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Signals obtained from a patient, i.e., bio-signals, are utilized to analyze the health of patient. One such bio-
signal of paramount importance is the electrocardiogram (ECG), which represents the functioning of the
heart. Any abnormal behavior in the ECG signal is an indicative measure of a malfunctioning of the heart,
termed an arrhythmia condition. Due to the involved complexities such as lack of human expertise and high
probability to misdiagnose, long-term monitoring based on computer-aided diagnosis (CADiag) is preferred.
There exist various CADiag techniques for arrhythmia diagnosis with their own benefits and limitations. In
this work, we classify the arrhythmia detection approaches that make use of CADiag based on the utilized
technique. A vast number of techniques useful for arrhythmia detection, their performances, the involved
complexities, and comparison among different variants of same technique and across different techniques
are discussed. The comparison of different techniques in terms of their performance for arrhythmia detection
and its suitability for hardware implementation toward body-wearable devices is discussed in this work.
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1 INTRODUCTION

Following the recent trends in health-monitoring devices and heterogeneous integration tech-
niques, a large number of body-wearable devices in different forms such as wristbands nda smart
watches that capture bio-signals are rapidly proliferating in the market. Bio-signals are the non-
stationary signals representing the electrical output from the corresponding organ, captured by
one or more sensors. Disparate techniques and devices are often utilized to acquire different kinds
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of bio-signals. Analysis of the bio-signal aids to monitor and assess the functionality of the corre-
sponding organ.

Most of these bio-signals are deterministic and follow a pattern. For instance, a deterministic
behavior can be seen in the depicted pseudo-random electrocardiogram (ECG) signal in Figure 1.
Any malfunctioning in an organ can be mostly observed as an anomaly in the corresponding
bio-signal. Some examples of anomalies in an ECG signal is illustrated in Figure 3. An anomaly
in a signal can be defined as a sequence or part of signal that does not obey with the behavior
of the rest of the signal (Chandola et al. 2009). Further, an in-depth analysis of anomaly in the
bio-signal, such as morphological distortions and temporal variations, help to derive conclusions
and measures to nullify the cause of the anomaly. Hence, there is an emerging need to study a
wide range of state-of-the-art techniques for bio-signal analysis and evaluate their pros and cons.
Though various bio-signals can be obtained from a patient for analysis, we confine this article to
anomaly detection in ECG signals due to the various reasons mentioned above.

According to cardiovascular disease (CVD) statistics from the World Health Organization
(WHO) (WHO 2015), CVDs are the major cause of death globally. Additionally, anomaly detection
in bio-signals obtained from the heart, i.e., arrhythmia detection, has drawn significant attention
among researchers and practitioners. Cardiac diseases may be diagnosed by invasive and non-
invasive techniques. Cardiac auscultation (Braunwald et al. 2011), i.e., listening to the heartbeat
with the aid of stethoscope, is used by physicians to diagnose CVDs. The efficiency of cardiac aus-
cultation is often hindered due to lack of ability to hear or interpret the heartbeats by a physician
and is prone to human errors or inaccuracies (de Medeiros et al. 2011). ECG is a non-invasive and
efficient technique that represents the electrical activity of heart. Electrocardiogram signals are
useful to analyze and diagnose CVDs (Goldeberger et al. 2012; de Medeiros et al. 2011). It is widely
used to monitor patients’ cardiovascular activities. Any deviation from the usual heart rhythm
(60-100 beats per minute) is termed as arrhythmia, including disturbances in the heart rate, regu-
larity or conduction of the cardiac electrical impulse (Thaler 2015). In addition to CVDs, analysis
of arrhythmia also helps in deriving conclusions about the lifestyle of the patient. For instance, a
high-frequency cardiac rhythm disturbance indicates that a person is suffering from sleep disor-
ders (Migliorini et al. 2011).

Capturing ECG signals for arrhythmia detection often demands special equipment and clini-
cal setup along with expertise. At a large scale, this is not possible, especially in developing or
under-developed countries, where the availability of medical experts, clinics, and medical devices
is meager. This fueled the need for automatic, low-cost, real-time, and efficient physiological mon-
itoring that can be used in the home or under ambulatory settings alike. This gradually led to
arrhythmia detection and health diagnosis by computer-aided diagnosis (CADiag) systems.

1.1 Challenges in Arrhythmia Detection

The major challenges in arrhythmia detection that are vital to consider when designing a CADiag
system are listed below:

—The symptoms of the arrhythmia might not show up at all or might not show up during the
ECG signal capturing period (Ceylan and Ozbay 2007).

—To improve the quality of diagnostics, ECG signals might need to be captured or monitored
over several hours using devices like a Holter monitor, which is not always feasible.

—ECG signal properties (such as time period, amplitude, and so on) vary from person to per-
son and depend on different factors such as age, gender, physical conditions, and lifestyle.
As such, there exist no generalized framework and standards that are valid for all patients.
This is one of the reasons why CADiag arrhythmia detection systems perform well on the
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training data but has reduced performance when tested on different patients (Joshi et al.
2009; Ceylan and Ozbay 2007).

— Variations in the ECG signal morphology for the same person with time, physical state (such
as running, walking, and sleeping), and so on.

—The volume of data to be considered for ECG signal analysis is large; hence there is a higher
probability of having false diagnosis of arrhythmia.

—The noise components from an electrical interface such as electrodes and mechanical dis-
turbances (changes in the connection of electrodes on patient’s skin) or interference from
other nodes can result in morphological variations and discrepancies in captured ECG sig-
nal (Adams and Choi 2012; Yaghouby et al. 2009).

—Some other components of noise that contribute to a false diagnosis of arrhythmia are bio-
logical ones, such as a patient’s muscle movements, which generate high-frequency noise;
chest activity due to respiration, which may provoke baseline wandering, and signal inter-
ference from other organs.

1.2 Contributions of This Work

Despite the above-mentioned challenges, arrhythmia detection is possible by closely observing
and learning the patterns in ECG signals. There exist distinct ways to detect arrhythmias, each of
them with their own merits and demerits. In this work, we try to systematically list and analyze
notable works for ECG signal analysis from both the perspectives of performance and suitability
to emerging body-wearable devices. The main contributions of this work are outlined below:

— A comprehensive overview and analysis of different ECG pre-processing techniques along
with their comparison.

—ECG arrhythmia detection is presented in a categorized manner based on the technique
used in CADiag.

— Various arrhythmia detection techniques ranging from traditional to advanced methods like
machine learning are analyzed.

—A comparison of different variants of a technique and among various techniques is pre-
sented along with their achieved performance.

—Last, a tradeoff analysis between arrhythmia detection techniques’ performance and re-
source is presented, which is of great help for researchers to choose the technique depend-
ing on their requirements.

—In addition, hardware analysis w.r.t. the performance and resource utilization is presented.

1.3 Distinction to Other Surveys

To the best of our knowledge, this is the first survey on ECG arrhythmia analysis that covers a
broader range of topics in terms of arrhythmia detection algorithms (both traditional statistical
method based as well as advanced machine-learning based) and analyzes arrhythmia detection
performance and overheads across different techniques as well as the variants of these techniques.
Furthermore, this work also presents hardware implementation analysis based on performance
and resource consumption, which is non-trivial for the design of future and current wearable and
fitness tracking devices or to determine which of the techniques is best suited to be deployed on
embedded devices such as smart phones for given power and performance budgets. This would
be of great help for both researchers and developers to identify a subset that fits the requirements
of their use cases. There are a few short survey papers such as da S. Luz et al. (2016), Jambukia
et al. (2015), Dewangan and Shukla (2015), and Sahoo et al. (2011). In da S. Luz et al. (2016), ECG
arrhythmia classification based on techniques is presented with primary focus on the performance
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Fig. 1. A pseudo-ECG signal and its components.

evaluation for a given technique. As such, no analysis of the processing overheads, requirements,
or suitability of an ECG arrhythmia detection technique to system or implementation resources is
presented. This leaves the user with a void when evaluating algorithms for a given power or area
constraints or determining the algorithm based on the complexity. Though a compact review of
ECG classification is presented in Jambukia et al. (2015), it is mostly confined to machine-learning
techniques and focuses mainly on neural networks and Support Vector Machines (SVMs). How-
ever, no intriguing comparisons and analysis (in terms of implementations) among different tech-
niques are mentioned. A review that is confined to a specific type of arrhythmia is provided in
Sahoo et al. (2011). Our article differs from the existing ones w.r.t. its coverage of a wide range of
topics regarding ECG signals, arrhythmias, pre-processing of ECG signals, and different arrhyth-
mia detection techniques. In addition, this work provides guidelines to users for selecting the
appropriate arrhythmia detection technique that fits their requirements in terms of performance,
power, or area budget.

1.4 Organization of This Article

The rest of this article is organized as follows. We introduce the ECG signal and its characteristics in
Section 2. Different arrhythmias and their features are presented in Section 3. Possible techniques
employed for extracting different components of an ECG signal is presented in Section 5. Further,
we present different arrhythmia detection techniques in a grouped and compact form along with an
analysis of individual techniques in Section 6. An in-depth analysis of CADiag-based arrhythmia
detection and comparison among various techniques is presented in Section 7. Analysis of other
bio-signals is provided in Section 8 with final conclusions presented in Section 9.

2 ECG SIGNAL CHARACTERISTICS

ECG is a time-series signal with a few millivolts of amplitude and a frequency of 0.01-250Hz
(Webster 2010). An ECG signal comprises five major components, namely P, Q, R, S, and T. The R
component can be easily differentiated from others due to its large amplitude compared to other
components. A pseudo-random ECG signal is shown in Figure 1. The terminology used in this
article for referring to ECG signal properties is provided below:

Component: A component of an ECG signal refers to the P, Q, R, S, and T peaks.

Feature: Features of ECG refer to its inherent characteristics such as time period, amplitude, and
width. For instance, the RR interval can be seen as a feature; similarly, the width of the QRS complex
or the amplitude of the R peak.

Heartbeat: A heartbeat is an ECG signal starting from the present P component to the succeeding
P component (1 cycle).

We describe the utilized medical terms (in the box) followed by how different components of
the ECG signal are generated.
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For a better understanding, we present the basic architecture and composition of the heart
and the used taxonomy here. The heart comprises four chambers, two upper atria (chambers
that receive the blood) and two lower ventricles (chambers that discharge the blood). The upper
atria and lower ventricles are linked through atrio-ventricular valves. Description of other terms
used in this article are given below.

— Chambers in a heart refers to ventricles and atria.

—The atrium is the singular form of atria.

— Valves in a heart separate the chambers, i.e., one valve lies in between each atrium and
ventricle.

— Sino-atrial node refers to the group of cells located in the wall of the right atrium, capa-
ble of producing the action potential (electrical impulse) that travels through the heart,
resulting in the contraction of the heart.

— Atrio-ventricular node is responsible for the coordination of the electrical conduction
system with the upper portion of the heart, i.e., the sino-atrial node’s action potential is
passed to the lower part of the heart through the atrio-ventricular nodes.

— Depolarization (in biology) refers to a shift in the charge distribution in the cell. Depo-
larization results in a less-negative charge.

— Atrial depolarization refers to the depolarization process in the atrium chambers, result-
ing in the P component in the ECG.

— Cardiac cycle refers to the sequence of mechanical and electrical events happening in the
heart that repeats with every heartbeat. It includes two phases: relaxation (diastole) and
contraction (systole).

— Systole is the contraction of the cardiac muscles in response to electrochemical stimulus
in the heart.

— Diastole refers to the part of the cardiac cycle during which the blood is filled into the
heart. This phenomenon is observed as the physical relaxation of the chambers of heart.

— Ventricular diastole is the period during which the ventricles fill the blood and are
relaxing.

— Fusion beats occur due to simultaneous action of impulses generated from different
sources acting on the same region of the heart. If this phenomenon occurs in the ven-
tricular chambers, then it is termed ventricular fusion beat and, similarly, an atrial fusion
beat is the result of colliding impulses in the atrial chambers.

The state of the heart is generally reflected in the morphology of the ECG signal and the heart
rate. Different components of the ECG signal originate from different parts of the heart, as dis-
cussed below (Zheng et al. 2013; Braunwald et al. 2011).

— P component is formed during atrial depolarization when the electrical wave propagates
from the sino-atrial (SA) node to the atrio-ventricular node, spreading from the right atrium
to the left atrium (Wagner and Marriott 2013).

— ORS complex is formed due to the depolarization of the right and left ventricles. Due to the
higher mass of the ventricles compared to the atria, the amplitude of the QRS complex is
larger.

— T component is formed during the repolarization phase of the ventricles. The ST segments
reflect the time period for ventricles to repolarize after depolarization. During the normal
state, the ST segment is isoelectric. The period post T component or wave is called the
relative refractory period.
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Fig. 2. ECG arrhythmia detection procedure.

While making a diagnosis, most of the medical experts take into account the following features:
the relative positions of the components, magnitudes, morphology, and other derived interval fea-
tures such as the PR interval, the PR segment, the width of the QRS complex, the QT interval,
and the ST segment (Chakroborty 2013; Braunwald et al. 2011). As such, the volume of required
data for an efficient ECG analysis is enormous. The possibility for a medical analyst to miss (or
misread) the vital information is high (Ceylan and Ozbay 2007). Arrhythmia detection with the aid
of CADiag is performed in two steps, shown in Figure 2 and described below:

(1) Extraction of components in ECG signal.
(2) Analysis of features for the extracted components for arrhythmia detection.

Before discussing the pre-processing and arrhythmia detection, we provide a brief overview of
some kinds of arrhythmias in next section.

3 ARRHYTHMIAS IN ECG

The heart rate, i.e., the rhythm of the heartbeat, can be normal, fast, or slow. Heart rate together
with other morphological characteristics (including spatio-temporal relations between different
components) are taken into account to diagnose an arrhythmia. Any false diagnosis followed by
treatment can be fatal. An overview of different arrhythmias is presented in this section. It needs to
be noted that the details are provided considering a normal healthy adult. The diagnostic features
may vary with age, gender, and race. An illustration of arrhythmias is given in Figure 3.

Figure 3 depicts different kinds of arrhythmias, and a summary of the arrhythmias is listed in
Table 1. Some of the common arrhythmias that are widely researched are ventricular fibrillation
(VF) and premature ventricular contractions (PVCs), whose characteristics are described below.
VF is one of the most commonly identified arrhythmias responsible for sudden cardiac arrests. It
is often challenging to perform accurate detection of VFs in an ECG signal. Ventricular fibrillation
and ventricular tachycardia look similar in an ECG signal, and an efficient classification leads to
better treatment and improves survival rate of the patient (Joo et al. 2010). Asystole is the medical
condition where there is no cardiac electrical activity, and medical practitioners use this condition
to certify clinical death.

Ventricular Premature Beats (VPB) or PVC results in premature contraction of ventricles during
the ventricular diastole (Ayub and Saini 2011). The morphology of PVC changes from person to per-
son and with activity, and hence no specific characteristics exist (Goldberger and et al. 2000). PVC
could be identified from ECG with one or more of the following symptoms (Shan-xiao et al. 2010):

—P component is misplaced or not present in the ECG signal.

—The QRS complex is widened and distorted with duration greater than or equal to 0.12
seconds and looks bizarre.

—The directions of the T-wave and QRS complex are paradoxical (opposite in direction).

—There might exist a complete compensation pause.

Consecutive PVCs could result in cardiac arrests and can be fatal.
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Fig. 3. An illustration of different arrhythmias (Thaler 2015): (a) normal ECG; (b) tachycardia; (c) bradycar-
dia; (d) supraventricular tachycardia; (€) ventricular tachycardia; (f) bundle branch block; (g) atrial flutter;
(h) atrial fibrillation; (i) ventricular fibrillation; (j) ventricular premature beat; (k) atrial premature beat’?;
(I) fusion beat.
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Table 1. Arrhythmias and Their Characteristics

Arrhythmia Rhythm H?g;[nrste cor:pfnin ts PR (ms) | QRS (ms)
Normal Regular 60-100 1 120-200 <120
Bradycardia Regular <60 1 120-200 <120
Tachycardia Regular >100 1 120-200 <120
Supraventricular tachycardia (SVT) | Regular >150 1 — <40
Ventricular tachycardia (VT) Regular >100 No No >120
Ventricular fibrillation (VF) Irregular >250 No No >120
Atrial fibrillation (AF) Irregular Any >1 No <120
Bundle branch block (BBB) Regular Any 1 — >120
Atrial Premature Beat (APB) Regular® — 1b >120 —
Atrial flutter Regular Any >1 No <120

“The rhythm is regular but can as well be irregular depending on the sub-category of APB.
bP waves may be present or distorted, depending on the sub-category.

4 ECG DATASETS AND EVALUATION METRICS
4.1 ECG Database for Evaluation

Although ECG signals are captured in a non-invasive manner, to adhere the ethical aspects, most of
the works use the ECG signals from existing database records. The most commonly used databases
for evaluating the ECG signals are the following: MIT-BIH database (Moody and Mark 2001),
Creighton University Ventricular Tachycardia database (FM et al. 1986), PhysioNet (Goldberger
et al. 2000), American Heart Association (AHA) database (ECRI 2003), UCI Arrhythmia dataset
(Dheeru and Karra Taniskidou 2017), and European ST-T ECG database (Taddei et al. 1992). Each
of these databases has a large number of records with some of them being clearly annotated. Most
of these datasets are available in PhysioNet (Goldberger et al. 2000). For instance, the UCI Arrhyth-
mia database (Dheeru and Karra Taniskidou 2017) has around 450 well annotated records, and the
MIT-BIH database (Moody and Mark 2001) has a large number of records (>1,000) that covers all
the different kinds of arrhythmias. Furthermore, there exists an option to download the tool and
create a dataset for the required arrhythmia(s) with a desired amount of time in Goldberger et al.
(2000).

4.2 Evaluation Metrics

The parameters used for evaluating arrhythmia detection performance are accuracy, sensitivity,
and specificity. Accuracy is defined as the total number of true values (positives and negatives)
among the total number of samples. Sensitivity is the ratio of the number of true positives to the
total number of samples classified as positive (total number of true positives and false negatives).
Specificity measures the amount of negatives that are correctly identified. This can also be defined
as the percentage of normal beats identified as normal.

5 COMPONENT EXTRACTION IN AN ECG SIGNAL

Component extraction has to be performed for ECG analysis. The components in an ECG signal
are extracted by employing different techniques. The QRS complex is the most widely extracted
component, based on which other components could be extracted. QRS extraction techniques in-
volve two major steps: QRS enhancement followed by QRS detection. Enhancement is applied for
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QRS complex with respect to other features such as P and T components. Some research works
term this as pre-processing.

One of the oldest techniques for ECG component detection with low computational complexity
is amplitude thresholding (Morizet-Mahoudeaux et al. 1981). The major drawback is its inability
to remove noise. Thresholding with first-order derivatives has been tested (Okada 1979) and is
proven to effectively remove artifacts (Zhang et al. 2007), but it fails to remove high-frequency
noise. Some research works have applied the first-order derivative combined with a second-order
derivative of an ECG signal, succeeded by thresholding (Ahlstrom and Tompkins 1983); however,
the signal noises are not completely filtered. Digital filters are applied for QRS detection with
effective noise removal. The most widely used QRS detection technique, that by Pan and Tompkins
(1985), uses a band-pass filter followed by first derivative and threshold. Some other techniques
include Hidden Markov model (Cost and Cano 1989), matched filters (Kaplan 1990), Fast Fourier
transform (FFT) (Tsai et al. 1990), QRS enhancement in filter banks (Afonso et al. 1995), Hermitian
transform (Lagerholm et al. 2000), the zero crossing technique by Kohler et al. (2003), wavelet
transform (Alesanco et al. 2003), discrete wavelet transform (DWT) (Prasad and Sahambi 2003),
wavelet transform succeeded by neural networks (Shyu et al. 2004), principle component analysis
(PCA) (Jiang et al. 2005), mathematical morphology-based filtering by Yongli and Huilong (2005),
empirical mode decomposition (EMD) (Tang et al. 2008), Hilbert transform (Arzeno et al. 2008),
and EMD followed by singularity and thresholding (Xing and Huang 2008).

Detecting R waves with a fixed threshold is less complex in ECG signals, especially when the
ECG signal has a normal morphology (Elgendi et al. 2014). In case of arrhythmias, and noise effects,
adaptive threshold-based component detection has proven to be efficient with less probability of
misdiagnosis (Elgendi et al. 2014; Rabbani et al. 2011; Madeiro et al. 2007; Kohler et al. 2003). The
Hilbert transform aids in differentiating the dominant peaks from other peaks, i.e., it finds the
R peaks effectively; however, they tend to fail if the R peaks have low amplitudes (Kohler et al.
2003). According to Rodriguez et al. (2015a), a combination of Hilbert transform and the adaptive
threshold has a significant effect on the detection of QRS. Some of the widely used QRS detection
techniques are summarized in Table 2.

Analysis and Summary of QRS Detection Techniques
By observing different QRS detection techniques, we could deduce the following:

—Simple thresholding technique is not accurate for QRS detection, especially in the presence
of noise.

—Noises like baseline wandering and artifacts impact the effectiveness of QRS detection.

— Adaptive thresholding with the aid of derivatives (and filters), such as the Pan-Tompkins
technique (Pan and Tompkins 1985), improves QRS detection capabilities. Even the recent
works on QRS detection employ adaptive thresholding.

—Transformation techniques with adaptive thresholding like DWT, although requiring more
computations than simple adaptive thresholding, are relatively more accurate for QRS de-
tection and suitable for high accurate detection systems.

—From the hardware implementation perspective, algorithms like the Pan-Tompkins algo-
rithm and DWT can be adopted relatively well due to their low complex computations and
use of standard hardware components.

—The pre-processing (QRS) detection is computationally expensive compared to the arrhyth-
mia detection in many of the proposed works and determines the overall accuracy of ar-
rhythmia detection.

As the major focus is on arrhythmia detection and, furthermore, as very limited works focus
solely on QRS detection, we provide the arrhythmia detection performance for various techniques
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Table 2. QRS Detection in an ECG Signal
Technique Process Note Source
Amplitude Amplitude threshold suc- | Fails to remove high- | (Rodriguez et al. 2015a;
threshold and ceeded by the first deriva- | frequency noise Thakor et al. 1990; Morizet-
derivative tive Mahoudeaux et al. 1981)
First derivative of ECG and | Reduces baseline drifts and | (Rodriguez et al. 2015a),
the threshold motion artifacts (Okada 1979)
First derivative combined (Ahlstrom and Tompkins
with the second derivative 1983)
of ECG, followed by the
threshold
Digital filters Bandpass filter on ECG | Can increase SNR (Pan and Tompkins 1985)
and threshold followed by its first deriv-
ative and adaptive thresh-
old
Mathematical Mathematical morphology (Yongli and Huilong 2005)
morphology filtering followed by a
filtering and threshold
threshold

Hilbert-Huang

Empirical mode decompo-

Filters out noise, improve

(Tang et al. 2008; Arzeno et al.

larity of signal and thresh-
olding

transform and sition (EMD) filtering SNR 2008)
threshold
Filter banks Significantly improves SNR | (Afonso et al. 1999; Afonso
for Gaussian noise and | etal. 1995)
muscle noise compared to
median or mean averaging
Wavelet Wavelet transform with | SNR canbe improved by se- | (Alesanco et al. 2003)
transform adaptive threshold lecting coefficients with the
largest amplitude
Matched filters | Correlation between input (Kaplan 1990)
ECG and one or more sam-
ples ventricular complexes
Syntactic Sensitive to noise (Trahanias and Skordalakis
method 1990)
Structural Wavelet transform to ECG | Neural networks are highly | (Shyu et al. 2004)
analysis followed by neural net- | sensitive to noise (Clifford
works et al. 2006)
Wavelet transform and | Reduces probability of | (Elgendi et al. 2014; Burte and
adaptive threshold missing QRS complex Ghongade 2012; Rabbani et al.
2011; Madeiro et al. 2007; Xu
and Liu 2005; Kohler et al.
2003; Li et al. 1995)
Hidden Markov Sensitive to heart rate vari- | (Cost and Cano 1989)
Model ation, baseline wander and
noise
Singularity Applied EMD filtering to | Sensitive to noise (Ayat et al. 2009; Xing and
method an ECG and finding singu- Huang 2008)

Zero-crossing
technique

Sensitive to noise

(Kohler et al. 2003)
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rather than QRS detection here. In the next section, we present the arrhythmia detection tech-
niques that fit CADiag.

6 DETECTION TECHNIQUES

Arrhythmia detection can be performed using morphological features as well as the ECG temporal
properties such as time period (Dinakarrao and Jantsch 2018; Arif et al. 2009; Bortolan et al. 2005).
In this work, we classify arrhythmia detection techniques as traditional and machine-learning-
based approaches. Irrespective of the technique, the data used for arrhythmia detection are the
morphological and/or temporal properties of the ECG signal. However, the considered morphology
or temporal properties might change.

6.1 Traditional Methods for Arrhythmia Detection

One of the primary and efficient methods for arrhythmia detection (especially sinus arrhythmia)
is heart rate variability (HRV) analysis. HRV analysis can be carried out in the time domain and
frequency domain by performing traditional operations such as correlations and standard devia-
tions on the derived statistical metrics such as the mean and the the variance of the ECG signal
features. We review some of the most notable works.

6.1.1 Arrhythmia Detection by Analyzing Derived Time Domain Metrics. Analysis of derived sta-
tistical metrics of ECG signal such as variation in the mean of RR intervals, QRS widths, and so on,
could be effective for arrhythmia detection. The main advantages of such approaches are the low
complex computations and that analysis is performed directly on the signal. Time-domain analysis
helps in assessing the severity of arrhythmia.

Arrhythmia detection using time-domain metrics can be classified in two ways: statistical and
geometrical metrics-based analysis. In statistical metrics-based analysis, ECG signal features are
directly extracted and analyzed to detect arrhythmia, whereas geometric metric-based methods
mostly make use of techniques like histogram analysis, and so on, for arrhythmia detection; say,
for instance, based on how often a component occurs in a window, arrhythmia could be estimated.

Conventional Statistical Metrics-based Arrhythmia Detection. Statistical metrics-based HRV anal-
ysis for arrhythmia detection makes use of metrics like duration of successive RR intervals and
the corresponding derived statistical metrics (Electrophysiology 1996). Based on the variations in
the RR intervals, multiple statistical parameters such as root mean square difference between RR
intervals and the standard deviation of average duration intervals are derived, and arrhythmias
are detected. In this case, the intervals between adjacent complexes or RR components represent
the rate norm. Some of the basic statistical indicators of HRV are given in Table 3. Variations in
these parameters indicate the presence of an arrhythmia.

Conventional Geometrical Metrics-based Arrhythmia Detection. HRV analysis to detect arrhyth-
mia can as well be carried out using geometric metrics. Geometric metrics are derived by con-
struction of the distribution density functions of RR intervals (histogram), and analysis of the
parameters of its forms are widely used for geometric analysis of HRV, which include Mo (Mode)
and Amo (amplitude mode) MxDMn (variation range), described in Table 4.

The main advantage of geometric metric-based methods is its insensitivity to the analytical
quality of series RR intervals. However, it requires a reasonable amount of RR intervals to be
recorded and considered (at least 20 minutes). The geometrical method of HRV analysis is unin-
formative in the presence of arrhythmias. Some other methods include minimum-distance clas-
sifiers (Chakroborty and Patil 2014). A drawback of arrhythmia detection using traditional time-
domain metric-based methods is that the analysis for classification is performed on original (raw
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Table 3. Basic Statistical Parameters for HRV Analysis

Parameter Definition Estimation

PNN50(%) | Adjacent RR intervals that differ by Determined primarily by the influence of changes
more than 50ms in the contractions of the heart muscles

RMSSD Root mean square difference between | A measure of HRV between adjacent cycles
RR intervals of neighboring beats

SDNN Standard deviation of the average Integral indicator of the HRV as a whole
duration intervals

SDANN Standard deviation of the mean of RR | It is a measure of the HRV for large number of
intervals calculated every 5 min cycles

Table 4. Basic Geometric Parameters for HRV Analysis

Parameter Definition
Mode (Mo) Most often recurring value in a dynamic series (cardio interval value and peaks)
Variation range | Degree of variation of RR-interval values in the investigated dynamic row

or partially pre-processed) data, which have a larger dimensionality and comprises irrelevant or
non-useful data for analysis (Strauss et al. 2001).

6.1.2  Arrhythmia Detection with Frequency Domain Metrics. Analysis of ECG signal with de-
rived frequency-domain metrics is an alternative for arrhythmia detection. In this method, fre-
quency properties of the signal are studied (Electrophysiology 1996). The frequency composition
of the heart rate can be represented in a graph with power distribution vs. frequency, i.e., power
spectral density (PSD), by which it is possible to judge the severity of frequency components in the
range of very low frequency (VLF: <0.04Hz), low frequency (LF: 0.04-0.15Hz), and high frequency
(HF: 0.15-0.4Hz). Total power in different bands and normalized total powers are used to evaluate
the performance.

Classical methods of spectral analysis are widely used for arrhythmia detection because of the
ease of algorithms used (in most cases, FFT), high processing speed, the reliability of the analysis
results, and ease of implementation with standard hardware units. The advantages of employing
methods such as FFT are their simplicity and high computational speeds. However, they suffer
from statistical instability in the results.

Autocorrelation-based Arrhythmia Detection. Calculation and construction of the autocorrelation
function of the RR intervals aim to study the internal structure as a random process. Calculation
and construction of the autocorrelation function (ACF) of the dynamic series of RRintervals aim
to study the internal structure of this number as a random process. The correlation coefficient
after the first shift is small (typically less than 1), as respiratory waves are big. If there exists a
domination of slow wave components, then the correlation coefficient C1 is slightly smaller than 1,
and subsequent developments lead to a gradual decrease in the coefficient value. The ACF provides
an indication of the latent periodicity of heart rhythm (Jekova 2000).

Autocorrelation functions (ACF95 and ACF99) (Jekova 2000; Chen et al. 1987) are used to an-
alyze the periodicity within the ECG signal and the power spectrum (Lee et al. 2016). A linear
regression of ACF peaks is carried out to detect arrhythmias. Based on the detected period and the
regression errors, normal sinus rhythms and VFs are classified. However, the performance and ac-
curacy achieved with this technique are questionable as VFs might have cosinelike shape (Amann
et al. 2005).

ACM Computing Surveys, Vol. 52, No. 2, Article 23. Publication date: March 2019.



Computer-aided Arrhythmia Diagnosis with Bio-signal Processing 23:13

Arrhythmia Detection Using Correlation Coefficients. In contrast to other techniques, in Hsia et al.
(1986), an ECG analysis for arrhythmia diagnosis was performed with a gamma camera that has
the capability to diagnose radionuclide ventriculography. Each beat is assigned with the measured
RR interval and waveform analysis of the underlying rhythm. To overcome the baseline wandering
effects, a new correlation coefficient-based arithmetic is utilized in Hsia et al. (1986). Prior to ST
segment analysis, averaging of normal beats is performed to improve the signal-to-noise ratio
(SNR). The ST level and slope measurements are automatically computed by averaging the signal
data for arrhythmia detection.

6.1.3  Graphical Analysis for Arrhythmia Detection. The graphical analysis could as well be per-
formed for detecting arrhythmias. One such method is Scatterogram (Suyama et al. 1993). Scattero-
gram provides a graphic image of a plurality of adjacent pairs of RR intervals in a 2D coordinate
system. This graph provides information about the nature and patterns of a rhythm. The scat-
terograms are plotted with R-R,, on the abscissa and the R-R,,;; on the ordinate axis. Here R-R,
represents the nth RR interval value. A bisector is formed at the center based on the formed set of
points. The shift point of bisector to the left indicates that the values of RR intervals are shorter
than the previous cycles and a right shift indicates the opposite condition. In practice, the length
of the cloud, width, and area are major indicators used to analyze a scatterogram.

6.1.4  Arrhythmia Detection with Filtering. In addition to the use of filters for pre-processing,
filters could also be employed for arrhythmia detection, and a few are discussed here.

Spectral Analysis for Arrhythmia Detection with Kalman Filter Identifier. Spectral analysis is used
to study various types of cardiac arrhythmias. The time-varying RR-interval spectra could be fil-
tered using the Kalman filter, and any disturbances that are observed beyond the filtering indicate
arrhythmia. The amplitude of disturbance could be used to deduce arrhythmia (Szilagyi 1998).

Discrete Wavelet Transform Coefficients Threshold. The DWT is one of the most widely used
techniques for extracting the features of an ECG signal (Sahoo et al. 2015; Selvakumar et al. 2007).
Feature extraction is one of the important applications of wavelet transforms (de Chazal et al. 2004).
The morphological features such as the QRS complex and R-peaks can be used for classification
of normal and arrhythmia pattern in an ECG signal. These can be extracted using DWT.

Similarly, in Amann et al. (2005), a WT-based ECG arrhythmia classification is proposed. Ventric-
ular fibrillation is detected using discrete wavelet transform in two steps. DWT with 12 scales and
a Daubechies wavelet is applied to find QRS complexes; the threshold is set to 0.14max in Amann
et al. (2005). If the value of the signal in the third scale crosses a threshold, then the corresponindg
ECG part is considered a QRS complex. If more than two and fewer than 40 QRS complexes are
found within an 8s window, then “no VF” is diagnosed.

Performances of different traditional techniques described above are provided in Table 5. The
accuracy and other performance indicate the accuracy of arrhythmia detection and classification
from normal ECG signal. The methods listed in Table 5 are able to detect normal beats, hence not
explicitly mentioned, unless needed.

Analysis and Summary on Arrhythmia Detection by Traditional Methods
The following conclusions can be derived from the above-discussed works:

—Frequency-domain-based ECG signal analysis helps in deriving conclusions about arrhyth-
mia based on the energy spectrum and related parameters. Frequency-domain analysis is
robust compared to time-domain metrics-based analysis but requires relatively more com-
putations or operations.

ACM Computing Surveys, Vol. 52, No. 2, Article 23. Publication date: March 2019.



23:14 S. Manoj et al.

Table 5. Arrhythmia Detection Using Traditional Methods (Grouped According to Class of Arrhythmia)

Technique Performance parameters Detected References
Accuracy Specificity Sensitivity
Threshold crossing 77.20-83.60% | 77.50-84.40% | 75.00-75.10% (Amann et al. 2005)
(Thakor et al. 1990) 75.00% 98.00% (Jekova 2000)
93.80% 99.90% 29.10% (Amann et al. 2005)
Spectral analysis (SPEC)
93.00% 79.00% (Jekova 2000)
89.2% 92.00% 59.20% (Amann et al. 2005)
Complexity measure algo.
75.00% 66.00% (Jekova 2000)
Standard exponential algo. 79.00% 81.70% 50.10% (Amann et al. 2005)
Modified exponential algo. 81.30% 84.10% 51.20% (Amann et al. 2005)
Signal comparison algo. 96.20% 98.50% 71.20% VF (Amann et al. 2005)
32.00% 78.00% (Jekova 2000)
Autocorrelation (ACFos)
49.00% 49.00% 49.60% (Amann et al. 2005)
Autocorrelation (ACFoo) 37.90% 35.00% 69.20% (Amann et al. 2005)
Tompkins algorithm 45.00% 40.60% 92.50% (Amann et al. 2005)
Wavelet transform and 93.50% 99.70% 26.70% (Amann et al. 2005)
filtering
Li algorithm (based on 86.60% 93.90% 9.00% (Amann et al. 2005)
wavelet analysis)
93.00-93.10% | 99.90-100.00% | 18.80-19.60% (Amann et al. 2005)
VF Filter algo. 91.00% 94.00% (Jekova 2000)
16 (Giivenir et al.
68.00% arrhythmias | 1997)
SVT, VT, VF, | (Selvakumar et al.
DWT 90.54-93.24% V. Flutter 2007)
Regularity measurement
dubbed blanking 95.00% VE, VT glgf)ks"“ etal.
variability
Bi-spectral analysis 83.3-100.00% 81.8-100.00% AF, VT, VF (Khadra et al. 2005)
Teager Energy operator (Sharmila and
(TEO) 99.00% Pve Reddy 2014)

—However, these methods lack stability and are sensitive to noise and artifacts, and the
amount of data required to obtain or derive the metrics is large.

— As there are no standard values available for the mentioned parameters, it needs to be cal-
culated for the patient and is not efficient, especially when there exists a large number of
irregularities or very few irregularities in the ECG signal.

—Methods like auto-correlation and filtering, which are widely used for determining time
periods and noise removal, could also be used for arrhythmia detection, as they outperform
some of the traditional metric-based arrhythmia detection techniques.

—Based on achieved performance in arrhythmia detection using the derived metrics, it could
be observed that the traditional methods including filtering and auto-correlation are ineffi-
cient in terms of performance and are fatal, especially in health-care applications.

—The performance with traditional methods have a large variation, indicating that these tech-
niques are more prone to noise and other kind of fluctuations.

— Additionally, most of these methods focus on detecting very few or single arrhythmia(s).
This inidcates that metric-based methods are not a generic potential arrhythmia detector.
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However, with the advancements achieved in machine learning (ML), sophisticated and efficient
techniques for arrhythmia detection is made possible with ML.

6.2 Application of Machine Learning for Arrhythmia Detection

Signal analysis or data analysis can be automated to make the analysis more efficient and faster
with the aid of machine learning. Machine learning is widely employed in various applications
(Pagani et al. 2019), and bio-signal analysis is no exception. Machine learning in the context of
bio-signal analysis and arrhythmia detection is well researched. We present some of the existing
major contributions here. Please note that the details of ML techniques are not presented, but their
application in the context of arrhythmia detection is discussed.

6.2.1 Arrhythmia Detection with Neural Networks. Artificial neural networks (ANN) (Anderson
1995; Lippmann 1987) are inspired by the mammalian brain architecture. A basic neural network
comprises at least three kinds of layers: an input layer, one or more hidden layers, and an output
layer. In a fully connected neural network, all nodes in a succeeding layer are connected to all the
nodes in the preceding layer. Each node has input, on which the activation function is applied to
obtain outputs. Different layers could have different activation functions. Numerous variants of
neural networks exist and the notable works in the context of arrhythmia detection is presented
below (Wess et al. 2017; Ince et al. 2009; Jiang and Kong 2007).

Feedforward Artificial Neural Network (FFANN). ANN are one of the most widely used techniques
to detect and classify arrhythmias. A vast amount of techniques using feedforward ANN with
variations has been published (Adams and Choi 2012). Feedforward neural networks (FINN) are
a class of ANNs with the dataflow always from the input layer toward the output layer, i.e., only
in forward direction. For arrhythmia detection, the ANN is often preceded by the pre-processing
stage. Noises and ectopic beats are removed in the pre-processing stage. Depending on the type
of arrhythmia to be detected, corresponding features are used as input for the neural network. To
detect a wide range of arrhythmias, training the neural network with morphology and the features
of ECG is the best option.

One of the first known works on arrhythmia detection is by Devine and Macfarlane (1993), in
which feedforward ANNs are used to detect left ventricular strain by detecting the ST segment
abnormalities of the ECG. Hu et al. (1993) proposed the use of ANN for QRS detection and classi-
fication. Mult-layer perceptron (MLP) is used to model the background noise and amplify the QRS
complex toward enhanced beat detection and classification.

As mentioned, FFANNS are applied in arrhythmia detection, and some of the recent works are
presented below. For predicting ventricular tachycardia, ANN trained with statistically derived
metrics such as RR interval, meanNN, SDNN, RMSDD, and pNN50 (refer to Table 3) is proposed
in Joo et al. (2010). The major hurdle in this methodology is that handling the amount of data to
derive these metrics is difficult. In Asl and Setarehdan (2006), a combination of linear and non-
linear features of ECG, especially HRYV, is provided as input for ANN for ECG classification. Time
domain and frequency domain-based nonlinear methods are applied in Asl and Setarehdan (2006)
to extract the features of ECG and are fed to ANN classifier for ECG arrhythmia detection. The
implementation in Asl and Setarehdan (2006) detects and classifies up to five different arrhythmias.
This implementation can be effective even when the training dataset is small. This architecture
utilizes the features of the ECG and HRV metrics to derive conclusions on arrhythmias. This makes
the system prone to noise if the neural network does not offset the effects of noise.

In Inan et al. (2006), the wavelet and timing features of the ECG data are used to train the neural
network for classification purpose. Dyadic wavelet transform with quadratic spline wavelet is
employed with RR-interval ratios for enhanced PVC detection. This implementation is efficient
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for PVC detection; however, the resources and computations needed are high. Similarly, the DWT
coeflicients are fed to the ANN for classifying arrhythmias in Arumugam et al. (2009), and up to
three arrhythmias can be detected. The amount of information to be derived from the ECG signal
for arrhythmia detection is smaller.

Increasing the number of layers leads to improved performance, and as such arrhythmia detec-
tion with multiple layers is as well utilized. A multi-layer feedforward neural network with back
propagation learning is proposed in Adams and Choi (2012) that classifies up to 6 classes (1 nor-
mal and 5 arrhythmias). It achieved an error of 1.4% over the entire analyzed data. This multi-layer
approach though achieves decent accuracy, the number of inputs needed is high, which leads to a
large number of computations. To overcome the problem of having a large number of inputs for
the neural network, a reduced set of ECG features (from 17 to 4) using linear discriminant analysis
(LDA) is fed to FINN for arrhythmia detection, as proposed in Lee et al. (2005). This technique out-
performs PCA-based feature reduction-based implementation. This can detect SVTs, PVCs, VFs,
and normal rhythms. This enjoys the benefit of a smaller number of inputs, i.e., small NN archi-
tecture, but demands efficient and careful pre-processing, especially LDA.

In addition to temporal features, morphological features could as well be utilized for arrhyth-
mia detection. Morphological features such as average heart rate and energy contained in different
bands (33.3-100Hz, 66.7-100Hz), the correlation dimension factor, are used as inputs for the ANN
and with the aid of a fuzzy equivalence classifier, arrhythmia detection is proposed in Acharya
et al. (2003). Data storage, i.e., memory, is one of the bottlenecks for arrhythmia detection using
ECG morphology. A cascade feedforward (FF) network with trainbfg training algorithm was im-
plemented in Ayub and Saini (2011) that achieves 99.9% accuracy with low memory requirements.
A radial basis function NN (RBFNN) for detecting five different arrhythmias is proposed in Rai
et al. (2012).

Modular Feedforward Neural Network. To facilitate reusability and replicability of the neural
networks, especially on hardware, modular FF neural networks are proposed. A modular neural
network for classifying the ECG signal as normal and abnormal, i.e., arrhythmia detection is pro-
posed in Jadhav et al. (2010a). Some of the missing attributes from the database (Lichman 2013)
are replaced by the approximated or closest column value of the concerned class. Although the
missing data are restored, there is a large scope to improve the learning methodology in neural
networks. A modular generalized FF neural network (GFNN) trained with static back propagation
algorithm to classify ECG as normal and arrhythmia is proposed in Jadhav et al. (2010b).

Block-based Neural Network. To enjoy the benefits of block-based architectural design, paral-
lel processing, and modular structures in FPGAs, block-based neural networks are introduced. A
block-based neural network (BbNN) (Moon and Kong 2001) is a two-dimensional (2D) array of
neural network blocks with flexible configurations and structures (varying the number of input
and outputs and so on) and integer weights. This can be implemented with less complexity on
digital hardware such as FPGAs and ASICs. In general, the BbNNs are trained using evolution-
ary algorithms such as generic algorithms (GA). Hermite basis functions are one of the efficient
feature extraction methods for ECG signals (de Chazal et al. 2004). The coefficients of Hermite ex-
pansions characterize the morphology of ECG signal, i.e., the shape of QRS complex. A BbNN with
morphological features and temporal properties of ECG, i.e., Hermite expansion coeflicients and
RR intervals as inputs is proposed for arrhythmia detection and classification in Jewajinda and
Chongstitvatana (2010) and Jiang and Kong (2007). However, in Jewajinda and Chongstitvatana
(2010), an online updating mechanism for weights is incorporated. A multi-threaded training
mechanism for a 4 X 4 BbNN is implemented in Nambiar et al. (2012).
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Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN). Simple ANNSs are
limited in their precision and are often ambushed in local minima (Nambiar et al. 2012; Moon
and Kong 2001). To address this, a Cartesian genetic programming—(CGP) based artificial neural
network (CGPANN) is proposed in Ahmad and Khan (2012). In contrast to genetic programming,
in CGP, the nodes and connections are arranged in form of a 2D graph. The number of nodes,
connectivity, number of inputs and outputs per node, and height and width of the graph are the
tunable parameters. In CGP, the genotype is an array of pre-specified length representing the node
inputs, output genes, and activation functions. To form a CGPANN, the nodes of a CGP are replaced
by neurons having nonlinear activation functions and weighted connections. ECG morphological
features such as P-R interval, QRS width, R-peak amplitude, and other similar factors are used as
an input for training and testing the CGPANN. The work in Ahmad and Khan (2012) uses CGPANN
detects and classifies up to four arrhythmias. The classes of arrhythmias it can detect is smaller
compared to the involved computational complexity and resources utilized.

Auto-Associative Neural Network. In neural networks, the overlap of data or properties and labels
lead to different classification accuracies. Another drawback of neural networks is their long train-
ing time. To overcome the interaction of data with other classes, auto-associative neural network
(AANN) is proposed. AANN learns in a non-discriminative manner. Non-discriminative learning
helps in reducing the off-line training time. In contrast to the standard NN-based approaches (su-
pervised learning), input data need not be accompanied with class labels or targets in AANN. In
AANN, for each class, a separate AANN was trained, and weights of those networks are preserved
for testing purpose. As such, an individual AANN has to be trained or designed to detect a par-
ticular arrhythmia with ECG features and morphology as the input. This could be efficient but
resource intensive. An AANN-based arrhythmia detection is proposed in Chakroborty (2013).

Probabilistic Neural Network. Although back-propagation algorithms though utilize heuristics to
discover underlying class, they suffer from computational delays, false minima, and lower classifi-
cation accuracy. To surmount the drawbacks of back-propagation, a feedforward neural network
forming the basis from Bayesian theory is introduced and termed as probabilistic neural net (PNN).
This is as well employed for arrhythmia detection (Ghongade et al. 2014). Authors utilize 10 statis-
tical characteristics for classifying 10 classes of heartbeats (arrhythmias): PSD, energy of the signal,
amplitude of the R-peak, RR-interval duration, mean, distance between Q and S components, area
under the QRS complex, R-S slope, the area under autocorrelation curve, and the singular value
decomposition (SVD) value. Each beat is represented by these 10 features. This technique provides
good accuracy with negligible training time. However, MLP-BPNN enjoys the benefits of consis-
tency in training and with reduced iterations during testing. An identical work that is also based on
Bayesian theory and logistic regression for arrhythmia detection is proposed in Gao et al. (2005).

Adaptive Wavelet Network. An extension of probabilistic neural networks is adaptive wavelet
networks (AWN). In AWN, adaptive wavelets are used to derive the correlations based on which
the classification is performed. An AWN-based ECG anomaly detection is proposed in Lin et al.
(2005). It consists of two stages: wavelet layer and an adaptive PNN. Features of the heartbeat are
extracted in the wavelet layer using Morelet wavelets. These wavelet coefficients represent the sim-
ilarity measure of the signal and the wavelet under different dilation and translation parameters.
This layer is robust in detection but not capable of recognition. This is followed by probabilistic
neural network layer(s) for recognition of the beats, i.e., normal, arrhythmias. In architecture, it is
composed of wavelet nodes, followed by a hidden summation and output layers. The inputs can
be binary or continuous signals (Specht 1988). It performs well under dynamic conditions with
supervised or unsupervised learning.
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Wavelet Neural Network. Wavelets can be seen as a matching function to identify a set of pat-
terns. A wavelet neural network (WNN) is proposed in Ceylan and Ozbay (2011) with wavelets as
the activation functions. Morlet and Mexican hat wavelet functions are widely selected for exper-
imenting, and ANN with Mexican hat wavelet function outperforms Morlet activation function-
based ANN in terms of classification accuracy (Ceylan and Ozbay 2011). In Ceylan and Ozbay
(2011), ECG signals are first filtered using low-pass and high-pass filters. The RR intervals are pro-
vided as inputs and training data for the NN. This work can classify bundle branch blocks (BBB)
and normal beats. It is stated that with the increase in a number of beats used for training, the accu-
racy can be improved. Though the wavelet functions can be fine-tuned, the number of arrhythmias
that could be detected are dependent on the wavelet properties in the hidden nodes.

Sparsely Connected RBF Neural Network. The activation functions used in previously mentioned
techniques are more generic and can be applied widely. Using a Gaussian distribution function
when the input follows a Gaussian distribution yields better results (Husain and Fatt 2007). Addi-
tionally, fully connected neural networks demand more computations. A sparsely connected radial
basis function neural network (RBFNN) is proposed in Husain and Fatt (2007). In contrast to fully
connected RBFNN, sparsely connected RBFNN has fewer connections. This lowers the computa-
tion costs, and an increase in classification accuracy is observed. By providing the features of the
ECG signal, arrhythmia detection can be performed.

Elman Neural Network. In all the previously described neural network architectures, there ex-
ists no information on context nor previous state. Elman network consists of an additional delay
element facilitating the previous state of the hidden layer(s) as input to decide or calculate the suc-
ceeding feed-forward mapping process (Shukri et al. 2012). This state information helps to detect
continuous irregular patterns with better accuracy. An Elman neural network implementation for
ECG arrhythmia detection is proposed in Mohamad et al. (2013). In Mohamad et al. (2013), for ECG
anomaly detection, there is a three-step process: pre-processing, processing, and classification is
followed. For pre-processing, median filter and moving average filters are used to remove high-
frequency noises, smooth the signal and eliminate the jagged edges. This is followed by principal
component analysis for reducing the features to save the computation costs. The reduced feature
set is provided as input to the Elman neural network to detect arrhythmias. The major bottleneck
in the Elman neural networks is the memory requirements, especially when the number of states
to remember are high.

Performances of different neural network implementations for arrhythmia detection and classi-
fication is presented in Table 6. The accuracy determines the accuracy of classification of different
arrhythmias compared to normal heartbeats.

Analysis on Arrhythmia Detection Using Neural Networks

Neural networks are one of the widely employed machine-learning techniques for different appli-
cations, including ECG arrhythmia detection. Based on the presented works and the achieved per-
formances for arrhythmia detection using neural networks, we derive the following conclusions:

— Artificial neural networks (ANN MLP, or FINN) with back-propagation learning is the most
commonly used and achieved good accuracy for arrhythmia detection but is efficient only
if the number of kinds of arrhythmias to detect are small.

—For better suitability to hardware platforms such as FPGA, block-based neural networks are
widely deployed due to its modular structure.

—Sparsely connected neural networks can be used as an alternative when the system has been
constrained on the number of computations that can be performed or energy efficiency is
one of the optimization goals.
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Table 6. Arrhythmia Detection Using Neural Networks and Their Variants
(Grouped According to Neural Network Variant)
. Performance parameters
Technique Detected References
Accuracy Specificity Sensitivity
98.60% 5 different (Adams and Choi 2012)
arrhythmias
56.00-100.00% 6 different (Jadhav et al. 2010c)
arrhythmias
88.10% 89.70% 86.70% Normal, abnormal (Leutheuser et al. 2014)
88.24% 16 different (Raut and Dudul 2008)
arrhythmias
FENN(ANN MLP)
66.00% 72.00% 58.00% VT (Hoher et al. 1995)
76.60% 71.40% 82.90% VT (Joo et al. 2010)

98.53-99.98%

99.15-100.00%

90.00-100.00%

PVC, AF, VF, heart
block

(Asl and Setarehdan
2006)

82.10% 80.70% PVC (Bortolan et al. 2005)
82.35% 89.13% 68.18% Normal, abnormal (Jadhav et al. 2010b)
90.40+9.6% 90.20+9.8% 90.30+9.7% | Normal and (Ramirez et al. 2010)
abnormal
98.80% 99.70% 98.84% Tachycardia, LBBB, | (Rai et al. 2012)
RBBB, PVC
Discrete wavelet 96.50% PB, APB (Sarkaleh 2012)
with ANN
Wavelet 86.67-100% | VT, VF, V. Flutter (Arumugam et al. 2009)
decomposition
with FINN
Cascade FINN 99.90% Fusion beats, VPB, | (Ayub and Saini 2011)
unclassified
FCM-PCA-NN 99.09% 10 different (Ceylan and Ozbay
arrhythmias 2007)
Modular ANN 82.22% 82.76% 81.25% Normal, abnormal (Jadhav et al. 2010a)
BLNN 97.50-98.80% | 98.80-99.40% | 74.90-94.30% | Ventricular, SV (Jiang and Kong 2007)

ectopic beats

99.64%

Normal, abnormal

(Nambiar et al. 2012)

Auto-associative
NN

95.62-99.35%

LBBB, RBBB, PVC,
APC

(Chakroborty 2013)

RBENN 64.87+0.53% 40+2% 70+3% Normal, abnormal (Gao et al. 2005)
99.60% 99.90% 99.60% Tachycardia, LBBB, | (Rai et al. 2012)

RBBB, PVC

Sparsely 75-100% AF, Malignant (Husain and Fatt 2007)

connected RBFNN ventricular entropy

Bayesian ANN 80.69+1.67% 15+2% 76+4% Normal, abnormal (Gao et al. 2005)

Probabilistic ANN 98.10% 99.78% 98.10% 10 different (Ghongade et al. 2014)
arrhythmias

Adaptive wavelet >90.00% 5 different (Lin et al. 2005)

NN arrhythmias

Elman NN >95.00% 87.50-99.90% | Cardiomyopathy, (Mohamad et al. 2013)
LBBB, RBBB

Genetic ANN 84.10% 6 different (Waseem et al. 2011)
arrhythmias

Quadratic NN 98.16% 97.60% 97.05% APC, PVC (Rodriguez et al. 2015b)
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—Neural networks perform well when the number of arrhythmia types to detect and classify
is smaller in number, say, five to six types.

—Neural networks outperform traditional techniques but are computationally complex.

—Techniques such as approximations can be deployed for improved hardware efficiency but
can cost the accuracy of detection, which is crucial for health-care applications.

6.2.2  Arrhythmia Detection with SVM. SVMs are used for classification and regression analysis.
An SVM builds a model based on the input data with labels such that it could be classified as
clear as possible (as provided in labels). Here the label indicates the class or a group to which the
input data belongs. Every new input is mapped to the corresponding category. SVMs operate on
vectors rather than individual points, making them robust. We review most significant SVM-based
arrhythmia detection works here.

Similarly to neural networks, features and morphological components are used as inputs for
SVM. In Faziludeen and Sabiq (2013), an SVM-based classification is performed to differentiate
normal rhythms from PVCs and (left) bundle branch blocks. The classification phase is with one-
against-one (OAO) multi-class SVM. As OAO technique is employed and the number of output
classes are three (normal, PVC, and BBB), three SVMs are designed, and a final grouping (classi-
fication) is done using the maximum voting technique as in Milgram et al. (2006). As using three
SVMs is computationally intensive, it is non-trivial to evaluate its performance against other SVM
methods. In Kohli et al. (2010), ECG classification using OAO SVM, one-against-all (OAA) and
fuzzy decision function—-(FDF) based SVMs are employed. The OAO SVM outperforms other two,
and FDF performs poorly.

As the amount of input data for the purpose of classification is large and SVMs are computation-
ally expensive, data reduction techniques such as PCA are employed in the preprocessing stage. In
Imah et al. (2011), four different arrhythmias are distinguished from normal signals using SVMs.
The process comprises data pre-processing, feature extraction, and classification with SVM. With
the advancement in data reduction algorithms such as PCA and genetic algorithms, they are em-
ployed for processing ECG signals together with classification algorithms such as SVM. In Nasiri
et al. (2009), a genetic algorithm is used in combination with SVM classifier for arrhythmia de-
tection. This work is capable of distinguishing four types of arrhythmias. Overall classification
accuracy of nearly 93.5% is achieved with SVM-genetic algorithm combination.

Although SVM genetic algorithms are a good learning methodology, the achieved performance
is not satisfactory in health-care applications. Hence, a hybrid method of SVM called the holder-
SVM detection algorithm is introduced in Joshi et al. (2009), which is designed to take care of the
imbalance rampant in bio-signals with a hybrid arrangement of binary and multi-class SVMs. ECG
classification is performed as follows: noise patterns are removed, followed by wavelet transform
modulus maxima—(WTMM) based local holder exponents (LHE), which captures the hidden in-
formation in time series, and a few points with more information are calculated and then selected
points are provided as inputs for multi-class SVM for classification. It is efficient in reducing false
negative, i.e., patient falsely classifying as normal.

Transformation functions can be realized using simpler functions and as filters in hardware;
hence, they are preferable candidates in combination with SVMs. A WT for feature extraction fol-
lowed by SVM for arrhythmia classification is proposed (She et al. 2010). This method outperforms
the ambulatory ECG (AECG) arrhythmia intelligent software (AIAS). It can classify normal beats,
atrial premature beats, and premature ventricular beats.

We have presented most of the works on SVMs methodologies with more focus on classification
part rather than preprocessing or signal analysis. A multi-resolution support vector machine (MR-
SVM) is proposed in Zheng et al. (2013) for arrhythmia detection in ECG. This technique performs
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Table 7. Arrhythmia Detection Using SVM (Grouped According to Variant of SVM)

Technique Performance parameters Detected References
Accuracy Specificity Sensitivity
99.32% 99.32-99.71% 16 different (Ye et al. 2012)
arrhythmias

SVM 98.91+0.12% | 99.71+0.12% | 94.91+0.33% | PVC beats (Lashgari et al. 2013)

77.00% 84.90% 72.00% Normal, abnormal | (Leutheuser et al. 2014)

90.80+1.5% 85.40+2.10% | 98.20+1.20% | Normal, abnormal | (Ramirez et al. 2010)
OAO SVM 98.46-99.92% | 97.80-99.97% | 97.57-99.85% | LBBB, PVC (Faziludeen and Sabiq
2013)

PCA with Linear 92.00-97.50% RBBB, LBBB, (Imah et al. 2011)
SVM PVC, V. Fusion
MR-SVM 93.00% normal, abnormal | (Zheng et al. 2013)
Multi-section 98.13% 97.80% LBBB, RBBB, (Chakroborty and Patil
vector quantization APC, PVC 2014)
(OAA)
Multi-section 97.54% 97.86% LBBB, RBBB, (Chakroborty and Patil
vector quantization APC, PVC 2014)
(combined)
PCA with Wavelet 87.25-96.75% RBBB, LBBB, (Imah et al. 2011)
SVM PVC, V. Fusion
SVM with >93.00% Tachycardia, (Nasiri et al. 2009)
evolutionary LBBB, RBBB
learning
Continuous 99.56% VPC, APC (She et al. 2010)
wavelet transform
with SVM
SVM with rejection 89.20% normal, abnormal | (Uyar and Gurgen
option 2007)

multi-resolution analysis (MRA) in signal processing and support vector (SVM) in data mining.
First, extraction of T wave is carried out with the MRA by decomposing the original signal, i.e.,
data are transformed into coefficients by employing MRA. Second, these coefficients are fed to
SVM for distinguishing normal and abnormal ST segments. A nice comparative study is presented
in Ye et al. (2012).

ECG morphological features can also be used as an input for arrhythmia detection using SVMs.
An ECG classification method based on dynamics and the morphological features is presented
in Ye et al. (2012). Morphological features of the ECG signal are extracted with the aid of Wavelet
transform and independent component analysis (ICA). Further, the temporal behavior is evaluated
based on the RR-interval information. All this information together is provided to SVM with radial
basis function (RBF) to perform classification.

Arrhythmia detection performance of different works that make use of SVM for arrhythmia
detection is listed in Table 7.

Analysis on Arrhythmia Detection using SVM

SVMs are employed for the purpose of classification and regression in a variety of applications.
SVMs are efficient when the datasets are labeled. Based on the existing works that use SVM for
arrhythmia detection and classification, we derive the following conclusions:

—Depending on the kind of arrhythmia, SVM could be modified and trained to classify
arrhythmias.
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Table 8. Arrhythmia Detection Using Bayesian Classifiers and Its Variants
(Grouped According to Variant of Bayesian Classifier)

Performance parameters

Technique Detected References
Accuracy Specificity Sensitivity
Bayesian classifier 69.38-94.67% 3-6 arrhythmias (Ahmed et al. 2014)
discriminant
One-vs.-one error 70.00-97.11% 3-6 arrhythmias (Ahmed et al. 2014)
minimization with a
Bayesian classifier
Laplacian Eigen map | 98.85+0.90% | 99.95+0.01% | 98.97+0.99% | PVC beats (Lashgari et al. 2013)
with a Bayesian
classifier
70.46+1.11% | 19.00+3.00% | 59.00+3.00% | Normal, abnormal | (Gao et al. 2005)
64.90% 74.90% 60.60% Normal, abnormal | (Leutheuser et al.
Naive Bayes 2014)
58.92% 33.14% 50.49% Normal, abnormal | (Park et al. 2015)
53.00% 16 arrhythmias (Raut and Dudul 2008)

—SVMs are more flexible and could be combined with other kind of methods, including sta-
tistical methods and regression techniques.

—SVMs can as well be employed together with dimensionality reduction techniques such as
PCA for data reduction and pre-processing purpose.

—SVMs are efficient when the training data are labeled and sufficiently large compared to
neural networks.

—Different kinds of SVMs, such as OAO, MR-SVM can as well be used for arrhythmia detec-
tion. OAO SVM outperforms OAA-based SVM and FDF.

—SVMs are computationally expensive and is resource hungry (especially computing units).

—SVMs outperform neural networks and other techniques when the class of arrhythmias to
detect are large.

6.2.3 Arrhythmia Detection with Bayesian Classifiers. The Bayesian classifier is a branch of
machine-learning techniques that is effective to perform data classification. This uses probabilistic
statistics for classification. The main idea is to obtain the probability that the data belong to a par-
ticular class. In general, features of the ECG signal are provided as inputs for Bayesian classifiers.

In Elghazzawi and Geheb (1996), a Bayesian posterior probability-based classifier is proposed
for ECG arrhythmia detection and classification. The major features used for classification are the
beat width, polarity, ST-area, polarity, correlation coeflicient between QRS complex and a window
of the same length from the patient, and presence of the P-wave. The classification is performed
based on the Bayes posterior probability. The posterior probability curves are derived from the
MIT-BIH database and used for classification. Some other variants of Bayesian classifiers, such as
Naive Bayes classifiers and one-vs.-one error minimization Bayesian discriminant, are employed
for arrhythmia detection. The performance of Bayesian classifiers in arrhythmia detection is pre-
sented in Table 8.

Analysis on Arrhythmia Detection using Bayesian Classifier

Bayesian classifiers are helpful for classification of data, even when the data are not associated with
labels. Based on some of the presented existing works that use Bayesian classifiers for arrhythmia
classification, we can derive the following conclusions:
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—Bayesian learning could be applied for arrhythmia detection when there are no labels asso-
ciated with data or the amount of training data is very little.

—Naive Bayes, though less complex compared to other discussed Bayes techniques, has rela-
tively lower accuracy.

—Bayesian learning associated with Laplacian could be more effective to accurately detect
PVCs, which many of the CAD methods fail to detect and classify accurately.

—Bayesian classifiers can also be used even if the arrhythmias to be detected are unseen.

—However, the performance of Bayesian classifiers for arrhythmia detection is not as effective
as neural networks or SVM-based methods. Furthermore, the hardware implementation also
incurs higher overheads due to involved computational complexity.

6.2.4 Clustering and Neighboring-based Classification. Among machine-learning techniques,
clustering and nearest-neighbor techniques can be termed as relatively low complex techniques.
Clustering is the process of grouping the data and to detect the outliers. Clustering is as well
employed for arrhythmia detection. Similarly, one more low-complex technique to perform classi-
fication is to use the distance metrics. This method involves calculation of distance metrics such as
Euclidean between the beats present in the databases. Based on the distance from different classes,
the class with least distance is assigned to the beat. This technique is a one-against-all scheme and
is computationally expensive (Chakroborty and Patil 2014).

Simple K-nearest-Neighbor Classifier. A simple K-nearest-neighbor (SKNN) classifier can be em-
ployed by forming the clusters in the training phase and depending on the nearest-neighbor value,
the class or kind of arrhythmia could be determined. This involves calculation of Euclidean dis-
tances. The technique was employed in Arif et al. (2009) and Yeh et al. (2009) for the six types of
beats, namely left and right bundle branch blocks (BBB), paced beats, PVC, APB, and normal beats.

SSA K-means Clustering. In addition to time-domain metrics as input for clustering, spectral
data can as well be used for clustering purposes. To detect arrhythmias, a combination of classical
single-spectrum analysis (SSA) with k-means clustering can be employed (Uus and Liatsis 2011). It
employs a semi-supervised approach k-means clustering, where the library of patterns is serially
annotated by clinicians.

Kernel Difference weighted k-nearest-neighbor classifier (KDF-WKNN). A kernel difference
weighted k-nearest-neighbor classifier (KDF-WKNN) is proposed for ECG anomaly diagnosis in
Zuo et al. (2008). In contrast to the classical KNN, a weighted k-nearest neighbors is employed
with least-squares optimization in KDF-WKNN. This is succeeded by Lagrangian multiplier for
computing the weights. In case of any missing attributes, techniques like PCA could be employed
to reconstruct the data.

The performance of KNNs and clustering is outlined in Table 9.

Analysis on Arrhythmia Detection using Clustering and Distance Classifiers

Techniques like clustering, distance-based classifiers, and so on, can be implemented for classifi-
cation purposes. Based on the observed performances with clustering and distance classifiers in
different works, we could derive the following:

— Clustering and nearest-neighbor techniques, when integrated with fuzzy logic, outperforms
simple clustering and nearest-neighbor techniques.

—Similarly to neural networks, the nearest-neighbor and clustering techniques are effective
when the number of differenc types of arrhythmias is smaller. Compared to neural net-
works, these techniques achieve lower specificity and sensitivity.
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Table 9. Arrhythmia Detection Using Clustering and Nearest Neighbor Techniques
(Grouped According to Technique)
. Performance parameters
Technique Detected References
Accuracy | Specificity | Sensitivity
92.80% 93.30% 92.30% Normal, abnormal (Leutheuser et al. 2014)
34.62% 85.84% 5 different arrhythmias (Owis et al. 2002)
K-nearest neighbors 97.95% 90.49% 85.21% Normal, abnormal (Park et al. 2015)
75.00% 16 different arrhythmias | (Raut and Dudul 2008)
75.40% 80.90% PVC (Bortolan et al. 2005)
Kernel difference 70.66% 15 different arrhythmias | (Zuo et al. 2008)
weighted k-nearest
neighbor
Prediction by partial 99.14% 99.37% 91.74% AFib, PVC, Sinus (de Medeiros et al.
matching Bradycardia 2011)

—These techniques are unsupervised, adding the advantage of not having the labeled data,
but have higher complexity and the robustness to the variations is small.

6.2.5 Arrhythmia Detection with Fuzzy Logic. Fuzzy logic makes use of many-valued logic for
true or false, whereas binary logic uses one or zero for true and false. This use of many-valued logic
helps in determining confidence levels of true or false in addition to determining accuracy. Fuzzy
logic is adapted in ECG signal analysis as well for arrhythmia detection. A few notable methods
are discussed below.

Fuzzy Inference Model. A three step procedure using the fuzzy inference model is proposed in
Huang and Chen (2012). Initially, the amplitudes of heartbeats, intervals, slopes, angles, and edge
lengths are considered to get 21 heartbeat features. As processing using all the features is computa-
tionally expensive, PCA is applied to reduce the state space, and only 6 principal features including
QRS duration, QR duration, RS-slope, area under RS, length, and height of QR are selected. Then,
the maximum, minimum, and mean values of each heartbeat type are used to construct the ini-
tial membership functions of the fuzzy inference model. Using the extracted features, arrhythmia
classification on ECG signal is performed.

Fuzzy Neural Network. A neural network with weighted fuzzy membership function (NEWFM)
for premature ventricular contraction (PVC) detection is proposed in Lim (2009). The NEWFM
classifies normal and PVC beats by the trained bounded sum of weighted fuzzy membership func-
tions (BSWFMs). Eight generalized coefficient features are extracted (from wavelet coefficients d;
and d,) by the non-overlap area distribution measurement method (Lim and Gupta 2004) is used
to predict PVCs using Haar wavelet transform and NEWFMs (Lim and Gupta 2004).

Fuzzy-hybrid Neural Network. Neural networks and fuzzy-based techniques are widely used in
pattern recognition. In Engin (2004), a fuzzy-hybrid neural network is proposed for classification of
ECG beats. The fuzzy-hybrid neural network comprises of a fuzzy self-organizing layer to perform
initial classification of ECG signals, followed by the multi-layer perceptron (MLP) network, which
works as a final classifier. For classification of beats, statistical features of ECG are used.

Fuzzy-Neuro Learning Vector Quantization. To perform classification, a learning vector quanti-
zation (LVQ) is used together with the fuzzy-neuro network to overcome the noise and distortion
impacts. A fuzzy-neuro learning vector quantization technique for ECG arrhythmia detection on
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Table 10. Arrhythmia Detection Using Fuzzy Logic (Grouped According to Variant of Fuzzy Logic)

Technique Performance parameters Detected References
Accuracy Specificity Sensitivity

Fuzzy C-means 93.50% 95.30% 99.60% PVC, RBBB, (Engin 2004)

with ANN non-conducted P

NN with weighted 97.97-99.86% 99.20-99.99% 90.67-99.21% | PVC (Lim 2009)

fuzzy membership

Fuzzy neural 97.20-99.0% 99.20-100.00% | 95.00-98.30% | AF, VF, VT (Wang et al. 2001)

network

Fuzzy neural 92.48% VPC, APB (Shan-xiao et al.

network 2010)

Neuro fuzzy 81.80% 85.80% PVC (Bortolan et al. 2005)

approach

Fuzzy KNN 97.63+0.02% 94.74% 6 different (Arif et al. 2009)
arrhythmias

Pruned Fuzzy 97.32+0.05% 94.58% 6 different (Arif et al. 2009)

KNN arrhythmias

Polar Teager 98.93% 99.85% PVC, LBBB, RBBB, (Sutar and Kothari

energy with Fuzzy Tachycardia 2015)

C-means

FPGA is presented in Jatmiko et al. (2011). Arrhythmia detection is carried out in three steps:
pre-processing, feature extraction, and arrhythmia detection (classification). FLVQ utilizes fuzzy
theory to form input vector, learn, and decide. This method has advantages of speed and accuracy
(Jatmiko et al. 2009).

Fuzzy K-nearest-neighbor Classifier. Fuzzy K-nearest-neighbor classifier is an extension of SKNN.
Despite the high classification accuracy, SKNN or FKNN is hindered by the involved time and space
complexities. The additional overhead comes in terms of extra memory. This can be overcome
by performing pruning on training data. To reduce the complexity, ATRIA, a neighbor search
technique (Merkwirth et al. 2000) has been used. Fuzzy k-nearest-neighbor classifier enjoys the
benefit over SKNN by having a robust and stable decision, i.e., high confidence with the inclusion
of higher-level decision process.

Fuzzy C-mean Clustering. A fuzzy C-mean clustering algorithm is proposed in Sutar and Kothari
(2015). These processes also employ pre-processing, feature extraction, and classification for ar-
rhythmia detection. For pre-processing, digital filters as in Pan and Tompkins (1985) are employed.
Digital filters are preferred over analog filters because of lower design complexity, effective noise
removability, and artifacts. For QRS detection, i.e., feature extraction, polar teager energy (PTE),
which is based on the entropy of the signal, has been utilized. Employing features that are linearly
dependent or related leads to feature vectors with smaller dimension. Hence, a relation between
information entropy and mean teager energy is exploited. Based on these features, ECG beat clas-
sification using Fuzzy C-mean clustering algorithm is performed. The performance of fuzzy logic
in arrhythmia detection is presented in Table 10.

Analysis on Arrhythmia Detection Using Fuzzy Logic

—Fuzzy neural networks are effective when operating in noisy environments and have been
proven to achieve higher performance in arrhythmia detection.

—Fuzzy logic can be operated together with methods like SVM and neural networks to achieve
good accuracy in arrhythmia detection.
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Table 11. Deep Learning-based Arrhythmia Detection (Grouped According to Technique and Architecture)

Technique Performance parameters Detected References
Accuracy Specificity Sensitivity

CNN (4 conv.+2 FC) 93.53-95.22% | 92.83-94.19% | 93.71-95.49% | Mycardial (Acharya et al.
infraction 2017b)

DNN (9 hidden 89.07-94.03% 5 arrhythmias (Acharya et al. 2017c)

layers)

DNN (11 hidden 92.5-94.9% 81.44-93.13% | 98.09-99.13% | AF, A. Flutter, VF | (Acharya et al. 2017a)

layers)

CNN (11 conv. 93.18% 91.04% 95.32% VT, VF (Acharya et al. 2018)

layers)

DNN (3 conv. + 2 FC) 96.6-99% 98.1-99.5% 64.4-95.9% 5 arrhythmias (Kiranyaz et al. 2016)

CNN 91.8% AF (Shashikumar et al.

2017)

3-layer Restricted 75-99.5% 73.1-100% 4 arrhythmias (Taji et al. 2017)

Boltzman machine

8-layer CNN-LSTM 99.85% 99.84% 99.85% Coronary artery (Tan et al. 2018)
disease

—Fuzzy logic-based methods perform well for arrhythmia detection. As seen, the accuracy
ranges from nearly 92 to 99%, depending on the approach.

—The major drawback with fuzzy logic is that it is not always possible to have multi-valued
logic for true and false values.

6.2.6 Deep Learning-based Arrhythmia Detection. Deep learning is also applied in the recent
years for the purpose of arrhythmia detection and ECG signal analysis. Various deep learning
techniques such as convolutional neural networks (CNNs) (Acharya et al. 2018), belief propaga-
tion deep neural networks (DNNs) (Taji et al. 2017), and long-short term memory (LSTM) networks
(Tan et al. 2018) are used. The primary advantage with deep learning compared to the traditional
(shallow) machine-learning techniques are the robustness to the noise and other artifacts arising
during the signal acquisition. Furthermore, large amounts of data (say, the data from all the 12-
leads (Oh et al. 2017)) can be used to analyze the signal. Most of the works use large numbers of
hidden layers such as 11 in Acharya et al. (2017a) and 9 hidden layers in Acharya et al. (2017c)
for arrhythmia detection. The results reported in Table 11 also include the tests where the noise is
injected and tested. One can observe, in most of the cases, that the accuracy, sensitivity, and speci-
ficity are high, despite the presence of noise. It needs to be noted that all the works are primarily
carried out in software (CPU or GPU), as the CNNs are resource intensive. Some of the popular
DNN architectures used in arrhythmia detection are listed in Table 11. In addition, CNN-based
ECG analysis is also used for other purposes such as sleep apnea detection (Cheng et al. 2017).

Analysis on Arrhythmia Detection Using Deep Learning:

—Deep learning techniques are proven to be effective in combating the noise issues that can
arise during the ECG signal acquisition effectively.

—DNN-based arrhythmia detection are deployed primarily on software due to large (hard-
ware) resource consumption of the DNNs.

—DNNs are required to be fed with large amount of samples compared to shallow technique
for a better performance.

—LSTM-based DNNs have proven to be efficient for ECG signals, even in the presence of high
noise.
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—DNNs are more suitable for high-end or CPU/GPU-based systems rather than only-
hardware-based computing systems.

6.3 Other Methods for Arrhythmia Detection

In addition to the above-mentioned popular approaches like neural networks, SVMs, clustering,
and fuzzy logic, there exist other approaches for arrhythmia detection. An overview of those works
in arrhythmia detection is provided in this section.

Hermite coefficients (Jiang and Kong 2007; Osowski et al. 2004; Lagerholm et al. 2000), high-
order statistics features (de Lannoy et al. 2012; Osowski et al. 2004), wavelet features (Ince et al.
2009), and wave-form shape features (de Lannoy et al. 2012; Llamedo and Martinez 2011; de Oliveira
et al. 2011; Rodriguez et al. 2005; de Chazal and Reilly 2006; de Chazal et al. 2004) are some of
the filtering-based approaches used for ECG arrhythmia detection and classification. In these ap-
proaches, the inputs whose filtering characteristics are based on the characteristics of normal ECG
are filtered. Any abnormality (arrhythmia) can be seen at the outputs, and depending on the char-
acteristics of output, the arrhythmia can be classified. However, the design of the filters is one of
the major concerns, as the ECG signal characteristics vary with person and time. Template match-
ing is another approach where the incoming ECG is matched with a template of a normal ECG
for diagnosing arrhythmias. Discrete time wrapping—based template matching method is proposed
(Huang and Kinsner 2002). In the DTW paradigm, the original training templates need to be stored
for comparison. On the same test dataset, a DTW-based distance measure was used to compare
the distance with the templates (here the ECG beats) stored in the training corpus. For any un-
known test sample, the DTW distances between the test beat and all the training samples from a
particular class are determined first. Similarly, an L1-norm-based signal comparison is proposed
in Amann et al. (2005). In this technique, the signal comparison algorithm (SCA) compares four
pre-defined reference signals (three sinus rhythms containing one PQRST segment and one ven-
tricular fibrillation signal) with the ECG signal. The decision is made based on the residuals in the
L1-norm. This technique, though simple, requires highly efficient and accurate reference signals
for comparison, which is not always possible.

Numerous machine-learning techniques are proposed for classification in ECG, and some of
them are self-organizing map (SOM) (Lagerholm et al. 2000), linear discriminant analysis (LDs)
(Llamedo and Martinez 2011; de Chazal and Reilly 2006; de Chazal et al. 2004), decision tree
(Rodriguez et al. 2005), dynamic Bayesian network (DBN) (de Oliveira et al. 2011), conditional
random field (CRF) (de Lannoy et al. 2012), and so on. A Fisher Linear discriminant-based arrhyth-
mia detection is proposed in Elgendi et al. (2008). The RR-interval duration and the PT interval are
obtained as the basic features. Using these features, Fisher’s Linear Discriminant is applied. The
performance of techniques not discussed in the previous sections for arrhythmia detection, and
classification is outlined in Table 12.

Analysis on Arrhythmia Detection Using Other Techniques
Based on the above-mentioned techniques for arrhythmia detection, we could deduce the following
statements:

—Techniques like regression analysis and linear discriminant analysis achieves higher accu-
racy in detecting the arrhythmias but have lower specificity and sensitivity compared with
some of the machine-learning techniques discussed previously.

—The above-mentioned techniques perform poorly when the types of arrhythmias increases.

—Optimization techniques like ant-colony optimization (ACO) and bee colony algorithms
can help to detect and classify a limited number of analysis but are computationally more
expensive and might run into convergence issues.
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Table 12. Other Methods for Arrhythmia Detection (Grouped According to Technique)
. Performance parameters
Technique Detected References
Accuracy Specificity Sensitivity
Space search 71.88-98.00% 3-6 arrhythmias (Ahmed et al. 2014)
Linear regression 74.60% 82.30% 69.70% Normal, abnormal | (Leutheuser et al.
2014)
Logistic regression 68.76+0.52% 23+0.02% 58.00+2.00% | Normal, abnormal | (Gao et al. 2005)
Auto-regression with | 90.00-100.00% VF, VT (Alliche and
ITtakura distance Mokrani 2003)
Discriminant 88.50% 81.70% PVC (Bortolan et al.
analysis 2005)
Hidden Markov 97.25% Ventricular (Cost and Cano
model Ectopic beats 1989)
Hidden Markov mod- 99.00% PVC, SVT, AF (Lima and Cardoso
eling with mutual 2007)
info estimation
Hidden Markov mod- 92.00-99.00% | PVC, SVT, AF (Lima and Cardoso
eling with maximum 2007)
likelihood estimation
PSO-ACO 93.10% 6 Arrhythmias (Waseem et al.
2011)
Ant-miner 91.00% 6 Arrhythmias (Waseem et al.
2011)
Modified  Artificial 98.73% 6 different (Dilmac and
Bee colony algorithm arrhythmias Korurek 2013)
Reservoir computing 98.43% 97.75% 84.83% 5 different classes | (Escalona-Moran
with logistic regres- et al. 2015)
sion
81.39+3.01% 14+0.05% 76.00+8.00% | Normal, abnormal | (Gao et al. 2005)
92.54% 55.41% T wave variations | (Hadjem and
- Abdesselam 2015)
Decision tree
91.60% 92.30% 90.90% Normal, abnormal | (Leutheuser et al.
2014)
65.71% 16 different (Raut and Dudul
arrhythmias 2008)
LDA 93.04-97.21% 95.36-97.22% | 90.20-97.18% | AFib, Ventricular (Sarlak et al. 2012)
bigeminy
Wavelet decomposi- 99.48% 99.33% 94.38% SVT, PVC, VF (Lee et al. 2005)
tion with LDA
Laplacian Eigenmaps 99.69+0.25% 84.88+14.69% | 99.91+0.12% | PVC beats (Lashgari et al.
with FLDA 2013)
PSO-LDA 98.80% 6 Arrhythmias (Waseem et al.
2011)
Wavelet decomposi- 98.74% 97.17% 93.11% SVT, PVC, VF (Lee et al. 2005)
tion with PCA
Random forest 98.69% 97.14% 86.40% Normal, abnormal | (Park et al. 2015)
Statistical ~ discrimi- 50.00% 16 different (Raut and Dudul
nant analysis arrhythmias 2008)
Voting feature 62.00% 16 different (Raut and Dudul
algorithm arrhythmias 2008)
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As such, it could be seen clearly that the above-mentioned other techniques, although some are
less complex, have lower efficiency, which can be critical in health-care applications. Additionally,
these techniques also have lower sensitivity and specificity, which could create unnecessary false
alarms and might not diagnose the arrhythmia(s).

7 ANALYSIS AND DISCUSSION

In the previous sections, the arrhythmia detection using different techniques and their analysis is
presented. Here, we present an overall analysis that not only compares variants of one technique
but also provides a comparison across different techniques and suitability of a technique depending
on the operational conditions and requirements.

The following is the analysis for different methods discussed previously:

—Statistical metrics-based methods are simpler compared to many of the machine-learning
methodologies. These metrics-based methods can be realized effectively even when the
available hardware and computing resources are limited. However, these techniques have
lower efficiency in terms of performance in arrhythmia detection, and some of the methods
operate on the data directly, resulting in a larger state space.

—Machine-learning techniques are widely employed for arrhythmia detection. Machine-
learning techniques (in general) outperform most of the discussed traditional techniques
for arrhythmia detection.

—Neural networks have gained attention for arrhythmia detection and are widely employed.
Neural networks perform arrhythmia detection in an efficient manner, i.e., good perfor-
mance, and they are suitable for moderate and medium size systems, depending on the
variant of neural networks used.

—Neural networks, though efficient, are suitable only when the number of types of arrhyth-
mia to detect are limited (around 5 or 6). However, when the number of types of arrhythmias
are large, neural networks is not efficient with respect to resources.

—Support vector machine technique-based classification can be seen as an alternative and
perform effectively even when the number of kinds of arrhythmia to detect is large. How-
ever, the major drawback of SVMs is their complexity (O(N?®), where N is the size of the
input).

—SVMs can be implemented together with other techniques like DWT, FCM, and so on, to
achieve higher performances.

—In the case of training data associated with less or no labels (i.e., information of arrhythmia
type), Bayesian classifiers can be employed. However, the achieved performance is limited.

—Clustering techniques when integrated with some data labeling techniques could perform
well and are of lower complexity compared to SVMs but also do not achieve as high per-
formance as SVMs and neural networks.

— A vast variant of other techniques is as well proposed in the literature. However, the most
successful methods are neural networks, SVMs, and their variants, but at the cost of more
computations and required resources.

—Deep learning—-based analysis techniques are proven to be robust and efficient despite the
presence of noises in the received ECG signal. However, they are resource intensive and
slower compared to other machine-learning-based techniques.

Though there exist numerous works on arrhythmia detection, some of the challenges still re-
main unanswered, such as the following: How do we perform ECG signal analysis with a smaller
amount of data and independent of the patients’ physical state and characteristics (such as food,
place, gender, and so on) still remains an unanswered, as most of the works focus on one or few
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characteristics. Which of the platforms (software or hardware or embedded) are best for arrhyth-
mia detection, especially in the era of mobile devices that have higher processing capabilities?
And, most importantly, how reliable and robust are the existing techniques for arrhythmia detec-
tion? In addition, deep learning has been shown robustness to the noise impacts and other kinds
of artifacts, which is one of the major problems for the ECG analysis. However, the deep learning
works are performed on CPU/GPUs or at the software level. The major concern with such imple-
mentations is the resource consumption and involved latencies. Hence, there is an emerging need
to devise lightweight architectures for performing hardware-based ECG analysis for the future
health-care body wearable devices, as the existing hardware implementations (even optimized for
image processing) are too big to fit on body-wearable devices. Furthermore, as some other bio-
signals can also be analyzed using similar techniques that are useful for arrhythmia detection, can
we devise a generic bio-signal analyzer that can be used for analyzing multiple bio-signals (a set
of similar bio-signals) are some of the future directions that have to be explored.

8 ANALYSIS OF OTHER BIO-SIGNALS

In addition to the ECG signals, there exist numerous other signals, such as EMG, for muscular
analysis, electroencephalography (EEG) to monitor the electrical activity of the brain, galvanic
skin response (GSR) for electro-dermal activity, and magnetoencephalogram for neuroimaging
purposes. ML techniques are also widely used for such bio-signal analysis. For instance, neural
network-based analysis for EEG, GSR, and EMG is proposed in Matsumura et al. (2002), Ubeyli
(2009), Villarejo et al. (2012), Anusha et al. (2012), Zhang et al. (2016), Oleinikov et al. (2018), and
SVM based on Lin et al. (2008), Kumari and Jose (2011), and Altaf and Yoo (2016). For the purpose
of brain—-computer interfacing, image processing or deep learning techniques such as using CNNs
are as well deployed (Park et al. 2018; Lee and Choi 2018). In Anusha et al. (2012), the features of
the EEG signal are provided to the neural network for analyzing the EEG and detection of epilepsy
and seizure. This is similar to how the ECG signal is processed using neural networks to detect
arrhythmias. However, in terms of implementation requirements and signal characteristics, some
of the anomalies such as epilepsy shows a symptom nearly 7.5s before the it can be observed clin-
ically (Verma et al. 2010), which indicates that detection using body-wearable devices can alert
the patient much further in advance than can be done in some of the arrhythmias. As such, the
symptoms and requirements are different. But in terms of analysis for other bio-signals, similar
techniques that are used for ECG arrhythmia detection can be employed, but under different re-
quirements in terms of performance (accuracy and timing).

9 CONCLUSION

Arrhythmia detection is one of the most widely researched topics. There exist numerous tech-
niques for arrhythmia detection, ranging from simple statistical metrics-based methods to sophis-
ticated machine-learning techniques like neural networks, SVMs, Bayesian classifiers, and so on.
Based on the existing works, it has been observed that the machine-learning methods outperform
traditional methods in arrhythmia detection. However, the complexity of most of the traditional
techniques is much lower compared to the machine-learning techniques. In machine-learning
techniques, neural networks and SVMs (including their variants) achieve better performances.
However, neural networks are efficient when the number of types of arrhythmia to detect is small
(5 or 6), whereas SVMs and their variants are efficient even when the number of types of arrhyth-
mias to classify is large but of higher complexity. Additionally, SVMs can be effectively utilized
when the amount of data is large and can as well be utilized together with data reduction tech-
niques such as PCAs. Last, Bayesian classifiers, though not efficient compared to neural networks
and SVMs, are preferred especially when there exist no labels for the data.
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