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convergence 
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c tor  convex 
programming 

We  show,  using  elementary  considerations, 
that  a  modified  barrier  function  method  for  the 
solution of  convex  programming  problems 
converges  for  any  fixed  positive  setting  of  the 
barrier  parameter.  With  mild  conditions  on  the 
primal  and  dual  feasible  regions,  we  show  how 
to use  the  modified  barrier  function  method to 
obtain  primal  and  dual  optimal  solutions,  even 
in the  presence of degeneracy. We illustrate 
the argument  for  convergence  in the case  of 
linear  programming,  and  then  generalize  it to 
the convex  programming  case. 

Introduction 
In this paper we discuss the convergence of the modified 
barrier method for solving  linear  and convex programming 
problems. A linear  program  is an optimization problem 
that entails finding the best solution satisfying the specified 
constraints. A linear measure of the quality of the possible 
solutions, called the objective function, is  given, as well as 
a  set of linear equalities and inequalities constraining 
variables. A convex program  is  an optimization problem  in 
which both the constraints and the objective function are 

represented by convex functions. There are many 
algorithms  for  solving linear and convex programming 
problems. Some  algorithms relax the constraints by 
permitting,  but  penalizing, solutions that come close to 
violating the constraints. These penalties are applied by 
means of rapidly growing "barrier" functions. By 
iteratively decreasing the penalty given to such violations, 
the algorithms generate a sequence of solutions that 
converge to a solution of the original problem. These 
algorithms are referred to as barrier methods. Fiacco and 
McCormick initiated the study of these methods in [l] and 
examined  logarithmic barrier functions. These barrier 
functions are also referred to as classical barrier functions. 

Barrier methods to solve linear and nonlinear 
programming problems have been used for  many years and 
have recently experienced a resurgence because of the 
success of interior-point algorithms for linear and nonlinear 
programming  problems. This interest was rekindled by 
Karmarkar's result [2] that these methods are theoretically 
efficient  and  his  claims that they are practical. The 
methods that are most widely used  in practice employ a 
barrier parameter, which tends to zero during the solution 
process in order to weaken the effect of the barriers and to 
produce a sequence of solutions converging to an optimal 
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solution. In this paper, we study a modified barrier 
function and a related method in which the barrier 
parameter is  initialized to any positive number  and remains 
fixed throughout the procedure. Instead of the barrier 
parameter being updated, individual weights on the barrier 
functions are updated, and these weights cluster at optimal 
dual solutions. 

The work in the present paper includes transforming a 
classical barrier method into a Lagrangian  with weights 
and shifts and  is  philosophically  similar to augmented 
Lagrangian methods. Powell’s  1969 derivation of 
augmented Lagrangian methods involved the inclusion of 
weights and shifts for each constraint in the classical 
quadratic penalty function, in order to avoid the need to 
drive the penalty parameter to infinity [3]. It is interesting 
indeed (as Osborne and Jittorntrum pointed out nearly 
twenty years ago [4, 51) that a similar  idea can be  applied 
to the classical logarithmic barrier function. Numerous 
authors, including [6,  71, have studied weighted  and shifted 
barrier functions. Besides the derivation and analysis of 
another weighted  and shifted barrier function method in 
Conn et al. [8], the introduction of that paper provides a 
clear and concise comparison of several of these methods, 
including the work of Jittorntrum and Osborne [4, 51. For 
further references, the reader can consult a bibliography 
on interior-point methods compiled by Kranich [9]. 

The modified barrier functions and corresponding 
methods were introduced by Polyak in [lo] and analyzed 
under standard second-order optimality conditions. In the 
case of linear  programming problems, the assumption 
underlying the analysis was that both primal  and  dual 
problems are nondegenerate [ll]. In other words, the 
theory of  modified barrier functions and the modified 
barrier function method for constrained optimization 
problems were developed for problems that have unique 
primal  and  dual solutions. 

Under the nondegeneracy assumption, there exists a 
constant k, > 0, which is a function of the problem data, 
such that for any fixed barrier parameter k 2 k,, the 
modified barrier function method converges to the 
unique primal  and dual solutions with a linear rate of 
convergence. Moreover, for any given constant specifying 
the rate of reduction in error at each step, one can find a 
fixed barrier parameter k 2 k, that guarantees that the 
modified barrier function method will generate a pair of 
sequences that converge to the primal and dual solutions 
linearly at this specified rate. Consequently, by increasing 
the barrier parameter from step to step, one can obtain a 
superlinear rate of convergence. 

In practice, the performance of the modified barrier 
function method and its variations does not seem to 
depend on the nondegeneracy assumption, for either linear 
or nonlinear programming [12,  131. It is important to 
establish a theoretical foundation for the behavior of the 

method in the presence of degeneracy and in the case in 
which the barrier parameter remains fixed throughout the 
procedure. Recently, M. Powell [14] has undertaken a 
similar analysis for linear  programming problems. 

barrier function method for convex programming 
problems. We do so by replacing the nondegeneracy 
assumption with mild conditions on the primal  and  dual 
feasible regions. We prove convergence for any fixed 
barrier parameter k > 0 and  fixed positive constraint 
shifts. We first demonstrate convergence of the method  for 
linear programming problems, both to illustrate the basic 
ideas and to set the framework of the more general 
argument. We show that the sequence of primal (dual) 
iterates has these properties: The associated primal (dual) 
objective function converges to the optimal value; the dual 
iterates have dual optimal solutions as their limit points; 
and the primal iterates can be averaged to provide 
asymptotic primal solutions. We then generalize the 
argument to the case of convex programming problems, 
taking  Wolfe’s  dual  [15] for our dual  program. 

The motivation for fixing k at an arbitrary value is 
to begin to explain behavior that we have observed in 
practice. It is in no way a proposal to fix the parameter at 
some arbitrary level. Indeed, we consider an example  in 
the next section in which the rate of convergence of the 
multipliers becomes unacceptably slow even for moderate 
values of k .  It does, however, argue that in  an algorithm 
where k is increased as the algorithm proceeds, k can 
be fixed after any finite number of increases without 
jeopardizing convergence. From a practical viewpoint, the 
algorithm as stated is  not  implementable, since it requires 
exact optimization of the modified barrier function, which 
is  not possible on any finite-precision  machine. 

of the modified barrier function method for linear 
programming discussed here and a method for linear 
programming  using shifted “entropy functions.” There, the 
linear objective function is shifted but the constraints are 
not. Entropy functions and their use in optimization have 
been studied by many authors and have a rich literature; 
the interested reader can refer to [16,  171. 

In this paper, we consider the behavior of the modified 

We conclude the paper by showing the equivalence 

Convergence for linear programming problems 
We consider a self-dual formulation of linear programs. 
To motivate this formulation, we first consider one of the 
several equivalent canonical representations of a dual  pair 
of linear  programming problems, 

min uoTx max y T h 0  

(P) AX = A X o  (D) u = U’ - ATy 

x 2 0  u 2 0  
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where A E 8""", and uo and A x o  determine the primal  and 
dual objective functions, respectively. Assuming that both 
programs have feasible solutions, we may take x' and uo to 
be fixed, nonnegative, and feasible. If we  define the vector 
subspace V1 of 8" as V1 = {w I Aw = 0) and its 
orthogonal complement V {v I v - ATy = 0}, this dual 
pair of programs can be rewritten as 

min uoTx 

(P) X E {xo t w 1 w E v'} n 8; 

max xoT(uo - u) = xoTuo - min xoTu 

(D) u E {uO + v I v E V }  n 8; . 
Any dual  pair of feasible linear  programming problems 

can be cast in the framework illustrated above, which we 
now formalize. We let V be a Euclidean vector space in 
8" and V 1  be the orthogonal complement of V. The 
reader will note that any V that is a Euclidean vector 
space in % n  can be represented in terms of a matrix A, as 
above. We strengthen the assumption that both (P) and (D) 
are feasible by assuming that un is strictly positive and xo 
is nonnegative. We  define the sets X +  and Ut as 

U = { U J U = U ~ + V , V E V ) ,  u t = u  n 81, 
X = { X I X = X ~ + W , W E V ~ } ,  x + = x  n %;. 

Thus, a canonical form for a dual pair of programs is 

(P) min uoTx and (D) min xoTu. (1) 
==+ U€U+ 

By construction, both linear programs are feasible, since 
xo E X +  and uo E Ut. Furthermore, since the objectives 
of each are nonnegative, they both are bounded below in 
value by zero. The formulation is nonstandard, in that both 
programs are minimization problems and the programs do 
not have the same value. However, the sum of the optimal 
values of the programs is xoTu0, so we could rewrite the 
first  program as 

max{uoTxn - uoTx} 
x c u ,  

or the second program as 

max{xoTuo - xnTu} 
U€U+ 

to obtain a pair of programs with the same value and  with 
opposite directions of optimization. 

A consequence of this formulation is that any pair of 
optimal solutions is characterized by a complementarity 
condition. Suppose x* and u* are optimal for (P) and (D), 
respectively. Since 0 = (xo - x*)'(u0 - u*) and 
uoTx0 = uoTx* t xoTu*, it  follows that 0 = u * ~ x * ,  which 
implies that x* and u* are complementary. 
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We  now discuss the modified barrier function method 
for solving linear programming problems in this 
framework, in order to underscore the independence 
of our reasoning from the representation of the linear 
programming problem. Since the framework is symmetric, 
the algorithm presented can equally well be applied to 
(P) or (D) of (1). 

great detail in [lo, 111. The method is motivated by a 
reformulation of the problem (P) of (1) as 

min uoTx 

The modified barrier function method is developed in 

x c y  

1 
-In (kxi t 1) t 0, i = 1, 2, e ,  n. 
k (2) 

In this paper we consider the scalar k > 0 to be a fixed 
parameter of the problem. In order to solve the original 
problem, the modified barrier function method finds a 
saddle-point for the classical Lagrangian for problem (2), 

max min F(x, u; k)', 
"€U+ X E X  

where 

F(x, u; k) 

luoTx - u, In (kxi + 1) 
i=l 

(03 otherwise. 

The classical Lagrangian for problem (2), defined  by 
F(x, u; k ) ,  is the modified barrier function. 

It is easy to verify that the basic properties of the 
modified barrier function, enumerated below, are satisfied 
for every k > 0, where x* and u* are an  optimal, hence 
complementary, pair for Equation (2): 

1. F(x*, u*; k )  = uoTx*. 

2. V,F(x*, u*; k )  = u0 - - ( k x y +  1) E 'Ob 

3. VLF(x*, u*; k) = diag 

where U* = diag[~r]L, ,~  is positive semidefinite. 

'We use a semicolon to offset k in F(.,  .; k ) ,  to emphasize the fact that k > 0 is a 
fixed parameter. 
bu*f(kX* + 1) denotes the vector in W" whose i t h  component is u:/(kXT + 1). 
'diag [a,]:=, denotes the diagonal matrix with ith diagonal entry a , .  
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Thus, given u*, we  may optimize F(x, u*; k)  to  obtain x*, 
if the linear  program (D) is nondegenerate. [If (D) is 
degenerate,  we  are  guaranteed  only  that optimizing F will 
produce a complementary,  but  not  necessarily feasible, 
x*.] Furthermore, if B > 0 and is close  to a dual optimal 
solution, the minimizer of F(x, 6; k) will be close to a 
primal  optimal  solution. We  show  that  by  successively 
fixing u and minimizing the modified barrier function F 
with respect  to x, one  can  produce an update  to u as a 
byproduct of the minimization. The  sequence of dual 
solutions u produced  by this  mechanism is strictly 
increasing in dual  objective  function value.  In this way,  the 
modified barrier  function  method  solves  the saddle-point 
problem by maximizing over all feasible u the minimum 
over x of the classical  Lagrangian for  the equivalent 
problem of (2). 

These  considerations lead to  the modified barrier 
function  method,  which  is  described in Algorithm 1. 

Algorithm 1 The modified barrier  function  method for 
linear  programming is  as follows: 

also require that  the  set of dual  feasible solutions of dual 
objective  function value  better  than  our initial solution 

uo = {u E u+ 1 XOTU I XOTUO} 

be bounded. This will happen if and  only if the primal 
feasible  region X ,  has a strictly interior  point. Under  these 
conditions, the algorithm is well defined, since  the  strict 
convexity of F implies that  the minimum in step 2 is 
attained  at a  unique  point xstl. 

Before  establishing the  convergence of this  algorithm, 
we  consider  its  behavior on a  simple  example. The primal 
program is given by 

min :x1 + 2x2 + 3x3 + :xq + !x5 , 1 

X ]  + x2 + x j  - x4 = 1, 

x, - x* + x3 + xs = 1, 

XI' X2' xj,  x4, x5 2 0, 
and a  dual  program  is  given by 

m i n i u ,  + zu2 1 + ?u3 1 + iu4  + i u 5 ,  

1. Initialization: 

s = 0; 0 < uo E u,; 

2. Primal  update: 

xS+l = argmin F(x, us; k) 
xak 

1 "  
= argmin uo x - - us ln(kxi + 1) I T  i = l  

1 
k I x E X / x t r - - ,   i = l , 2 ; . . , n  ; 

3. Dual  update: 

4. Iteration: 

s = s  + 1; 

Goto 2. 

The algorithm is well defined as long as  the minimum in 
step 2 is attained.  A necessary  and sufficient condition  for 
the minimum to exist is that  the  set 

x" = {x E x+ I UOTX I UOTXO} 

be  bounded. This, in turn,  is guaranteed if and only if the 
dual  feasible  region U ,  has a strictly interior  point. We 

; Y, - Y2 = u1 > 

2 - Y 1 + Y 2 = u 2 ,  

; - Y l - Y 2 = u 3 ,  

;+Y1=U4'  

; - y 2 = u 5 ,  

u,,  u2, U3' U4' us 2 0. 

" 

1 

1 

1 

Note  that  these  programs  are  formulated  as in the 
discussion  at the beginning of this section. Also note  that 
any point on  the line segment joining (1, 0,  0, 0, 0) and 
(0, 0, 1, 0, 0) is primal  optimal, and  every point on  the 
segment has primal  objective value 1/3. Any point on  the 
line segment joining (0, 7/3, 0, 1/3, 0) and (0, 5/3, 0, 2/3, 1/3) 
is dual  optimal and  has dual  objective value 4/3. Note  that 
the  inner  product of the objective  functions is 5/3, which is 
the  sum of the optimal values.  Also  note  that  the problem 
is  both  primal and dual degenerate.  That is, both primal 
and dual  optimal faces  are overspecified and  are line 
segments.  Additionally, each of the feasible  regions 
is unbounded,  but their  optimal faces  are  bounded. 

Pictorially, the primal feasible region is given in Figure 1, 
and  the  face of optimal solutions is the bold  line  segment 
in the  xp = 0 plane. 

We consider starting the algorithm with a variety of 
initial settings  for u and  k.  First,  suppose  we  use  the 
objective  function of the primal  problem as our initial dual 
feasible uo and  take k = 1. These  results  are given in 
Table 1. Algorithm 1 converges slowly to  an optimal  pair 
of solutions. 
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Second, suppose we  use the objective function of the 
primal  problem as our initial dual feasible uo, as above, 
but take k = 100. The results are given in Table 2. The 
convergence is  much faster, as indicated by the relative 
quality of the tabulated solutions in Tables 1 and 2. 

as uo and take k = 100, as indicated in Table 3. Tables 2 
and 3 indicate that the dual  optimal solution obtained is 
dependent on the initial dual feasible solution, but that the 
primal  optimal solution is not. Powell has shown that, 
for linear  programming, this algorithm converges to a 
unique primal solution [14]. This example supports that 
conclusion, and also shows that the dual solution is a 
function of the initial barrier multipliers. 

We  now prove the following theorem. 

Finally, suppose we  use a different  dual feasible solution 

Theorem I If X ,  is nonempty, Ut has an interior point, 
and both U o  and X' are bounded, Algorithm 1 is well 
defined,  and the sequences {xs}>,"=, and generated 
by Algorithm 1 satisfy the following properties: 

1. The sequence { u " } ~ ~ ~  is a sequence of points in Ut 
whose dual objective values monotonically converge to 
the optimal value 

If any of the inequalities hold at equality, an  optimal 
solution to the program, which is a fixed  point of the 
iterates, has been found. 

whose primal objective values converge to the optimal 
value 

lim uoTxS = uoTx*. 

2. The sequence {xs},:, is a sequence of points in Xk 

S-m 

3. There is a method of averaging the elements of {x"},"=, 
to obtain a sequence {%'},Il of primal solutions 
arbitrarily close to X +  and converging in  primal 
objective value to the optimum. 

4. The value gapd X:, between primal  and  dual 
iterates converges to zero. 

We prove this theorem by establishing four propositions. 
The first proposition is that the solutions us+' generated in 
step 3 of Algorithm 1 are dual feasible. 

Proposition I [dual  feasibility] The vectors in the 
sequence  us}>,^, are contained in U+ . 

Proof This is a direct consequence of the optimality 
conditions for the minimization performed in Step 2 of the 
algorithm: 

dWe use the  term "value" fur a vector x or u to mean the objective function value 
in the associated primal or dual  program, respectively. 

t x2 

V,F(X, U; k) = u - - ( ' k:+ 1) E 

The second proposition is that the sequence of dual 
values { X ' ~ U ~ } , ~ ~  is monotonically decreasing. 

Proposition 2 [dual-value monotonicity] 

Proof This follows  from the definition of ustl. Since 

US 
q + l  = ~ 

kx;" + 1 ' 
i = 1 , 2 ; . . , n 7  

we have 

I 

Remark I Note that the difference u ~ + ' ~ x ~ ~ ~  - uSTxS+l is 
the difference between the objective function values at us'' 
and us. This  follows  from the orthogonality of V and V I ;  
from the fact that us E U ,  ustl E U ,  xstl E X ,  and 
x' E X; and  from consideration of the relation 

( p  - U S ) T ( X S + l  - xo) = 0. 31 1 
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Table 1 Algorithm 1 applied  with initial dual feasible uo = (1/3, 2, 1/3, 1/3, 1/3) and modified barrier parameter k = 1. 

U0 U' U2 u3 u4  us U6 

3.3333D - 01 2.3374D - 01  1.6154D - 01 1.1044D - 01  7.4916D - 02  5.0539D - 02  3.3964D - 02 
2.0000D + 00 1.9890D + 00 1.97558 + 00 1.9633D + 00 1.9535D + 00 1.9462D + 00 1.9410D +OO 
3.3333D - 01 2.3374D - 01 1.6154D - 01 1.1044D - 01 7.4916D - 02 5.0539D - 02 3.3964D - 02 
3.3333D - 01 3.8862D - 01 4.3147D - 01 4.631.5D - 01 4.8580D - 01 5.0163D - 01 5.12.52D - 01 
3.3333D - 01 2.8902D - 01 2.5968D - 01 2.4026D - 01 2.2738D - 01 2.1883D - 01 2.1315D - 01 

X' XZ x3 X X5 X6 
4 

4.2611D - 01 4.4692D - 01 4.6269D - 01 4.7419D - 01 4.8235D - 01 4.88021) - 01 
5.5196D - 03 6.8369D - 03 6.2363D - 03 5.0041D - 03 3.7433D - 03 2.6910D - 03 
4.2611D - 01 4.4602D - 01 4.6269D - 01 4.74191) - 01 4.8235D - 01 4.8802D - 01 

-1.4227D - 01 -9.9319D - 02 -6.8387D - 02 -4.6620D - 02 -3.1562D - 02 -2.1260D - 02 
1.5331D - 01 1.1299D - 01 8.0860D - 02 5.6629D - 02 3.9048D - 02 2.6642D - 02 

Table 2 Algorithm 1 applied  with initial dual  feasible uo = (1/3,  2,  1/3, 1/3, 1/3) and modified barrier parameter k = 100. 

U0 U' UZ  U3 u4 

3.3333D - 01 6.6627D - 04  1.3064D - 05 2.5616D - 07 5.0228D - 09 
2.0000D + 00 1.9295D + 00 1.9278D + 00 1.9292D + 00 1.9281D + 00 
3.3333D - 01 6.6627D - 04 1.3064D - 05 2.5616D - 07 5.02281) - 09 
3.3333D - 01 5.3493D - 01 5.3518D - 01 5.3538D - 01 5.3529D - 01 
3.3333D - 01 2.0227D - 01 2.0182D - 01 2.0205D - 01 2.018513 - 01 

X1 X2 x' x4 

4.9976D - 01 4.9999D - 01 5.0000D - 01 5.0000D - 01 
5.9709D - 05 8.8031D - 06 -7.6048D - 06 5.7177D - 06 
4.9976D - 01 4.9999D - 01 5.0000D - 01 5.0000D - 01 

-4.1887D - 04 -4.6940D - 06 -3.7242D - 06 1.6350D - 06 
5.3829D - 04 2.2300D - 05 -1.1485D-05 9.8004D - 06 

Also, note that the only circumstance in which the 
sequence in dual values is  not strictly monotone is 
if xs = 0 E X for some s, as can  be seen from 
Proposition 2. In that case, all points in U+ are dual 
optimal. 

Remark 2 Since the dual objective function value is 
monotone decreasing, it follows that urTx0 - urTx0 I 0 
whenever t 2 r .  The orthogonality of V and V' implies 
that ufTx - ufTx I 0 whenever t 2 r and x E X .  

We  now have that the sequence {us}s:, monotonically 
converges in value. To demonstrate that the limiting value 
is the optimal value, it is  sufficient to produce a 
complementary primal  feasible  point. 

converges in value to the optimum, we have been unable 
to show that the sequence {x"}~:, converges to an  optimal 
solution. We can show, however, that if we average the 
elements of the sequence over appropriately chosen 
subsequences of consecutive elements, the average 
solutions converge in value to the optimal value and the 
average solutions come arbitrarily close to the nonnegative 
orthant. To define this sequence of average solutions, we 

Although  we show below that the sequence {x'}~:~ 

focus on the dual solutions. We first choose a subsequence 
{usr},"=, of { u ' } ~ ~ ~  satisfying the following properties. 

Propew 1 The subsequence {usr},~, converges to a 
point ii. 
Such a subsequence can be chosen since, by assumption, 
U O  is compact. 

Property 2 Let I o  = {i I iii = 0) and  let I +  = {i 1 i i i  > 0). 
We require that the subsequence {~~'}lm_~ satisfy 

min{u; I i E z'} 2 2 x max{uFl 1 i E 1'1, 
for 1 = 0, 1, , 01. 

We can select a subsequence satisfying Property 2, since 
{us}>,"=, (and consequently {usr}~=,) is a sequence of strictly 
positive vectors. Given any subsequence satisfying 
Property 1, we can choose a subsequence of it  satisfying 
Property 2. 

We select this subsequence {usf},"=, of because of 
the fundamental observation that a component i of u 
decreases as a result of a dual update only if x; > 0. This 
observation generalizes nicely. If a component i of u 
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decreases over a consecutive sequence of dual updates, 
the average of the x,' over this sequence must be positive. 

Our  argument in proving Theorem 1 proceeds as 
follows. First we show that the sequence of average 
solutions 

1 4 t l  

a'+' p - c. xs 
S'+1 - 3 s=sl+l 

is arbitrarily close, componentwise, to the nonnegative 
orthant. Since each element of {x"},~, is in X,,  so is each 
element of the sequence of averages {E'},*=l. Thus, although 
the sequence {E'}/:, may not converge, the distance 
between its elements and X +  converges to zero. 

limit to show that the sequences {usf};", and {E'},"=, satisfy 
complementarity in the limit.  Our assumption that X' and 
Uo are compact allows us to conclude that the sequences 
{E'}:, and {uSf},"=, have cluster points that are primal  and 
dual feasible, respectively, and that are complementary. 

Next we use the fact that x' and us are orthogonal in the 

Proposition 3 [asymptotic primal feasibility] For every 
real number c, > 0, there exists an 1, such that 

E'S -- fori = 1 , 2 ; * . , n  €0 

' k  

for every 1 2 lo. 

Proof To establish the fact that the components of {E'}:,, 
are nonnegative in the limit, we consider the index sets 
L o  and I +  separately. First, consider an index i E Io .  
Using the definition of { u ~ } ~ ~ = ,  and Property 2 of the 
sequence {U~~} ;O,~ ,  we have 

SI+l 

US'+' n (kxs + 1) = us' 2 2 X uyl, 
s=sl+l 

for i = 1,2, , n. 

Using the arithmetic-geometric means inequality, we have 

> - 21/(WSI) > 1, 

which implies 

E;' > 0. 

Now, consider an index i E I t .  Since {u~~}:~ converges 
to ii, for any eo > 0, there exists an I ,  > 0 such that 

4+1 n (kxs + 1) = us' z (1 - eo) X uyl (3) 
s=s,t, 
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Table 3 Algorithm 1 applied with initial  dual feasible 
u0= (1/3, 2, 198/300,  1/3,  1/300,  1/300) and modified barrier 
parameter k = 100. 

U0 U1 UZ 

3.3333D - 01 1.9160D - 11 3.7568D - 13 

3.3333D - 01 1.9160D - 11 3.7568D - 13 
3.3333D - 03 3.3474D - 01 3.3477D - 01 
3.3333D - 03 1.4322D - 03 1.4334D - 03 

2.6600D + 00 2.3293D + 00 2.3304D + 00 

X' x2 

5.0000D - 01 5.0000D - 01 
4.8350D - 06 -4.5746D - 06 
5.0000D - 01 5.0000D - 01 
7.7049D - 07 -7.6775D - 07 
8.8996D - 06 -8.3814D - 06 

for every 1 s I,. [Indeed, if we choose E,  so that 
Iut? - i i i l  < (e0/2)iii for all 1 s I,, then 1, satisfies the 
condition in (3).] Again  invoking the arithmetic-geometric 
means inequality, we can conclude that 

li(sl+l-~I) 

Rearranging terms, we have 

To draw the conclusion that the points jz' come 
arbitrarily close in value to the points us, we prove the 
following consequence of Proposition 2. 

Proposition 4 [complementarity] The sequences {x"},*=, 
and satisfy 

lim uSTxS = 0. 
S- 

Furthermore, with the subsequence {us'},"=, of {u"},"=, 
satisfying properties 1 and 2, and the average sequence 
{E'};,, defined as above, derived from {x~}~:~, we have 

lim uSITd = 0. 
S" 

Proof Since the value of the dual solutions is bounded 
below by zero, we know that 

Thus, 
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implies that 

" 1  

Rearranging terms, we have 

Thus, uSTxs converges to zero. Our assumption that U o  is 
bounded allows us to conclude that 

n 

Now suppose we choose S large  enough to guarantee that 

USTXS < E ,  (6) 

for all s 2 S. Consider when s1 > S. Then 

We  now invoke Remark 2 and inequality (6) to conclude 
31 4 that 

Proof of Theorem 1 The inequalities of the first property 
of the theorem follow  from Propositions 1 and 2. The 
convergence to the optimal value follows  from the 
complementarity of {%'}:, and { u ~ ' } ~ ~ ,  which  is a 
conclusion of Proposition 4. The second property of the 
theorem follows  from the orthogonality of corresponding 
elements of the sequences {x'}>,~=, and {us}>,"=, in the limit. 
That is, using the orthogonality of the sequences {x'}~:, 
and {us}>,:, in the limit and the fact that {us},"=, is a 
sequence of dual feasible solutions converging to the 
optimal value, we have 

= lim uoTxs. 
s-m 

The  third property is the content of Proposition 3. 
The fourth property is proved in Equation (4) of 
Proposition 4. 1 

Convex  programming  problems 
In the case of convex programming, we need to use a 
framework that is not self-dual. We  define the primal 
convex programming  problem to be 

min &(x) 

&(x) 2 0, i = 1, 2, - , m, (7) 

wherefi : 8" + 8 fori  = 0, 1, , m,  each of the 
functions f i  is  differentiable, fo is convex, and each of the 
functions f i  for i = 1, 2, * - , m is concave. The program 
that will serve  as the dual to (7) is  known as Wolfe's 
dual [15]: 
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m 

max L(x, 4 =&(x) - 2 y&(x) 
i=l 

m 

VXL(X, u) = V&(X) - x UiV&(X) = 0, (8) 
i=l  

where x is unrestricted  and 0 5 u E 8m. It  is well  known 
that Wolfe's dual provides  lower  bounds  for a convex 
programming  problem. Furthermore, in the  context of 
convex programming, a necessary  and sufficient condition 
for  this dual  program to  have  an optimal value  equal  to  the 
optimal value of the primal  program is that  the  convex 
programming  program be  stable [18]. Our  requirements 
that  the  functions&(x)  be real-valued and  that  the primal 
problem have  an  optimum  are sufficient to  guarantee  that 
problem (7) is  stable.  Note  that if x and u are feasible 
for (8), x minimizes the Lagrangian L(x, u) for fixed u. 
In  other  words, program (8) is  equivalent to 

max min &(x) - 2 u i ~ ( x )  . 
us0 [ i:, I 

Since problem (7) is a convex programming  problem, given 
a fixed u the  value of the  dual program L(x, u) is constant 
for all x satisfying VxL(x, u) = 0. 

Given any fixed k > 0, we  consider a primal  feasible 
region of 

X+ = {x E 9 I n  I &(x) 2 0, i = 1, 2, * , m}, 

an  extended primal  feasible  region over  which  the modified 
barrier function method  is defined, 

{ 
1 

k I X,= ~ ~ 8 ~ ( f ( x ) 2 - - - , i = 1 , 2 ; . . , m ,  

a dual feasible  region of 

rn 

u+ = {u E 8; I V&(X, u) = Vf,(X) - 2 UiVJ(X) = 0 
i=l 

for  some x E X+},  

and an extended  dual feasible region 

m 

u, = {u E 8; 1 VXL(X, u) = VfO(X) - 2 UiVf(X) = 0 
i=l  

for some x E X,}. 

We  assume  that  there  exists x' inX+ and  that U+ has a 
strictly interior point uo > 0. 

consideration, is 
The modified barrier function for (7), the problem under 

1 "  

F(x, u; k )  = 
~ J X )  - 2 u, In[q(x) + 11 x E int X, , 

x p intx,. lm i= l  

We apply  Algorithm 2, which follows, for  convex 
programming problems. 

Algorithm 2 The modified barrier function  method for 
convex nonlinear  programming is  as follows: 

1. Initialization: 

s = 0; uo E u,; 

2. Primal  update: 

xS+l E argmin F(x, us; k )  
xE%n 

= argmin &(x) - - 2 us In[g(x) + 11 ; 
X€%" k r n  i= l  I 

3. Dual  update: 

Us 

g(Xsf1) + 1 ' 
u;+l = i = 1 , 2 , . . . , m ;  

4. Iteration: 
s = s + l ;  

Goto 2. 

This algorithm is  also well defined as long as  the 
minimum in step 2 is attained. We  assume  that  the image 
under  the  constraints of all points in X with  lower 
objective values  than xo, 

V 0  E {bo, VI' V*' * * * , urn) I x E 8n, no = &(x) 5 &(x0), 

vi = &(x) 2 0, i = 1, 2, , m}, 

is a compact  subset of illrn. When the  objective is convex 
and  the  constraints  are  concave,  the minimum in step 2 
exists if and  only if V o  is a compact  subset of 91rn. This, 
in turn, is guaranteed if and  only if the dual  feasible  region 
U+ has a strictly interior  point. Our proof of convergence 
of the method also  requires a compactness  assumption  on 
the dual  feasible  region U,. We call $(u) the  value of the 
dual  solution u E U, and define by 

+(u) = min &(x) - 2 ui&(x) , 
.E%" [ i_, 1 

and  require  that 

uo = {u E u, I *(u) 2 *(u",), 31 5 
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the set of dual solutions with better value than uo, is 
compact. As in the case of linear programming, U o  is 
compact if and only if V o  contains a point that is positive 
on coordinates 1, 2, , m .  

analogue of Theorem 1. Given a fixed us and 
corresponding xs determined in step 2 of Algorithm 2, we 
call L(xs, us) = $(us) the value of us. With this definition 
of the value of a dual solution and the conditions above 
on the functions&(x), we can prove the following result. 

In this section, we prove the convex programming 

Theorem 2 If X+ is nonempty, U+ has an interior point, 
and both Uo and V o  are bounded, then Algorithm 2 is  well 
defined,  and the sequences {xs}>,~, and {u'}~:~ generated by 
Algorithm 2 satisfy the following properties: 

1. {us}>,"=, is a sequence of dual feasible solutions whose 
values monotonically converge to the optimal value 

&(x*) = L(x*,  u*) 2 * * 2 L ( x s + l ,  US+1) 

L L(XS, US) 2 * * P L(x0, UO). 

If any of the inequalities hold at equality, an optimal 
solution to the program  and a fixed  point of the iterates 
has been found. 

2. The elements of the sequence {xs}>,~, are in Xk, and 
their values converge to the optimal value 

lim &(xs) = &(x*). 
S-a 

3. There is a method of averaging the elements of  {x'}~:~ 
to obtain a sequence of primal feasible solutions that 
converge to the optimal value. 

4. The value gap ELl u;&(xs) between primal  and  dual 
iterates converges to zero. l 

We must show that each of the four propositions of the 
previous section remains valid in this broader context. 

Proposition 5 [dual feasibility] For the sequence of 
vectors {xs}>,*=,  and {u~}~:~, we have that xs E Xk, 
us E Ut, and 

VxF(xS+l, us; k )  = VJ(XS+l, UStl) 

m 

= Vf0(XS+1) - u;tlv&(xs+l) 
i= l  

= 0. 

Proof The optimality conditions for the unconstrained 
optimization problem of step 2 of Algorithm 2 require that 

31 6 the gradient of the objective function vanish: 
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= 0. 

Applying the dual update formula of step 3, we have that 

VxF(xS+l, us; k )  = VXL(XStl,  UStl) = 0, 

and ustl is  feasible for program (8). H 

solutions {us},"=, is monotonically increasing. 
The second proposition is that the value of the dual 

Proposition 6 [dual-value monotonicity] 

Proof Since xS minimizes the Lagrangian  when u is set 
equal to us, 

m 

L(xS, US) = &(xS) - 2 u;& (x") 
i = l  

m 

I &(XS+I) - 2 u;&(xS+I). 
i=l 

Applying the definition of the dual update, we have 

m 

&(XSt1) - 2 u;&(xstl) 

= &(XSt1) - u;t%(xs+l) 

i=l 

m 

i= l  

Remark 3 We can actually assume that the strict 
inequality 

L(XStl, US+1) > L(xS, US) 

holds. Otherwise,&(xs) = 0 for i = 1, 2 ,  , m,  and 
xs  and us are an  optimal  pair for the convex programming 
problem, since they are feasible for both programs (7) and 
(8) and satisfy complementarity. 
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As in the proof for the linear programming case, our 
assumption that Uo is compact allows  us to choose a 
sequence {U~'}~I, satisfying properties 1 and 2. We  again 
consider the associated sequence of averages {ji'};"=,. 

Proposition 7 [asymptotic  primal feasibility] For every 
number E ,  > 0, there exists an I ,  such that 

A@') 1 - - €0 

k '  
i = 1 , 2 ; . . , m  

for every 1 1 I,. 

Proof The proof  of Proposition 3 suffices to show that 

for every 1 exceeding a fixed 1,. Since each of the functions 
f i  is concave, 

and the result follows. a 
We strengthen Proposition 4 of the previous section, 

establishing complementarity, with the aid  of the following 
lemma. 

Lemma 1 Let t > r and {x'}~:, and {us}>P"=, be defined as 
in Algorithm 2. Then 

1 " '  

i= l  s=r+l 

Proof First, we invoke the property that, by virtue of 
being feasible for dual  program (S), x' minimizes L(x, u'), 
to conclude that 

An application of Proposition 6 yields 
m m 

&(xf )  - 2 uf.((xO 1 &(xS) - 2 .;f;(x") (10) 
i=l   i= l  

for each s satisfying r < s < t .  Now, averaging (10) over 
s, applying (9), and rearranging terms, we obtain 
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+ f o p  - s=r+l  i x5) 

Since f , ( x )  is convex, we obtain 

We can now establish the convex analogue of 
Proposition 4. 

Proposition 8 [complementarity] The sequences {xs}>pl0 
and {u"}p"=, satisfy 

m 

lim 2 u;&(xs) = 0. 
s-m i = l  

Furthermore, with the subsequence { u ~ ~ } ~ ~ ,  of and 
the average sequence {ji'};, derived from {x'}~:, defined 
as above, 

Proof We can use an argument identical to the one 
provided in the proof  of Proposition 4 for the linear 
programming case to conclude that 

and, moreover, that 

I m  

where lims+m as = 0. Now suppose we choose S large 
enough to guarantee that 

rn 

2 u;A(xs) < €0 (12) 
r=l 

for all s 2 S. Then  we apply Lemma 1 with r = s, and 
t = s ' + ~  to (12) to conclude that 
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Proof of Theorem 2 The inequalities of the first property 
of the theorem follow  from Propositions 5 and 6. The 
convergence to the optimal value follows  from the 
complementarity of {E'},"=, and { u ~ ~ } , ~ ~ ,  which is the 
conclusion of Proposition 8. The second property of the 
theorem follows  from the orthogonality in the limit  of 
corresponding elements of the sequences { fo(x")}sm=, and 
{ u ~ } ~ ~ , ,  which  is established in (11). In particular, since xs 
and us constitute a feasible solution to (8) and the values 
of the dual solutions are monotone increasing, we have 
that 

Because the values are monotone increasing, we have 

= limfo(xs). 
s-m 

The third property is the content of Proposition 7. The 
fourth property of the theorem follows  from the strict 
monotonicity of the value of the sequence of dual solutions 
established in Proposition 6 and Remark 3. 

Concluding remarks 
Since the logarithmic  modified barrier function method 
exhibits different behavior from the classical barrier 
function method, it is instructive to study the relationship 
between the two methods. For a discussion of classical 
barrier functions, the reader should see Fiacco and 
McCormick [ 11. 

unconstrained nonsmooth problem 

x* E argmin{p(x) 1 x E W}, 

It is well known that problem (1) is equivalent to the 

where d x )  = mqI,i,,Pj(x), v0(x) = &(x) - f,(x*), and 
31 8 qi(x) = -J;(x) for i = 1, 2, * * , m. To simplify our 
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consideration at this point, we assume that f,(x*) = 0, 
and therefore 

and 

q(x*) = min q(x) = 0. 

A basic idea of barrier methods is to replace the 
nonsmooth function q(x) with a sequence of smooth 
functions whose minimizers converge to x*. 

finding a good smooth approximation for the nonsmooth 
function p(x). It is this viewpoint that motivated Polyak's 
original work on  modified barrier functions. Under suitable 
nondegeneracy assumptions, the modified barrier function 
provides an exact smooth approximation to p(x) for any 
fixed k > 0 when u is  fixed at u*. That is, the optimal 
solutions and optimal values of the modified barrier 
function and q(x) agree: 

min F(x, u*; k )  =&,(x*) = min p(x) = p(x*) = 0. 

Moreover, for any fixed k > 0 and for any sequence 
{ u " } ~ ~ ,  converging to u*, there exists a sequence {x'}~:, 
converging to x* with 

xs = argmin F(x, us; k) .  

Irrespective of nondegeneracy assumptions, 

lim [F(xs, us; k )  - p(xs)] = 0. 

X€%" 

One way to view this optimization is like the problem of 

X E W "  X E W "  

X€Wn 

s-m 

On the other hand, the classical barrier function 

1 "  
F(x; k )  =&,(x) - W-t;(x)l 

i=l 

is also a smooth approximation to p(x), but in this case 

lim [F(x"; k )  - q(xs)] = m 
3-m 

for any fixed k > 0 and any sequence {x"}~:, converging 
to x*. So the difference between p(x) and its smooth 
approximation F(x; k )  based on the classical barrier 
function diverges as x approaches x* if the barrier 
parameter k > 0 is  fixed.  In contrast, the difference 
between p(x) and the smooth approximation F(x, u; k )  
based on the modified barrier function converges to zero 
as xs approaches x* and us approaches u* for any fixed 
value of the barrier parameter k > 0. 

Although the classical barrier function method does not 
have the same convergence properties as the modified 
barrier function method, a variation on the classical barrier 
function  method does, as we indicate in the following. 
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Suppose  we  consider  the modified barrier function  for the 
standard form of a  linear  program, as  presented  above in 
the section on  convergence for  linear  programming 
problems. The program 

min uorx 
(P) Ax = A x o  

x 2 0  

has  an equivalent barrier formulation 

min unTx 
(P) Ax = A x o  

1 

k 
- In(kx, + 1) 2 0, i = 1, 2,  , n. 

Solving the problem (P) is equivalent to finding a  saddle- 
point of the classical  Lagrangian L(x,  y, u): 

min max  max L(x, y, u) 
X€%" YEW" UEW; 

unTx - y T ( h  - AX') 

1 "  

k 1 - - 2 ui In(kx, + 1) 
*=I 

= max  max y T h 0  
UEW; YE%" i 

1 "  

k (uo - ATy)Tx - - 2 u, ln(k5 + 1) 
i = l  11 . 

The minimum is attained  at (uo - A'Y)~ = ui/(kxt + 1). 
Solving for x, we  have 

ui 1 
x, = 

so the original problem has  been transformed to 

k(uo - ATy)i - k ' 

1 

1 1 "  + - eT(u - uo) - - C, U, Inu, 
k  k 

i = I  

where e E '8" is a vector of ones.  The  last two terms  are 
constant for any fixed u. Using  the  symmetric form 
representation of the problem  used in the  section on 
convergence for  linear  programming  problems, we  have 
the following equivalent  formulation: 
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1 "  
xoTuo + max - eTu - - C, u3 In ut 

UE": 1; k ,=1 

- m i n [ ( x o + i j T w - i z u , l n w ]  W E  u+ 1 "  

One  can  prove  that optimizing  this  maximization  problem 
in u and w can  be accomplished by finding multipliers u 
so that  the optimal  solution to  the minimization in w  is 
also u. Because of the  equivalence  examined  above,  the 
arguments  presented in the  section on linear  programming 
problems suffice to  prove this. Thus,  the problem of 
optimizing the modified barrier function for a fixed u is 
equivalent to optimizing  a  weighted  logarithmic barrier 
function  together with  an  "entropy function" term 

in u. These  comments  motivate  the following modified 
barrier function method. 

Algorithm 3 The modified barrier  function method  for 
linear  programming  is as follows: 

1. Initialization: 

s = 0; 0 < uo E u,; 

2.  Dual update: 

ws+I = argmin F(W, us; k )  
W E  u+ 

3. Dual  update: 
Usf l  - - ws+l; 

4. Iteration: 

s = s  + 1; 

Goto 2.  

Here  we  have  represented  the linear  programming 
problem as a  problem with a  logarithmic barrier function 
and a  shift in the linear objective function. It  is  important 
to  note  that  the  sequence {u"},~=~ generated  by this 
algorithm is identical to  that  generated  by Algorithm 1. 
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The  sequence {xS}>s*=, is  also  generated implicitly. The 
optimality conditions  for  step (2) require  that 

e us 
xo+-”- 

k kwStl 
- ZS+l E VI. 

Rearranging terms,  we  have 

or, equivalently, 

WS+l  
US 

kxS+’ + 1 e 

=- 

This, together  with  the  fact  that, given a fixed us, there  is 
a unique  pair xSC1 E X, and us’‘ E Ut satisfying these 
relationships,  implies that Algorithms 1 and 3 generate  the 
same  sequences {xS}>s”=, and {us}s:,. The  convergence 
results of the  section on linear  programming  problems 
carry over  to this  problem  formulation, since it is in fact 
an equivalent  problem. This  emphasizes  the  importance of 
the  weights on the  barriers in the modified barrier function 
approach  to  linear programming. The weights, and  the 
appropriate shift to  either  the  barriers or the  objective 
function,  allows us  to  obtain a convergent algorithm 
while  keeping the  barrier  parameter k > 0 fixed. 

the modified barrier function  method. The  use of the 
arithmetic-geometric-mean  inequality to  prove  that  the 
sequence is  nonnegative  is hedging against 
oscillation in the  components of the primal  solution. This 
raises  the  question of whether  such an  oscillation in the 
components of the primal  solution can  occur.  This  can 
happen  only if the  corresponding  duals  are converging 
to  zero  at different rates.  The algorithm as  stated  is  not 
practical,  in the sense that it requires  the  exact  optimum 
to  the modified barrier function. We  must find a suitable 
way  to  relax  this  requirement.  The algorithm behaves in 
practice  far  better  than  this  analysis predicts. We  view  the 
results of this  paper  as a very preliminary  validation of the 
convergence of the modified barrier function method in the 
presence of degeneracy  and  with  the  barrier  parameter 
fixed at  any positive level. 

The  work  presented  here  raises  several  questions  about 
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