, Canada, 2017, pp. 548–560.

[19] P. Gysel, “Ristretto: Hardware-oriented approximation of convolutional
neural networks,” M.S. thesis, Elect. Comput. Eng., Univ. California
Davis, Davis, CA, USA, 2016.

[20] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 1–13.

[21] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. IEEE Int. Symp. Comput. Archit., Seoul, South Korea,
2016, pp. 243–254.

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” J. Mach. Learn. Res., vol. 18,
pp. 1–30, Apr. 2018.

[23] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” in Proc.
Int. Conf. Learn. Represent. (ICLR), 2015. [Online]. Available:
https://arxiv.org/pdf/1412.6806.pdf

[24] S. Shin, Y. Boo, and W. Sung, “Fixed-point optimization of deep neural
networks with adaptive step size retraining,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2017, pp. 1203–1207.

[25] A. Krizhevsky, V. Nair, and G. Hinton. (Mar. 2009). Cifar-10 and
Cifar-100 Datasets. [Online]. Available: https://www.cs.toronto.edu/
kriz/cifar.html

[26] Y. Netzer et al., “Reading digits in natural images with unsupervised
feature learning,” in Proc. NIPS Workshop Deep Learn. Unsupervised
Feature Learn., 2011.

WESS et al.: WQR IN DNNs FOR WEIGHT MEMORY MINIMIZATION TOWARD HW IMPLEMENTATION 2939

[27] W. Tang, G. Hua, and L. Wang, “How to train a compact binary neural
network with high accuracy?” in Proc. AAAI Conf. Artif. Intell., 2017,
pp. 2625–2631.

[28] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in
Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada, 2015,
pp. 3123–3131.

[29] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 1737–1746.

Matthias Wess received the B.Sc. and M.Sc.
degrees from the Department of Electrical
Engineering, TU Wien, Vienna, Austria, in 2013
and 2017, respectively, where he is currently
pursuing the Ph.D. degree with the Institute for
Computer Technology.

His current research interest includes hardware
acceleration of deep neural network inference.

Sai Manoj Pudukotai Dinakarrao (S’13–M’17)
received the Ph.D. in electrical and electronic engi-
neering from Nanyang Technological University,
Singapore, in 2015.

He was a Post-Doctoral Research Fellow with TU
Wien, Vienna, Austria. He is a Research Assistant
Professor with George Mason University, Fairfax,
VA, USA. His current research interests include
adversarial learning, digital design for machine
learning, cyber-security for embedded processors,
self-aware system on chip design, machine learning

for on-chip data processing, and security in Internet of Things networks.
Dr. Dinakarrao was a recipient of the A. Richard Newton Research Young

Research Fellow Award in DAC 2013.

Axel Jantsch (M’97) received the Ph.D. degree in
computer science from TU Wien, Vienna, Austria.

He is a Professor of Systems on Chip (SoCs) with
the Institute of Computer Technology, TU Wien. His
current research interests include embedded machine
learning and self-awareness in SoCs and embedded
systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

