Redox Titration Experiment

CHEM 251
Week of September 27th, 2010
Alexis Patanarut

CHEM 251 Laboratory

The week of October 4th
- Experiment: Redox Titration of Oxalate with Permanganate, pp. 131-136
- Prelab
- Quiz: Material in laboratory manual
- Due this week: Coordination Compound lab report

An Overview
- Titration is a method that is commonly used to determine the unknown concentration of a known reactant.
- The titrant is the reagent of known concentration and the volume is used to react with the analyte, which is the reagent of unknown concentration.
- Redox titration is a type of titration based on a redox reaction between the analyte and titrant.
- A redox reaction is one in which the atoms have their oxidation numbers (or states) changed.
 - Oxidation = loss of electrons, increase in oxidation number
 - Reduction = gain of electrons, decrease in oxidation number
An Overview, con’t
• Today you will be analyzing your coordination compound from last semester’s experiment for its oxalate content by performing a redox titration with potassium permanganate.
 - The reaction of permanganate tends to be pretty slow (30-60 seconds), which may make the concept of titration seem impractical.
 - However, this rxn is sped up by the addition of a catalyst.
 - The catalyst in this case is manganese. The addition of manganate will speed up the reaction in an example of autocatalysis.
• The method to today’s madness can be summarized in one statement:
 \[\text{Vol (KMnO}_4\text{)} \times M (\text{KMnO}_4) \times \text{mole ratio} \times M.W. (\text{oxalate}) \]
• All in all, if you are left with the unit you are trying to find when all is said and done, you are in good shape.

The Titration
1. Place ~0.1 g of coordination compound into three 250mL Erlenmeyer flasks and add ~20 mL of 1.0 M sulfuric acid.
2. Fill a buret half-full with KMnO₄ and make sure there are no air bubbles in the tip of the buret. Perform the titration in the following fashion:
 - Gently heat the solution until the coordination compound dissolves and the temperature of the solution is 80-90 degrees. Please do not boil the solution or use the thermometer as a stirring rod.
 - Titrate the solution with the KMnO₄ in the buret while maintaining the solution temperature above 60 degrees.
 - Because our coordination compound is yellow-green, our solution will appear orange in the flask. As we near the endpoint, the solution will turn colorless. The endpoint itself is marked by a clear pink color.
 - Titrate until the solution remains pink for 15 seconds after a drop is added.
 - Do three trials of this titration and make sure your volumes agree with one another.

Outside of Class
• Calculate the following:
 - moles of KMnO₄
 - moles of oxalate in the samples
 - mass of oxalate
 - experimental weight percent of oxalate for each titration
 - average weight percent of oxalate
 - standard deviation
 - theoretical weight percent
 - percent error
• Create a histogram of the distribution of experimental weight percent results.
Outside of Class, con’t

• Answer the questions in the accompanying handout.
• You should have the following in your lab report:
 - Class data (as downloaded)
 - Results table
 - Sample calculations
 - One histogram

A few reminders

• Hand in your carbon copies to me at the end of class.
• Your lab report will be a formal lab report, which includes:
 1. Cover page/abstract
 2. Introduction/Purpose/Procedure
 3. Data
 4. Sample calculations
 5. Results
 6. Discussion/Conclusion

The Cheat Sheet

• # moles of MnO₄⁻ = (concentration of titrant) x (volume of titrant, liters)
• # moles of oxalate = (5/2) x (# moles of permanganate)
• Molarity = moles/liter