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Abstract
The use and quality of longitudinal research designs has increased over the past two decades, and
new approaches for analyzing longitudinal data, including multi-level modeling (MLM) and latent
growth modeling (LGM), have been developed. The purpose of this paper is to demonstrate the use
of MLM and its advantages in analyzing longitudinal data. Data from a sample of individuals with
intra-articular fractures of the lower extremity from the University of Alabama at Birmingham’s
Injury Control Research Center is analyzed using both SAS PROC MIXED and SPSS MIXED. We
start our presentation with a discussion of data preparation for MLM analyses. We then provide
example analyses of different growth models, including a simple linear growth model and a model
with a time-invariant covariate, with interpretation for all the parameters in the models. More
complicated growth models with different between- and within-individual covariance structures and
nonlinear models are discussed. Finally, information related to MLM analysis such as online
resources is provided at the end of the paper.
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Longitudinal designs have recently received more attention in a variety of different disciplines
of psychology including clinical, developmental, personality and health psychology (West,
Biesanz, & Kwok, 2003). In some areas, such as developmental psychology and personality
psychology, a substantial number of recently published studies have been longitudinal
(Biesanz, West, & Kwok, 2003; Khoo, West, Wu, & Kwok, 2006). For example, Khoo et al.
(2006) found that slightly more than one third of articles published in Developmental
Psychology in 2002 included at least one longitudinal study, defined as having at least two
measurement occasions. This proportion is double the proportion of longitudinal studies
published in the same journal in 1990. Furthermore, more than 70% of the longitudinal studies
published in Developmental Psychology in 2002 included three or more measurement waves.
In this paper, we will focus on the analyses of multiwave longitudinal data, where multiwave
is defined as more than two waves.

With the growing use of longitudinal research, a number of methodological and statistical
sources on the analysis of multiwave longitudinal data have appeared in the past decade (e.g.,
Bollen & Curran, 2006; Collins & Sayer, 2001; Singer & Willet, 2003), including discussions
of traditional approaches such as repeated-measures Univariate Analysis of Variance
(UANOVA) and Multivariate Analysis of Variance (MANOVA). Multi-Level Models
(MLM), also known as Hierarchical Linear Models (HLM, Raudenbush & Bryk, 2002),
random coefficient models (Longford, 1993), and mixed-effect models (Littell, et al., 2006),
have become an increasingly important approach for analyzing multiwave longitudinal data.

Although multilevel models have been widely adopted in educational research for more than
two decades (Raudenbush, 1988), these models are still relatively new to researchers in
rehabilitation psychology. Growth models first appeared in the rehabilitation psychology
literature over a decade ago: Clay et al. (1995) reported a compelling (yet circumscribed)
demonstration of using growth modeling of the development of emotional distress and
behavioral problems of children with juvenile arthritis and others with juvenile diabetes, and
of children without diagnosed health problems. An expanded report from this database
appeared three years later in the Journal of Consulting and Clinical Psychology (Frank, et al.,
1998). Subsequent applications of hierarchical linear modeling (HLM) examined the dynamic
trajectory of adjustment among family members over the first year of caregiving for a person
with a spinal cord injury (Shewchuk, Elliott, & Richards, 1998), and later identifying salient
predictors of these trajectories (Elliott, Shewchuk, & Richards, 2001). Another study used
HLM to study the growth curve trajectory of functional abilities of persons receiving inpatient
spinal cord injury rehabilitation (Warschausky, Kay, & Kewman, 2001). A study of problem-
solving training with caregivers of stroke survivors was among the first to use HLM in a
randomized clinical trial (Grant, et al., 2002), which heightened expectations about the utility
of MLM in intervention research. The initial enthusiasm for MLM was expressed by one author
who opined that these techniques could have “…an immense impact on program development
and evaluation” and help the field identify “…who responds best to what and why, who is at
risk, and who responds optimally regardless of treatment options” (Elliott, 2002, p. 138).

Unfortunately, very few studies utilizing MLM have recently appeared in the rehabilitation
psychology literature, implying that the field has yet to realize the potential and possibilities
of these approaches. This is particularly unfortunate in light of the informative and extensive
longitudinal databases that have been collected over the years to help us understand certain
high-cost, high-impact disabilities (e.g., spinal cord injury, traumatic brain injuries in the
Model Systems projects).

Therefore, the present paper is intended to be an elementary introduction to multilevel modeling
for researchers in rehabilitation psychology who have interest in and access to longitudinal
data that could be analyzed with these techniques.
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Comparison of MLM with Repeated-Measures Univariate ANOVA (UANOVA)
Most researchers in rehabilitation psychology will be familiar with the use of repeated-
measures univariate analysis of variance (UANOVA) for analyzing multiwave data. In this
section, therefore, we will provide an overview of some of the similarities and differences
between repeated-measures ANOVA and MLM. We provide a summary of our comparison in
Table 1. In the simplest multiwave design, a purely within-subjects design, the researcher will
have collected repeated measurements on the same sample of research participants over time,
and the primary question is whether there is within-subjects change in the sample on a particular
outcome variable. With repeated-measures UANOVA, time is thought of as a categorical
factor, and the researcher can conduct a variety of contrasts to compare differences among time
periods. For example, each post-baseline time period can be compared to baseline, or all
adjacent time periods can be compared. An alternative strategy is polynomial trend analysis.
In ANOVA trend analysis, the question is whether there is an average linear, quadratic, or
higher-order polynomial trend in mean levels of the outcome variable over time.

The repeated-measures ANOVA-based analyses can be viewed as special cases of multi-level
models (Kwok, West, & Green, 2007). Hence, MLM can employ these same analytic strategies
for simple within-subjects designs, but, as we will describe in more detail below, MLM can
provide several advantages over ANOVA in terms of handling missing data and flexible
modeling of variance-covariance structures. MLM also offers a unique data analytic strategy
for within-subjects designs that is not possible using in UANOVA. Namely, MLM can be used
to model individual-level trends over time, in which polynomial trends can be estimated for
each participant (rather than simply average trends). This approach is referred to as individual
growth models. In UANOVA, individual growth models are not estimated; rather, an average
growth model is estimated in a single analysis of all participants, and individual variation
around the average model is treated as “unexplained” error. In MLM, regression parameters
from all the individual growth models including intercepts, slopes, or both can be treated as
random effects for estimation. Advantages of modeling these random effects have been
reviewed in Kwok et al (2007).

There are different estimation methods for UANOVA and MLM. In repeated-measures
UANOVA, least squares (LS) estimation is generally used, whereas in MLM, maximum
likelihood (ML) is one of the commonly used estimation methods. A detailed discussion of LS
and ML methods is beyond the scope of this paper. One additional note on ML is given because
there are two commonly used ML methods1 available in several major MLM programs (e.g.,
HLM, SPSS, SAS, and STATA) when the outcome variable is continuous and normally
distributed. The default estimation method in both SPSS (MIXED) and SAS (PROC MIXED)
for analyzing multilevel data with continuous outcomes is the restricted maximum likelihood
(REML). The alternative estimation is the full information maximum likelihood (FIML).
REML can provide more accurate results when sample size (especially the number of higher
level units) is small (Hox, 2002;Raudenbush & Bryk, 2002). On the other hand, FIML can
compare the goodness of fit for both fixed and random parts between nested models using
likelihood ratio tests, whereas REML can only compare the goodness of fit for the random part
between nested models. The results presented in this paper are based on the default REML
estimation method in both SAS and SPSS. More detailed information on estimation can be
found in the text by Raudenbush and Bryk (2002).

1The Bayesian methods (e.g., the empirical Bayesian and fully Bayesian estimators) are also widely used estimation method in MLM.
The discussion of these methods is beyond the focus of this paper. More information on these Bayesian estimation methods can be found
in Raudenbush and Bryk’s (2002) text.
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Another major difference between UANOVA and MLM is in the treatment of the time
predictor. In individual growth models, time can be treated as a continuous variable in MLM.
Because of this, MLM can accommodate unequal spacing between time intervals and
unbalanced data. Observations may be collected at unequally spaced intervals (e.g.,
measurements collected 0 months, 3 months, 6 months, 1 year, 5 years following treatment).
Observations may also be collected at different time points for different participants (e.g., for
the first participant 0, 3, 6, 9 months following treatment; for the second participant 1, 5, 10,
12 months following treatment2). Such patterns of observations may occur because of practical
problems in implementing the original data collection design. Unbalanced data and unequal
spacing conditions can be flexibly handled under MLM through adequate specification of the
time predictor. On the other hand, all participants are assumed to have the same number of
assessments (balanced data) and the intervals between time periods are assumed to be equal
(equal spacing) when using UANOVA.

In the same vein, missing data can be handled flexibly in MLM but not in UANOVA. Missing
data can arise for many reasons in multiwave longitudinal research: missed appointments,
participant incapacity, dropout, or loss to follow-up for a variety of reasons. However, only
complete cases can be included in an analysis when using UANOVA. If a research participant
is missing for even a single time period, all of the participant’s data are removed from the
analysis. The capacity of MLM (using likelihood-based estimation) to incorporate all available
data in an analysis can be especially useful in conducting intention-to-treat (ITT) analyses in
controlled clinical trials. Recent reviews of ITT studies have suggested that inappropriate
handing of missing data is the chief problem with published reports of ITT-based clinical trials
(Gravel, Opatrny, & Shapiro, 2007; Hollis & Campbell, 1999). The requirement of complete
data in UANOVA can lead to substantial losses of statistical power and precision in
longitudinal research. We discuss the possibility of imputing missing data values in a later
section of this paper.

An advantage of MLM is that it can make use of all available data in the estimation of model
parameters due to its flexible treatment of the time predictor. A research participant with only
baseline data can be included in an analysis and contribute to the estimation of model
parameters. The validity of using all available data does depend on whether missing data are
missing completely at random (MCAR) (or missing at random (MAR) which is a less restrictive
missing data assumption), and methods of assessing this requirement are available.
Additionally, the treatment of time as a continuous instead of discrete variable in MLM can
increase the statistical power for detecting the growth effects (Muthén & Curran, 1997). For
these reasons, MLM is a preferred option for ITT analyses in clinical trials and other
intervention studies, particularly when the theoretical model anticipates a gradual response to
the intervention over time (as typified in most psychological theories of therapeutic response).

UANOVA and MLM also differ on the statistical assumptions related to the variance-
covariance structure when analyzing longitudinal data. In repeated-measures UANOVA, the
variance-covariance matrix of observations taken over time is assumed to meet the
requirements of sphericity in which compound symmetry is a sufficient condition for fulfilling
the sphericity assumption. Compound symmetry implies that the variances of measures at each
time period are equal, and also that the covariances between all pairs of time periods are equal.
This is a strong assumption, and is likely to be unrealistic for many (if not most) longitudinal
studies (Kwok et al., 2007). For example, in some studies, research participants might show
greater variability in an outcome measure over time, whereas in others there might be growing
convergence over time. It is also possible that covariances between variables over time will be

2One alternative way to handle the unequal space issue in UANOVA is to create a covariate capturing the unequal space and include the
covariate in the analysis (i.e., univariate analysis of covariance or UANCOVA).
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smaller with greater distances between time intervals. Violations of the assumption of
sphericity can lead to incorrect decisions in ANOVA-based analyses. In MLM, there is great
flexibility in specifying the variance-covariance structure of longitudinal data (Chi & Reinsel,
1988; Diggle, 1988; Laird & Ware, 1982; Jones & Boadi-Boateng, 1991; Wolfinger, 1993).
The most flexible option in MLM analysis is a general “unstructured” variance-covariance
assumption in which every variance and covariance is free to be estimated from the data. Other,
more restrictive assumptions include autocorrelated structures, in which covariances are a
function of distances between time periods, and variances can be modeled as either
homogeneous or variable.

One more difference between repeated-measures UANOVA and MLM concerns the use of
covariates in statistical analyses. Covariates can be used in within-subjects research for many
reasons: to reduce error variance, to statistically “equalize” participants on some variable of
interest, or to find mediators of the relationship between time and an outcome variable. In
repeated-measures UANOVA, all covariates in a model must be time-invariant. In other words,
individual measures on the covariates do not change with time and therefore have a constant
effect across all measurement occasions. Examples of such time-invariant covariates would be
the age of a participant at the beginning of a study or standing on stable trait variables. Using
MLM, in contrast, the researcher can include time-varying covariates in an analysis. Time-
varying covariates are often assessed concurrently with major outcome variables and can
change over time for each participant. The inclusion of time-varying covariates can provide a
much more sensitive and realistic assessment of covariate effects for unstable, state-like
variables that might influence primary outcome variables.

We have thus far described potential advantages of using MLM in the analysis of strictly within-
subjects research designs. However, a common use of multiwave research combines within-
subjects repeated measures with one or more between-subjects variables. An example of such
a design is the randomized clinical trial with multiple outcome assessments over time. In such
clinical trials, treatment condition is a between-subjects factor and time (assessment occasion)
is a within-subjects factor. In using ANOVA to assess clinical trial data, the focus is on the
statistical significance of the Treatment by Time interaction. If the interaction is significant,
simple main effects can be conducted to determine the nature of the differential change between
treatment conditions. Differences in average time contrasts and polynomial trends can be
employed for this purpose.

The same strategies can be used in MLM, but MLM can also combine the advantages of
individual growth-curve analysis with the examination of interactions of treatment with time.
Specifically, because MLM separates the random effects into two parts (between-subject
random effects and within-subject random errors), MLM allows for the examination of new
effects of interest such as cross-level interaction effects. For example, researchers can examine
how treatment condition (and other between-subject level predictor) influences the individual
growth trajectories (within-subjects repeated measures) of research participants over time.
Even if individual growth curves are not estimated, the MLM approach to assessing treatment
effects over time offers clear advantages over the repeated-measures approach. For example,
in a recent randomized controlled trial of problem-solving training for family caregivers of a
loved one with a traumatic brain injury (Rivera, Elliott, Berry, & Grant, 2007), caregivers were
assessed on a variety of psychological and health-related outcomes over four time periods. In
this study, individual growth-curves were not estimated (because of convergence problems due
to relatively small sample sizes in the control and treatment groups). Nonetheless, the MLM
analysis permitted the inclusion of data from all available caregivers, allowed for the estimation
of an unstructured variance-covariance structure, and provided the opportunity to include
potentially mediating time-varying covariates in the models (such as problem-solving abilities
at each assessment).
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The major focus of this paper is to demonstrate how to analyze longitudinal rehabilitation data
using MLM. We have already provided a sketch of some of the advantages of MLM for such
data. In what follows, we provide a more detailed discussion of both the theoretical
underpinnings of MLM and some practical guidance for how to conduct MLM. Our analyses
will highlight the use of individual growth models, since these models are uniquely provided
by the MLM approach. Data from a sample of individuals with intra-articular fractures of the
lower extremity from the University of Alabama at Birmingham’s Injury Control Research
Center (UAB-ICRC) are analyzed using both SAS PROC MIXED and SPSS MIXED, and the
corresponding annotated SAS and SPSS syntaxes for different growth model are presented.
For more information on how to analyze longitudinal data using SAS and SPSS, readers can
consult Singer’s (1998) article on using SAS PROC MIXED, and Peugh and Enders’ (2005)
article on using SPSS MIXED. We start our presentation with data preparation, followed by
the analyses of different growth models, including a simple linear growth model and the model
with time-invariant covariate, with interpretation for all the parameters in the models.

Data Description
A sample of individuals with intra-articular fractures (IAF) of the lower extremity from a large
scale, ongoing project, A Longitudinal Study of Rehabilitation Outcomes, by the University of
Alabama at Birmingham’s Injury Control Research Center (UAB-ICRC) will be used for the
demonstration. The UAB-ICRC longitudinal study included persons with at least one of four
potentially disabling injuries (i.e., spinal cord injury, traumatic brain injury, severe burns, or
IAF of the lower extremity) who were discharged from a sample of hospitals representing a
cross-section of individuals in north-central Alabama. The criteria for inclusion in the
longitudinal study were: (1) acute care length of stay of three or more days; (2) resided and
injured in Alabama; (3) discharged alive from an acute care hospital between October 1, 1989
and September 30, 1992; (4) was more than 17 years old when injured; and, (5) can be contacted
at pre-specified intervals after discharge. Data have been collected approximately annually
from 12 months post-discharge to 180 months post discharge. For the purposes of this
manuscript, data collected at 12, 24, 48, and 60 months post-discharge were utilized (no data
was collected 36 months post-discharge). The details of the data collection procedure can be
found elsewhere (Underhill et al., 2003; Underhill et al., 2004).

There were 251 individuals with IAF who had data for at least one time point. Among these
251 individuals, 131 had complete data for all four time points (i.e., 12, 24, 48, and 60-months
post-acute care). The descriptive statistics for these two samples (N = 131 and N = 251) are
presented in Table 2. We conducted attrition analyses by comparing the two samples on all
demographic variables and found no significant differences between the two samples on any
of the demographic variables. For pedagogical reasons we start the demonstration with the 131
participants with complete data. We will discuss the analyses with the full dataset (with N =
251) in the later section.

We used the physical domain of the Functional Independence Measure (FIM) as the outcome
variable for the demonstration. FIM is a widely-used self-report scale of functional status
(Keith, Granger, Hamilton, & Sherwin, 1987) which contains 18 seven-point Likert-type items
with responses ranging from (1) “total assistance” to (7) “complete independence”. The FIM
has been shown to have adequate reliability and validity (Putzke et al., 2004). In this study, the
reliabilities of the FIM scale at different time points ranged from .91 to .98. The FIM scale can
be further divided into two sub-domains, namely, a physical (or motor) domain (13 items) and
a cognitive domain (5 items; Greenspan et al., 1996; Hall, Hamilton, Gordon, & Zasler,
1993; Heinemann et al., 1993). The physical domain includes items such as eating, grooming,
bathing, dressing, toileting, bladder and bowel management, walking, and transferring to bed/
toilet/tub. The cognitive domain contains items such as comprehension, expression, social
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interaction, problem solving, and memory. Higher scores on these two domains indicate higher
functional ability. In our demonstration, we focus on the change in the physical domain
(FIM_P) of the participants over time. The means and standard deviations of the four FIM_P
scores for the two samples (i.e., N = 131 and N = 251) are presented in Table 3. Based on the
information from Table 3, a potential negative trend of the FIM_P scores and an increase in
score variability over time may be found in both samples.

Data Preparation
Generally, data are in multivariate (sometimes called “wide”) format as shown in Figure 1a;
that is, each row represents a participant and each column represents a specific variable. To
analyze the data using MLM, we need to transform the multivariate data (Figure 1a) into the
univariate (sometimes called “long”) format (Figure 1b) in which each row presents a specific
time point rather than a participant. Table 4 presents the corresponding annotated SAS and
SPSS syntaxes for converting data from multivariate format to univariate format. In SPSS,
menu-driven assistance is also available using “Restructure” under the main Data menu.

In multivariate format, each row represents a participant and each column represents a variable.
All time-varying variables (i.e., allowing different variable value at different time point such
as the FIM_P score) and time-invariant variables (i.e., no change in the variable value over
time such as gender or age at the first time measure) are presented in the columns of the data.
In other words, each time measure is a variable in the multivariate format data (e.g., the four
different time measures for FIM_P are represented by four different variables, namely,
FIM_P12, FIM_P24, FIM_P48, and FIM_P60). On the other hand, in the univariate format
data, each row represents a specific time observation and each individual can have multiple
rows of observations. For participants with complete data (N = 131), each individual has four
rows of data lines to represent the four different time measures (i.e., the 12-months, 24-months,
48-months and 60-months post charge measures). A new variable, Time, called an “index”
variable, is created as the indicator for each row of time measures. Additionally, researchers
should also screen their data to check for potential errors and outliers through the steps
recommended by Fidell and Tabachnick (Fidell & Tabachnick 2003; Tabachnick & Fidell,
2006). Plotting individual-level data (e.g., spaghetti plots as shown in Figure 2) before
conducting any data analyses is always recommended. These plots can be useful for
determining possible polynomial trends that might fit the data, and can also be used to flag
unusual levels or trajectories for individual participants.

Model Specification and Analysis
In this section, we first start with a simple random intercept model (for calculating ICC) and
a simple linear growth model, followed by a model with a time-invariant covariate. We then
move beyond the default growth models and discuss more complicated models, including
models with different between- and within-individual covariance structures and models with
nonlinear growth patterns.

A. Random Intercept Model and Simple Linear Growth Model
In multilevel models for longitudinal data, the lowest level of data is the specific measurement
at a particular time. This lowest level is referred to as “Level-1” data. Each Level-1
measurement is nested within a particular research participant. The individual, then, constitutes
Level-2 data. If there is another level of nesting (e.g., if participants are Analyzing Longitudinal
Data 16 nested within schools), this would be Level-3 data, and so on. The simplest two-level
model with a total of 131 participants and 4 repeated measures of FIM_P per individual over
time can be presented as below:
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Level-1 (repeated-measures level) model:

(1)

where t represents the four different measurement occasions (i.e., 12, 24, 48, and 60-months
follow-up) and i represents the 131 participants (i.e., i = 1…131). β0i is the estimated average
FIM_P score (over the 4 FIM_P scores) for the i-th individual. eti is the within-individual
random error which captures the difference between the observed FIM_P score at time t and
the predicted (average) score of the i-th participant. eti is generally assumed to be normally
distributed with variance equal σ2 (i.e., eti ~N(0, σ2)) which captures the within-individual
variation. Equation (1) shows the average FIM_P score for the i-th patient. In this example,
we have 131 patients so that we have 131 average FIM_P scores. We can further summarize
these 131 average FIM_P scores by the following equation:

Level-2 (individual level) models:

(2)

where γ00 is the grand mean of the 131 average FIM_P scores and U0i is the difference between
the i-th average FIM_P score and the grand mean. As shown in Table 6 (Model ICC), the grand
mean FIM_P score was 85.954. U0i is assumed to be normally distributed with variance equals
τ00 (i.e., U0i ~N(0, τ00)). Additionally, the within-individual random errors (eti) are assumed
to be independent from the between-individual random effects (U0i). The combination of
equations (1) and (2) is named as “random-intercept model” in which no predictor is included
in these two equations. Intra-class correlation (ICC) which measures the magnitude of
dependency between observations can be calculated by using the within- and between-
individual variances (i.e., σ2 and τ00) from equations (1) and (2)

(3)

The ICC for this example was: 43.915/(43.915+47.753) = .479 based on the variance estimates
presented in Table 6 (Model ICC). ICC is the proportion of the between-individual variance
to the sum of the between- and within-individual variances of an outcome variable and
generally ranges between 0 and 1. Hox (2002) interpreted ICC as “the proportion of the variance
explained by the grouping structure in the population” (p.15). ICC can also be (roughly) viewed
as the average relation between any pair of observations (i.e., the FIM_P scores) within a cluster
(i.e., a patient in our example). Barcikowski (1981) showed that the type I error rate could be
inflated (e.g., from the nominal .05 level to .06) when a very small ICC (e.g., .01) occurred.
ICC in educational research with cross-sectional design generally ranges between .05 and .20
(Snijders & Bosker, 1999). The relative high ICC from this example (.479) is probably due to
the longitudinal nature of the data given that the exact same measure was assessed repeatedly
from the same patient over time.

A simple linear growth model can be presented by the following equation:

Level-1 (repeated-measures level) model:

(4)
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To simplify the illustration, we coded Timeti as 0 for the first (i.e., 12 months) follow-up,
Timeti as 12 for the second (i.e., 24 months) follow-up, Timeti as 36 for the third (i.e., 48
months) follow-up, and Timeti as 48 for the fourth (i.e., 60 months) follow-up. Unlike in
(equation 1) of the random intercept model, β0i in (equation 4) is the estimated FIM_P score
for the i-th individual at the first (i.e., 12 months) follow-up when Timeti is equal to 0. β1i is
the average monthly change in FIM_P score for the i-th individual over time. eti is still the
within-individual random error with variance equal σ2 which captures the within-individual
variation (i.e., eti ~ N(0, σ2)). More discussion on modeling the within-individual variation will
be given in the later section. (Equation 4) shows the regression model based on the four FIM_P
scores for the i-th participant. Indeed, we can fit the same model to the 131 participants
separately. Hence, we can have 131 different sets of regression coefficients (i.e., the intercept
(β0) and the average monthly change (β1)). We can summarize these 131 sets of parameter
estimates by the following two equations:

Level-2 (individual level) models:

(5)

(6)

where γ00 is the average score of FIM_P at the initial time point (i.e., Timeti= 0) and γ10 is the
average monthly change in FIM_P over the 131 participants. Both U0i and U1i are the between-
individual random effects and are assumed to be normally distributed (i.e.,

). U0i captures the difference between the intercept
(β0i) of the i-th participant from the average intercept γ00, and U1i captures the difference
between the estimated monthly change in FIM_P (β1i) of the i-th participant from the average
monthly change in FIM_P (γ10) across the 131 participants. The variances of U0i and U1i are
τ00 and τ11 respectively which capture the between-individual variation.

The meaning of τ00, τ11, and the covariance, τ01 (or τ10) between the two random effects (i.e.,
U0i and U1i) can be further explained through visualization. As shown in Figure 3a, the average
model is the bolded straight line with the average intercept γ00 (i.e., the average FIM_P score
at the first time measure) and the average monthly change γ10, and the other straight lines are
the individual predicted models for different participants. The variation between the 131
intercepts (of the 131 regression models) and the average intercept γ00 is captured by τ00 and
the variation between the 131 monthly changes and the average monthly change γ10 is captured
by τ11. When τ00 is equal to zero as shown in Figure 3b, all the intercepts of the 131 regression
models are the same as the average intercept γ00 and all 131 regression models pass through
γ00. On the other hand, when τ11 is equal to zero, all the predicted monthly changes of the 131
regression models are the same as the average monthly change γ10 and all 131 regression
models are parallel to the average model (i.e., the bolded straight line) as shown in Figure 3c.
Figure 3d shows a possible look for a positive covariance τ01. That is, individuals who have a
higher FIM_P score at the first time measure are more likely to have larger predicted monthly
change in FIM_P than those who score lower on the FIM_P at the first time point. The annotated
SPSS and SAS syntaxes for fitting all the growth models in this paper are presented in Table
5.

Consistent with the mean pattern as shown in Table 3, the FIM_P score decreased over time
(see Model A in Table 6). The average FIM_P score at the first time measure (i.e., 12-months
follow-up) was 87.351, and it decreased .058 point per month (or .70 point per year). On
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average, the patients reported worse functional abilities as time passed. Except for the
covariance τ01, the variances of the two random effects (i.e., τ00 and τ11) were statistically
significant, which indicated a significant amount of variation between the 131 individual
regression models and the average model. The significance of these two random-effect
variances also implied that some potential individual-related variables might be able to explain/
account for the variation between individual regression models and the average model. The
significant variance of the within-individual random error, σ2, indicated a significant amount
of variation between the observations at different time points and the individual regression
model within each person.

B. Model with Time-Invariant Covariate
Because of the two significant random-effect variances, we can further examine some potential
individual-related predictors which may be able to account for the variation between individual
regression models and the average model. Many individual-related variables are time-invariant
variables because the values of these variables are the same over time, such as participant’s
gender and ethnicity. We use the grand-meancentered participant’s age at the first time measure
(i.e., c_Agei = Agei − m_Age) as the person-related predictor for the demonstration. Agei is
the initial age or age at the first time measure of the i-th participant and m_Age is the mean
age at the first time measure over the 131 participants. For example, as shown in Figures 1a
and 1b, the initial age for the first participant (i.e., participant_id = 1100067) was 22 and the
mean-centered age for this individual was −23.82 given that the mean initial age for the 131
participants was 45.82 (i.e., −23.82 = 22 − 45.82). A major reason for using the centered age
is to have meaningful interpretation for the intercept. Biesanz et al (2004) discussed the
centering issue (especially on centering the time variable) in longitudinal analysis. More
discussions on centering in the general MLM framework can be found in Kreft, de Leeuw and
Aiken (1995) and Enders and Tofighi (2007).

In our example, the level-1 (repeated-measures level) model is the same as shown in equation
(4)), whereas the level-2 (individual level) models are:

(7)

(8)

By substituting equations (7) and (8) back into equation (4), we have:

(9)

, where the first four terms (i.e., γ00, γ01 Agei, γ10 Timeti, and γ11 Agei
*Timeti) are the fixed-

effects which capture the average model. The last three terms (i.e., U0i, U1i
*Timeti, and eti) are

the random effects which capture the variation between individual regression models and the
average model (i.e., U0i and U1i

*Timeti) and the variation between individual observations and
the regression model within each person (i.e., eti). The results are presented in Table 6 (Model
B).

Because of the added cross-level interaction effect (i.e., c_Agei
*Timeti in (equation 9)), the

regression coefficients of the lower order terms (i.e., γ00 of the intercept, γ01 of c_Agei, and
γ10 of Timeti) are conditional terms and have to be interpreted along with the interaction term.
For example, the regression coefficient of Timeti, −.058, was not the average monthly change
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in FIM_P score for all 131 participants but for those whose initial age or age at the first time
measure equal to 45.82 because the values of c_Agei for these individuals were equal to zero.
Similarly, the intercept, 87.351, was not the average FIM_P score at the first time measure for
all 131 participants but for those whose initial age equal to 45.82. The non-significant
coefficient of c_Agei, γ01, indicated that there was no relation between the mean-centered age
and the FIM_P score at Timeti = 0.

To understand the meaning of the interaction effect, c_Agei
*Timeti, we can use the steps

suggested by Aiken and West (1991) to decompose the interaction effect. The general idea of
the Aiken and West (1991) procedure is using a 2-dimensonal figure to present a 3-dimensonal
relationship (i.e., two predictors, c_Agei and Timeti, and the outcome variable, FIM_Pti). It is
quite straightforward to decompose the interaction effect in longitudinal analysis, in which the
Y-axis is always the outcome variable (FIM_Pti) and the X-axis is always the “Timeti”
predictor. Hence we only need to substitute some meaningful values for the second predictor
(i.e., the predictor other than Timeti which is the time invariant covariate, c_Agei). The three
commonly used values for substitution are: the mean of the predictor, one standard deviation
(SD) above the mean value of the predictor, and one SD below the mean value of the predictor.
Hence, the three values of c_Agei we used for decomposing and plotting the interaction effect
were: −17.02 (1SD below the mean of c_Agei), 0 (mean of c_Agei) and 17.02 (1SD above the
mean of c_Agei). The corresponding predicted model for each specific c_Agei value is shown
below:

Younger participants (with c_Agei= −17.02 or original Agei = 45.82 − 17.02 = 28.80 years
old):

Mean age participants (with c_Agei= 0 or Agei = 45.82 years old):

Older participants (with c_Agei= 17.02 or Agei = 45.82 + 17.02 = 62.84 years old):

Figure 4 presents the three predicted models for each of the three age groups. In general, the
younger participants had slightly higher FIM_P scores at the first time measure, even though
it was not significantly different from those in other age groups. On the other hand, the
declination rate of the FIM_P scores was significantly slower in the younger-participant group
(i.e., -.007 point/month) than the older-participant group (i.e., -.109 point/month). In other
words, older individuals experienced a steeper rate of decline in functional abilities over time
than younger individuals.

We can also evaluate the effectiveness of the time-invariant covariate, c_Agei, on explaining
the between-individual variation by using the Pseudo-R2 statistic (Raudenbush & Bryk,
2002; Singer & Willet, 2003) as shown below:
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and

for τ00 and τ11 respectively. τ00_Unconditional and τ11_Unconditional are the variances of the random
effects for the model without the time invariant covariate c_Agei, whereas τ00_Conditional and
τ11_Conditional are the variances of the random effects for the model with c_Agei. Hence, the
Pseudo-R2 statistic is the proportion of explained variance in the random effect by the time
invariant covariate. Based on the information in Table 6 models A and B, the Pseudo-R2

statistics for τ00 and τ11 are:

and

That is, the initial age or age at the first follow-up measure (i.e., c_Agei) could only explain .
1% of the variance in τ00 (i.e., the variation of the FIM_P score over the 131 participants at
the first time point) but 3.3% of the variance in τ11 (i.e., the variation of the monthly change
in FIM_P score over the 131 participants). Given that the explained variance is the analog of
the R-square change in the OLS regression, we can adopt Cohen’s (1988) guideline (i.e., .02, .
13 and .26 in R-square change representing small, medium and large effect respectively) and
conclude that the initial age has no effect on predicting the functional abilities at the initial time
point (i.e., 12-months follow-up) but a small effect on predicting the linear rate of change in
the functional abilities over time. These findings are consistent with the tests of significance
for the individual parameter estimates as shown in Table 6 model B (i.e., the p-value of γ01
was .29, whereas the p-value of γ11 was less than .05). Additionally, these small explained
variances imply the omission of other important time-invariant covariates in the model and
further examination of the model is needed.

The advantage of using Pseudo-R2 is that it provides an easy to use and understandable measure
of effect size. However, unlike the regular R2, negative Pseudo-R2 can be obtained especially
when level-1 (repeated-measures/within-individual level) predictors only contribute to the
within-individual variation but not the between-individual variation. This can also be explained
by the compensatory relation between the within-individual variance and between-individual
variance (Kwok, et al., 2007; Snijders & Bosker, 1994; 1999). Snijders and Bosker (1994,
1999) provided more discussion on the use of Pseudo-R2 and suggested an alternative way3

for calculating the R2 for different level to prevent the negative explained variance.

In addition to the explained variance, researchers can compare different multilevel models
using the information criteria such as Akaike information criterion (AIC) and Bayesian
information criterion (BIC). The general guideline for using these information criteria is to
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select the model with the smallest value on either AIC or BIC. Additional guideline on
comparing models using BIC is available (Raftery, 1996). There is no substantial difference
between two models if the BIC difference is less than 2. On the other hand, there is a substantial
difference between two models if the difference between the two BIC values is larger than 10.
Nevertheless, a few studies showed that the effectiveness of using these information criteria
on model selection (especially on selecting the correct variance-covariance matrix of the
random effects and errors) was relatively low (Keselman, Algina, Kowalchuk, & Wolfinger,
1998). Hence, these information criteria should be used with caution and should not be used
as the sole criterion on selecting models without considering both theoretical explanation and
application of the model.

C. Beyond the Default Models
In previous sections we discussed models which are the common/default models in most of
statistical programs. These models always come with some default assumptions, specifically
on the random-effect part of the model. For example, a specific covariance structure, an identity
(ID) structure (i.e., σ2I), is always assumed for the covariance structure of the within-individual
variation (i.e., eti), which may not be applicable, especially for longitudinal analysis (Kwok,
et al, 2007). The misspecification of random effect covariance structure may result in biased
estimation of the variances of the random effects, which in turn may affect the estimation of
the standard errors and the test of significance of the fixed effects.

One of the advantages of using MLM for analyzing longitudinal data is that MLM offers great
flexibility in modeling the covariance structure for both between-individual random effects
and within-individual random errors. Researchers can search for the optimal covariance
structure, which theoretically results in the highest statistical power and increases the precision
of estimates of the fixed effects (Davis, 2002; Diggle, Heagerty, Liang & Zeger, 2002;
Keselman, Algina, & Kowalchuk, 2001; Singer & Willet, 2003; Wolfinger, 1996).

Modeling the Covariance Structure for the Between-Individual Random Effects
—Recall that we examined two models, a simple linear growth model (model A) and a model
with a time invariant covariate, c_Agei (model B). In these two models, we estimated three
elements (i.e., τ00, τ11, and τ01) in the covariance structure for the between-individual random
effects. As shown in Table 6 (models A and B), the covariance, τ01, was not significant in either
one of the models. The covariance structure used for these two models is called unstructured
(UN) in which all unique elements in the covariance structure are free for estimation:

Because of the non-significance of the covariance (i.e., τ01 not significantly different from
zero), we have fitted the same two models (i.e., models C1 and C2 in Table 6) with a simpler
covariance structure, namely, UN(1) structure (in SAS) or DIAG structure (in SPSS) as
presented below:

3By fitting a multilevel model with only random effect associated with the intercept (i.e., no random effect associated any coefficients
other than the intercept), Snijders and Bosker (1994, 1999) provided an alternative way to calculate the explained variance by redefining

the within-individual variance as σ2 and the between-individual variance as  in which n is the cluster size (i.e., the number of
observation per cluster). For unbalanced design, n can be the harmonic mean of the cluster size across all clusters.
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in which only the variances but not covariance of the random effects are estimated. In other
words, τ01 is constrained to zero which implies that there is no relation between the functional
abilities at the initial time point (i.e., the 12 months follow-up) and the rate of change in the
functional abilities over time across individuals.

By using the likelihood ratio test, we can compare models A and C1 with their -2LL values.
Because the only difference between these two models is the covariance τ01 which has been
estimated in model A but not in model C1 (i.e., τ01=0 in model C1), the difference in the -2LL
values of these two nested models follows a chi-square distribution with 1 degree of freedom.
The likelihood ratio test, χ2(1) = -2LLModel A – (-2LLModel C1) = 3449.133 − 3449.097 = .036,
is not statistically significant (p = .850) which means that τ01 is not different from zero. The
estimated τ00 and τ11 in model C1 are slightly larger than the ones in model A due to the
redistribution of the variance between the random effects (Luo & Kwok, 2006; Meyers &
Beretvas, 2006). Then, we added the time-invariant covariate, c_Agei, back in model C1 and
the results of this model (model C2) are presented in Table 6. Basically, the only difference on
the model specification between models B and C2 is that τ01 is estimated in model B but
constrained to zero in model C2. We can use the same equation presented previously to obtain
the Pseudo-R2 statistics for the changes in τ00 and τ11 after including c_Agei in the model. By
constraining τ01 to zero in models C1 and C2, the Pseudo-R2 statistics for both τ00 and τ11 are
larger (i.e.,  and  than the ones based on models A and B (i.e., 
and ). Instead of using the default setting, modeling the variance-covariance matrix
of the between-individual random effects may result in higher explained variances.

Modeling the Covariance Structure for the Within-Individual Random Errors—
As Kwok et al (2007) pointed out, when analyzing longitudinal data under the MLM
framework, researchers typically assume the within-individual errors to be independently and
identically distributed (i.i.d.) with mean zero and homogenous variance σ2 for all participants
(i.e., e~N(0,σ2I)). The simplification of the within-individual covariance structure (i.e., σ2I,
also named identity structure) may bias the estimation of the standard errors of the fixed effects,
which, in turn, may lead to incorrect statistical inferences for the fixed effects. Singer and
Willet (2003) also emphasized that obtaining an adequate within-individual covariance
structure is a key element in estimating the proper effect size and properly accounting for
missing values in multilevel data. Thus, choosing the optimal error structure is an important
task in MLM. As Campbell and Kenny (1999) stated, “the correlational structure of
longitudinal data almost always has a proximally autocorrelated structure: adjacent waves of
measurement correlate more highly than nonadjacent waves, and more remote in time, the
lower the correlation (Campbell & Reichardt, 1991; Kenny & Campbell, 1989)…except for
data that are highly cyclical (Warner, 1998), proximal autocorrelation is the norm” (p.121).

Given that the proximal autocorrelation is a common phenomenon in longitudinal data, the
first-order autoregression (AR(1)) structure was also fitted to the within-individual covariance
of our example data. AR(1) is one of the commonly used covariance structures when analyzing
longitudinal data and it has been widely applied in the latent growth models (Bollen & Curran,
2004; 2006; Curran & Bollen, 2001). AR(1) contains two parameters (the error variance σ2

and the autocorrelation coefficient ρ). An example of AR(1) with four repeated measures is
shown below (compared with the default identity (ID) structure in model C2):
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The results based on the AR(1) structure are shown in Table 6 (model C3). The only difference
between models C2 and C3 is in the within-individual covariance where model C2 has the
default identity structure (i.e., σ2I) while model C3 has the AR(1) structure. The difference
between these two models on fitting the within-individual covariance matrix can be examined
by the likelihood ratio test given that the default identity structure is nested within the AR(1)
structure. The significant difference between the -2LL values of these two models (i.e., χ2(1)
= 3459.544 − 3445.827 = 13.717, p < .001) indicated that the AR(1) structure (model C3) fitted
the within-individual covariance matrix better than the default identity structure (model C2).
Nevertheless, most of the parameter estimates of model C3 were very similar to the ones in
model C2. One noticeable difference between the two models is that the change in the p-value
of the Time*c_Age interaction effect (i.e., from p = .042 in model C2 reduced to p = .037 in
model C3) implicitly showed the increment in the statistical power after modeling the within-
individual covariance as the AR(1) structure. Additionally, the negative autocorrelation
coefficient (ρ = −.450) indicated a tendency of the FIM_P score to oscillate within patients
over time (after controlling for the average linear growth trend). That is, a negative relation
(ρ = −.450) between the adjacent time points was found while a smaller positive relation (ρ2

= .202) between the non-adjacent time points (i.e., the 1st and 3rd time points, and the 2nd and
4th time points) was presented.

D. Handling Missing Data
Missing data may occur in which individuals are absent from one or more data collection
occasions. MLM addresses this issue by taking all observations into account regardless of the
design of the study. In our example dataset, there were 251 individuals who had at least one
response in the four time measures. Among these 251 individuals, 27 of them only responded
to one time point, 39 of them responded to two time points, 54 of them responded to three time
points, and 131 of them responded to all four time points. Because of the required multivariate
data format (see Figure 1a) for a repeated-measures UANOVA analysis, listwise deletion
would be adopted and only the 131 individuals with complete data could be included4. On the
other hand, all 251 individuals can be included HLM, SAS in the analysis when MLM is used.
The results based on all 251 individuals are presented in Table 6 model D. Models C3 and D
are exactly the same in the model setup except the sample size (i.e., model C3 only included
131 individuals whereas model D included 251 individuals).

Compared with model C3, a very similar pattern of results is found in model D. There are two
major differences, however, between the two models: 1) all regression coefficients are
significant in model D, and 2) the variance of the random intercept τ00 is substantially larger
in model D than in model C3. The significance of all regression coefficients is the result of the
increased sample size (i.e., increased statistical power). The increment in τ00 is the result of
the inclusion of more individuals, especially the ones with only a single response which could

4An alternative way to analyze incomplete data using UANOVA is to incorporate the multiple imputation procedure (Schafer, 1997) if
the data are missing completely at random (MCAR) or missing at random (MAR, Little & Rubin, 2002). Multilevel missing data can be
imputed using either the PAN routine provided by Schafer (http://www.stat.psu.edu/~jls/misoftwa.html),or the SAS PROC MI routine
(i.e., to impute the multivariate data then convert the imputed data to univariate format for analysis). HLM, SAS (PROC MIANALYZE)
and SPSS (MVA module) have the missing data routine which can analyze the imputed data. Nevertheless, as pointed out by Twisk
(2006), “it has even been shown that applying multilevel analysis to an incomplete dataset is even better than applying imputation methods
(Twisk & de Vente, 2002; Twisk, 2003)” (p.107).
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only contribute to the estimation of between-individual parameters and variations (Muthen,
2002, February 20).

E. Required Sample Size for Longitudinal Analysis using MLMs
There are many rules of thumb on the required sample size for multilevel models (e.g., 15 units
per cluster by Bryk & Raudenbush (1992); 30 clusters/30 units per cluster rule by Kreft
(1996), and the 50 clusters/20 units per cluster rule for detecting cross-level interaction effect
by Hox (1998)). However, none of these rules of thumb can provide an accurate estimation of
the sample size (in terms of a desired level of statistical power along with a specific size of the
target effect). Moreover, all these rules of thumb require a relatively large number of level-1
units (i.e., the number of repeated measures) which may not be applicable for longitudinal
studies with educational or psychological data given that these data often contain a fewer
number of waves/repeated measures. Generally, more reliable estimates for the individual
growth models can be obtained with a relative large number of measurement waves (e.g., 8 or
more). Moreover, a larger number of higher level units (i.e., the number of patients in our
example) can increase the statistical power for detecting the effects of the higher level
predictors and the cross-level interaction effects between the within- and between-individual
predictors. More accurate sample size estimation for longitudinal analysis in MLM can be
obtained through freeware such as PINT (version 2.1; Bosker, Snijders, & Guldemond,
2003) which can be downloaded from: http://stat.gamma.rug.nl/snijders/, and Optimal Design
(version 1.76; Spybrook, Raudenbush, Liu, Congdon, & Martinez, 2008) which can be
downloaded from: http://sitemaker.umich.edu/group-based/optimal_design_software.
Additionally, A freeware application for determining sample sizes for MLM for two-group
repeated measures designs (e.g., clinical trials) can be obtained from
http://tigger.uic.edu/~hedeker/ml.html. This application (RMASS2) is based on the work of
Hedeker, Gibbons, and Waternaux (1999), and allows for attrition, both fixed and random
effects models, and several variance-covariance structures for repeated measures.

F. Beyond Linear Growth Models
In this paper we only focused on linear growth models (i.e., the change in the outcome variable
FIM_P is in a linear fashion over time). In fact, the great majority of applications of growth
models to date have used linear models. The advantages of using linear growth models include:
1) these models are simple and easy to interpret, and 2) they can adequately represent the growth
process when the number of measurement waves is small or the study is short, or both.
However, some phenomena such as the development of crystallized and fluid intelligence over
the entire life span (Finkel, et al., 2003) cannot be adequately captured by linear growth models.
Other forms of growth models such as a quadratic growth model (i.e., adding a quadratic term,
time2, into the model) or piecewise model (i.e., segmenting a nonlinear process into multiple
linear growth models; Khoo, 2001; Raudenbush & Bryk, 2002) are commonly used for
representing nonlinear growth processes. In addition to examining a single developmental
process, parallel process models (PPM) provides the opportunity for studying the relation
between multiple developmental processes simultaneously. More information on the setup and
interpretation of PPM can be found in the studies by Cheong, MacKinnon, and Khoo (2003),
and by Kwok, West and Sousa (2006).

In the current example we only examined a two-level model with repeated measures nested
within patients. In some other settings, patients can also be nested within some higher level
units/clusters such as different wards or hospitals. The variables associated with these higher
level units are contextual variables (e.g., the total number of patients in a hospital, the ratio of
number of doctors to number of patients, and the hospital type). These contextual variables
may be able to further explain/account for the variation in the initial FIM_P scores as well as
the variation in the change in the FIM_P scores over time across all patients. More information
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on fitting a higher-level (e.g., three-level) models and interpreting the contextual effects can
be found in both Raudenbush and Bryk’s (2002) text and Snijders and Bosker’s (1999) text.

Conclusion
In this paper, we illustrated how to analyze longitudinal data under the MLM framework. There
are two major phases for analyzing longitudinal data: preparation phase and analysis phase. In
the preparation phase, researchers should carefully inspect their data to screen for errors or
outliers in the data, and obtain some basic descriptive statistics for their data such as means,
variances, skewness and kurtosis. As described in the data preparation section, data have to be
converted into univariate format before analyzing them in MLM. Moreover, researchers are
encouraged to plot their data with spaghetti plots to see whether there is any potential trend in
the data over time.

In the analysis phase, Wallace and Green (2002) suggested four steps for analyzing longitudinal
data in MLM: 1) review the past literatures to formulate the initial model; 2) examine the initial
model and evaluate the fixed part of the model (i.e., shape of the average growth model plus
covariates); 3) evaluate the random part of the model (i.e., the covariance structure of the
random effects) with the same fixed part based on step 2; and 4) fine tune the fixed part of the
model. An iterative process between steps 3 and 4 is recommended until a stable and
interpretable model is obtained.

Similar steps have been adopted in our example. We first analyzed the data with a simple linear
model (i.e., model A). We then added the time-invariant covariate (c_Agei) to see whether it
could account for the variations in both intercepts and slopes over the 131 participants (i.e.,
model B). After we confirmed the fixed part of the model (i.e., the shape of the average model
plus covariates), we examined the random part of the model (i.e., the covariance structures of
both between-individual variations and within-individual random errors). We first fitted a
simpler between-individual covariance structure (i.e., without estimating τ01; models C1 and
C2). Then, we examined the AR(1) structure for the within-individual covariance structure
(i.e., model C3), and the likelihood ratio test showed that the AR(1) structure fitted better to
the data than the default identity structure.

In this paper, we provided only a simple overview of models and procedures for analyzing
longitudinal data under the MLM framework. There are many texts such as Singer and Willet
(2003), Hedeker and Gibbons (2006), and Weiss (2005) which have provided more in-depth
treatments on analyzing longitudinal data in MLM. Readers can also find more information on
using the latent growth model (LGM) to analyze longitudinal data in the texts by Duncan et al
(1999) and Bollen and Curran (2006). Additionally, there are many useful resources from the
internet, including the University of Bristol (UK) Centre for Multilevel Modeling
(http://www.cmm.bristol.ac.uk/index.shtml) and the UCLA multilevel modeling portal
(http://statcomp.ats.ucla.edu/mlm/) which contain useful information such as links to other
MLM related online resources, and reviews and links to different MLM software including
HLM, MLwinN, Mplus, and Stata.
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Figure 1.
Figure 1a. Data in Multivariate Format (SPSS)
Figure 1b. Data in Univariate Format (SPSS)
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Figure 2.
Spaghetti plots of a Random Sample with 20 Participants
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Figure 3.
Figure 3a. The Visual Demonstration of τ00, τ11, and τ01 (τ00 > 0 and τ11 > 0)
Figure 3b. The Visual Demonstration of τ00, τ11, and τ01 (τ00 = 0 and τ11 > 0)
Figure 3c. The Visual Demonstration of τ00, τ11, and τ01 (τ00 > 0 and τ11 = 0)
Figure 3d. The Visual Demonstration of τ00, τ11, and τ01 (τ00 > 0, τ11 > 0, and τ10 = τ01 > 0)
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Figure 4.
Decomposing the c_Agei*Timeti Interaction Effect
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Table 1

Comparisons between ANOVA-based Analyses and MLM Analyses

Repeated Measures UANOVA Multilevel Models

Analysis Strategies A. Simple within-subjects
designs: Time contrasts and
average polynomial trends
(time as a categorical factor;
balanced data and equal time
spacing assumed)

B. Mixed Within/Between
Designs (e.g., randomized
clinical trials): Interaction
effects between time and other
between-subjects factors.

A. Simple within-subjects designs: Time contrasts and
average polynomial trends (time as a categorical
factor; balanced data and time spacing assumed)

B. Mixed Within/Between Designs (e.g., randomized
clinical trials):

1. Interaction effects between time and
other between-subjects factors.

2. Cross-level interactions effects of
between-subjects factors/variables on
individual growth trajectories).

C. Regression parameters from individual growth
models including intercepts, slopes, both can be
treated as random effects for estimation (time
continuous variable; unbalanced data and unequal
time spacing accommodated)

Estimation Method Least Squares Maximum Likelihood

Missing Data Complete cases only All available data

Variance-Covariance Structure Compound Symmetry (or Huynh-Feldt (H-
F) which is a more general form of the
compound symmetry structure) to meet the
sphericity assumption

Flexible Structure

Covariates Time invariant covariates only Both time invariant and time-varying covariates
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Table 2

Descriptive Statistics of the Participants with IAF

N = 131 N = 251

Age (Standard Deviation of Age) 45.82 (17.02) 43.89 (17.59)

Gender

   Men 75 (57.3%) 142 (56.6%)

   Women 56 (42.7%) 109 (43.4%)

Ethnicity

   African American 38 (29.0%) 74 (29.5%)

   Caucasian 93 (71.0%) 175 (69.7%)

   Others 0 (0.0%) 2 (.8%)

Employment Status at the 12 Months Follow up:

   1 = Employed, full time 41 (31.3%) 72 (28.7%)

   2 = Employed, part time 3 (2.3%) 9 (3.6%)

   3 = Self-employed 4 (3.1%) 10 (4.0%)

   4 = Unemployed 18 (13.7%) 35 (13.9%)

   5 = Student 4 (3.1%) 6 (2.4%)

   6 = Retired 20 (15.3%) 37 (14.7%)

   7 = Not working because of a previous disability 35 (26.7%) 67 (26.7%)

   8 = Other 5 (3.8%) 11 (4.4%)

   9 = Unknown 1 (.8%) 4 (1.6%)

Marital Status at the 12 Months Follow up:

   1 = Single 28 (21.4%) 61 (24.3%)

   2 = Married 74 (56.5%) 126 (50.2%)

   3 = Divorced 16 (12.2%) 31 (12.4%)

   4 = Separated 2 (1.5%) 8 (3.2%)

   5 = Widowed 10 (7.6%) 21 (8.4%)

   9 = Other/Unknown 1 (.8%) 4 (1.6%)

Education Status at the 12 Months Follow up:

   1 = 8th grade or less 15 (11.5%) 23 (9.2%)

   2 = 9th through 11th grade 27 (20.6%) 59 (23.5%)

   3 = High school diploma/GED 48 (36.6%) 86 (34.3%)

   4 = Trade school 2 (1.5%) 3 (1.2%)

   5 = Some college, no degree 19 (14.5%) 41 (16.3%)

   6 = Associate degree 1 (.8%) 4 (1.6%)

   7 = Bachelor’s degree 11 (8.4%) 21 (8.4%)

   8 = Master’s degree 6 (4.6%) 6 (2.4%)

   9 = Doctorate 0 (0.0%) 1 (.4%)

   10 = Other 2 (1.5%) 3 (1.2%)

   99=Unknown 0 (0.0%) 4 (1.6%)
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Table 3

Descriptive Statistics of the FIM_P measure over time

N = 131 N = 251

FIM_P at the first (12 Months) follow-up 87.21† (5.21††) 86.37 (8.37)

FIM_P at the first (24 Months) follow-up 86.79 (5.68) 86.42 (7.44)

FIM_P at the first (48 Months) follow-up 85.41 (11.52) 85.96 (10.03)

FIM_P at the first (60 Months) follow-up 84.40 (13.06) 84.64 (12.64)

†
Mean

††
Standard Deviation

Rehabil Psychol. Author manuscript; available in PMC 2009 August 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kwok et al. Page 30

Table 4

SPSS and SAS Syntax for Transforming the Data from Multivariate Format to Univariate Format

Syntax Explanation

SPSS VARSTOCASES
  /MAKE FIM_P FROM FIM_P12
    FIM_P24 FIM_P48 FIM_P60
  /INDEX = Time(4)
  /KEEP = id age c_age
  /NULL = KEEP.
RECODE
Time (1=0) (2=12) (3=36) (4=48).

Varstocases: call the data transformation procedure to convert the multivariate data format to
univariate data format
Make FIM_P from FIM_P12 FIM_P24 FIM_P48 FIM_P60: create new (univariate) outcome
variable FIM_P from FIM_P12 to FIM_P60
Index=time(4): create an index variable to represent different data line within each participant
(e.g., individual). In this example, we create a new index variable (time) with 1,2,3,4 to represent
the 4 different data lines within each individual in the univariate dataset
Keep=id age c_age: keep the time invariant variable (e.g., id and age at the first time measure)
Null=keep keep the missing data as a separate data line (e.g., if a individual has no data at both
times 3 and 4, this individual will still have four data lines in the new converted univariate dataset
with missing data shown for both 3rd and 4th data lines.
RECODE Time (1=0) (2=12) (3=36) (4=48): recode the values in the newly created Time variable
(i.e., 1, 2, 3, & 4) to the corresponding time values we used in the example (i.e., 0, 12, 36, & 48
months).

SAS data uni; set mult;
FIM_P=FIM_P12;time=0;output;
FIM_P=FIM_P24;time=12;output;
FIM_P=FIM_P48;time=36;output;
FIM_P=FIM_P60;time=48;output;
keep id age c_age time FIM_P;

Data: name the new converted univariate format data as “uni”
Set: read in the original multivariate format data named “mult”
FIM_P=FIM_P12: create new variable named FIM_P using the original variable FIM_P12
Time=0: create new variable “time” and set the value for the first time measure as 0
Output: output to the new converted univariate dataset (The same commands apply to the next
three command lines for different time measures)
Keep id c_age time FIM_P: include all these variables (i.e., id c_age time FIM_P) in the new
converted univariate dataset named “uni”
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Table 5

Syntaxes for analyzing different models in SAS and SPSS.

Model SPSS syntax SAS syntax

ICC Mixed fim_p proc mixed data=uni covtest;

/fixed = intercept class individual_id;

/random intercept | subject(individual_id) covtype(UN) model fim_p= /solution;

/print = solution testcov. random intercept / type=un subject=individual_id;

A Mixed fim_p with time proc mixed data=uni covtest;

/fixed = intercept time class individual_id;

/random intercept time | subject(individual_id) covtype(UN) model fim_p=time /solution;

/print = solution testcov. random intercept time / type=un subject=individual_id;

B Mixed fim_p with time c_age proc mixed data=uni covtest;

/fixed = intercept time c_age time* c_age class individual_id;

/random = intercept time | subject(individual_id) covtype(UN) model fim_p=time c_age time*c_age /solution;

covtype(UN) random intercept time/ type=un subject=individual_id;

/print = solution testcov.

C1 Mixed fim_p with time proc mixed data=uni covtest;

/fixed = intercept time class individual_id;

/random = intercept time | subject(individual_id) covtype(diag) model fim_p=time /solution;

covtype(diag) random intercept time / type=un(1) subject=individual_id;

/print = solution testcov.

C2 Mixed fim_p with time c_age proc mixed data=uni covtest;

/fixed = intercept time c_age time* c_age class individual_id;

/random = intercept time | subject(individual_id) covtype(diag) model fim_p=time c_age time*c_age /solution;

covtype(diag) random intercept time/ type=un(1) subject=individual_id;

/print = solution testcov.

C3 Mixed fim_p with time c_age by index1 proc mixed data=uni covtest;

/fixed = intercept time c_age time* c_age class individual_id;

/random = intercept time | subject(individual_id) model fim_p=time c_age time*c_age /solution;

covtype(diag) random intercept time/ type=un(1) subject=individual_id;

/repeated=index1 |subject(individual_id) covtype(ar1) repeated / type=ar(1) subject=individual_id;

/print = solution testcov.

D (Same as Model C3) (Same as Model C3)

Note:
For SPSS syntax (model C3 as example):
Mixed fim_p with time c_age by index1: call the Mixed procedure in SPSS and identify the dependent variable (fim_p) with the continuous predictors
(time and c_age) by the categorical predictor(s) (index1: label for each data line within each individual) ; fixed: specify the average growth (or fixed-
effect) model; random: specify the random effects (or request for the estimation of the between-individual covariance matrix); subject
(individual_id): specify the level-2 cluster ID (i.e., individual id); covtype(diag) (in the “random” command line): specify the structure of the between-
individual covariance matrix as diagonal (diag) structure; repeated=index1: request for the estimation of the within-individual covariance matrix;
covtype(ar1) (in the “repeated” command line): specify the structure of the within-individual covariance matrix as the firstorder autoregressive
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structure; print=solution: request for the growth parameter estimates (e.g., β0 & β1) and their corresponding standard errors (e.g., SEβ0 & SEβ1);
testcov: request for the tests of the parameter estimates in the random effects and errors

For SAS syntax (model C3 as example):
proc mixed: call the proc mixed procedure in SAS; data: the dataset for the analysis; covtest: request for the tests of the parameter estimates in the
random effects; class: specify the categorical variable individual_id; model: specify the average growth (or fixed-effect) model; solution: request for
the growth parameter estimates (e.g., β0 & β1) and their corresponding standard errors (e.g., SEβ0 & SEβ1); random: specify the random effects (or
request for the estimation of the between-individual covariance matrix); type=un(1) (next to the “random” command): specify the structure of the
between-individual covariance matrix as un(1) structure (same as the diagonal structure in SPSS); subject: specify the level-2 cluster ID (i.e.,
individual_id); repeated: request for the estimation of the within-individual covariance matrix; type=ar(1) (next to the “repeated” command): specify
the structure of the within-individual covariance matrix as the first-order autoregressive structure
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