
This article was downloaded by:[George Mason University]
On: 21 December 2007
Access Details: [subscription number 768416529]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713645924

Primal-dual exterior point method for convex
optimization
Roman A. Polyak a
a Department of SEOR and Mathematical Sciences Department, George Mason
University, Fairfax, Virginia, USA

First Published on: 24 April 2007
To cite this Article: Polyak, Roman A. (2007) 'Primal-dual exterior point method for
convex optimization', Optimization Methods and Software, 23:1, 141 - 160
To link to this article: DOI: 10.1080/10556780701363065
URL: http://dx.doi.org/10.1080/10556780701363065

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713645924
http://dx.doi.org/10.1080/10556780701363065
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [G
eo

rg
e 

M
as

on
 U

ni
ve

rs
ity

] A
t: 

18
:5

0 
21

 D
ec

em
be

r 2
00

7 

Optimization Methods and Software
Vol. 23, No. 1, February 2008, 141–160

Primal–dual exterior point method for convex optimization

Roman A. Polyak*

Department of SEOR and Mathematical Sciences Department,
George Mason University, Fairfax, Virginia, USA

(Received 5 June 2006; final version received 19 March 2007 )

We introduce and study the primal–dual exterior point (PDEP) method for convex optimization problems.
The PDEP is based on the non-linear rescaling (NR) multipliers method with dynamic scaling parameters
update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for
the equivalent problem with both Lagrange multipliers and scaling parameters vectors update. The NR step
is replaced by solving the primal–dual (PD) system of equations. The application of the Newton method
to the PD system leads to the PDEP method.

We show that under the standard second-order optimality condition, the PDEP method generates a PD
sequence, which globally converges to the PD solution with asymptotic quadratic rate.

Keywords: nonlinear rescaling; duality; interior quadratic prox; primal–dual exterior point method;
quadratic convergence rate

1. Introduction

The non-linear rescaling (NR) method with dynamic scaling parameters update was first
introduced for exponential transformation in ref. [20].

During the last decade, the NR method and its dual equivalent, Interior Prox, with second-order
ϕ-divergence distance have been extensively studied, and a number of convergence results under
various assumptions on the input data were obtained (see [2,4,15,16] and references therein).

The NR method alternates finding the primal minimizer of the Lagrangian for the equivalent
problem with both Lagrange multipliers and scaling parameters update while the penalty parameter
is fixed. Under the standard second-order optimality condition, the NR method converges with
Q-linear rate if the penalty parameter is fixed but large enough.

To improve the rate of convergence, one has to increase the penalty parameter from step to
step. This allows achieving Q-superlinear rate, but it leads to the ill-conditioned Hessian of the
minimized function and significantly increases from step to step the computational effort for
finding the approximation for the primal minimizer.
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142 R.A. Polyak

The purpose of this paper is to introduce and analyse the primal–dual exterior point (PDEP)
method which allows, to a large extent, elimination of the basic drawbacks of the original NR
technique.

Each step of the NR method is equivalent to solving the primal–dual (PD) non-linear system of
equations. Recently, the corresponding PD systems were used for developing globally convergent
primal–dual NR methods with up to 1.5-Q superlinear rate (see [8,17] and references therein).

In this paper, we use specific properties of the PD system related to the NR method with dynamic
scaling parameters update for developing the PDEP method.

The PDEP method requires solving, at each step, a linear PD system of equations and generates
a PD sequence, which under the standard second-order optimality conditions converges to the PD
solution from any starting point with asymptotic quadratic rate. This is our main contribution.

The PDEP method does not require finding the primal minimizer at each step, allows the
unbounded increase of the penalty parameter without compromising both the accuracy and com-
putational effort per step and it is free from any stringent conditions for accepting the Newton
step, which are typical for constrained optimization problems.

There are three important features that make the PDEP method free from such
restrictions.

First, the Lagrangian for the equivalent problem is defined on the entire primal space.
Second, after a few Lagrange multipliers updates, the terms of the Lagrangian for the equivalent

problem corresponding to the passive constraints become negligibly small due to their super-
quadratic convergence to zero. Therefore, on the one hand, these terms become irrelevant for
finding the Newton direction. On the other hand, there is no need to enforce their non-negativity.

Third, the NR method is an exterior point method in the primal space. Therefore, there is no
need to enforce the non-negativity of the slack variables for the active constraints, as it takes place
in interior point methods (see [19]).

Due to the super-quadratic convergence to zero of the Lagrange multipliers for the passive
constraints after very few Lagrange multipliers updates, the PD direction becomes practically
identical to the Newton direction for the Lagrange system of equations corresponding to the
active constraints.

From this point onwards, both primal and dual approximation are, generally speaking, infeasible
and we are dealing with the PDEP method. At the same time, the PDEP method turns out to be
very close to the Newton method for solving the Lagrange system of equations for the active
constraints. It makes possible to prove the asymptotic quadratic rate of the PDEP method.

The paper is organized as follows. In the next section, we state the problem and introduce
the basic assumptions on the input data. In Section 3, we recall the basic facts of the general
NR method and describe some convergence results, which will be used later. In Section 4, we
introduce the PDEP method and prove its local quadratic convergence under standard second-
order optimality conditions. In Section 5, we consider the globally convergent PDEP method
and show that the PD sequence converges to the PD solution with asymptotic quadratic rate. We
conclude the paper with some remarks concerning future research.

2. Statement of the problem and basic assumptions

Letf : R
n → R

1 be convex and all ci : R
n → R

1, i = 1, . . . , q are concave and smooth functions.
We consider the following convex optimization problem:

x∗ ∈ X∗ = argmin{f (x) | x ∈ �}, (P)

where � = {x : ci(x) ≥ 0, i = 1, . . . , q}. We assume that:
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Optimization Methods and Software 143

A: The optimal set X∗ is non-empty and bounded.
B: Slater’s condition holds , i.e., there exists

x̂ : ci(x̂) > 0, i = 1, . . . , q.

Let us consider the Lagrangian L(x, λ) = f (x) − ∑q

i=1 λici(x), the dual function

d(λ) = inf
x∈Rn

L(x, λ)

and the dual problem

λ ∈ L∗ = argmax{d(λ) | λ∈R
q
+}. (D)

Due to assumption B, the optimal dual solution set L∗ is bounded, and for any λ∗ = (λ∗
1, . . . , λ

∗
q) ∈

L∗, we have

∇xL(x∗, λ∗) = ∇f (x∗) −
q∑

i=1

λ∗
i ∇ci(x

∗) = 0 (1)

and the complementary slackness conditions

λ∗
i ci(x

∗) = 0, i = 1, . . . , q (2)

are satisfied, i.e. the Karush–Kuhn–Tucker (KKT) conditions hold true.
Let I ∗ = {i : ci(x

∗) = 0} = {1, . . . , r}, r < n, be the active constraints set. We consider the
vector functions cT(x) = (c1(x), . . . , cq(x)), cT

(r)(x) = (c1(x), . . . , cr (x)) and their Jacobians
∇c(x) = J (c(x)) and ∇c(r)(x) = J (c(r)(x)).

The sufficient regularity condition

rank ∇c(r)(x
∗) = r, λ∗

i > 0, i ∈ I ∗ (3)

together with the sufficient condition for the minimum x∗ to be isolated

(∇2
xxL(x∗, λ∗)y, y) ≥ μ(y, y), μ > 0 ∀y �= 0 : ∇c(r)(x

∗)y = 0 (4)

comprise the standard second-order optimality conditions, which guarantee the uniqueness of the
primal and dual solution.

Let N 	 f (x∗) be large enough, then by adding one constraint c0(x) = N − f (x) ≥ 0 to the
given set of constraints ci(x) ≥ 0, i = 1, . . . , q, we obtain a problem equivalent to the initial one.
Obviously, the extra constraint does not affect the solution set X∗ and the correspondent Lagrange
multiplier λ∗

0 = 0.
On the other hand, the equivalent problem has a bounded feasible set due to the boundness of

X∗ and Corollary 20 in ref. [6]. Therefore, in the following, we assume that � is bounded.

3. Non-linear rescaling method

We consider a class � of twice continuous differentiable functions ψ : (−∞, ∞) → R with the
following properties (see [15,16]):

10. ψ(0) = 0;
20. (a) ψ ′(t) > 0;

(b) ψ ′(0) = 1;
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144 R.A. Polyak

(c) ψ ′(t) ≤ at−1;
(d) |ψ ′′(t)|≤bt−2 ∀t∈[1, ∞), a > 0, b > 0;

30. −m−1 ≤ ψ ′′(t) < 0 ∀t ∈ (−∞, ∞);
40. ψ ′′(t) ≤ −M−1 ∀t ∈ (−∞, 0] and 0 < m < M < ∞;
50. −ψ ′′(t) ≥ 0.5t−1ψ ′(t) ∀t ∈ [1, ∞).

Due to the properties 10 and 20 for any given vector k = (k1, . . . , kq) ∈ R
q
++, we have

ci(x) ≥ 0 ⇐⇒ k−1
i ψ(kici(x)) ≥ 0, i = 1, . . . , q

The Lagrangian L : R
n × R

q
+ × R

q
++ → R for the equivalent problem

L(x, λ, k) = f (x) −
q∑

i=1

k−1
i λiψ(kici(x)) (5)

is our main instrument.
First, we describe the NR method.
Let x0 ∈ R

n, λ0 ∈ R
q
++, k > 0 and k0 = (k0

i = k(λ0
i )

−1, i = 1, . . . , q).
The NR multipliers method maps the triple (xs, λs, ks) into the triple (xs+1, λs+1, ks+1) defined

by the following formulas:

xs+1 = argmin{L(x, λs, ks) | x ∈ R
n}, (6)

λs+1
i = λs

i ψ
′(ks

i ci(x
s+1)), i = 1, . . . , q, (7)

ks+1
i = k(λs+1

i )−1, i = 1, . . . , q. (8)

The minimizer xs+1 in (6) exists for any λs ∈ R
q
++ and any ks ∈ R

q
++ due to the boundness of

X∗, convexity of f , concavity of ci and properties 30 and 40 of ψ ∈ �. It can be proven using
considerations similar to those in ref. [1], i.e. the NR method is well defined.

It is well known (see [2,4,20]) that the NR method (6)–(8) is equivalent to the following Interior
Prox method

λs+1 = argmax{d(λ) − k−1D(λ, λs) | λ∈R
q}, (9)

where D : R
q
+ × R

q
++ → R+, given by the formula D(u, v) = ∑q

i=1 v2
i ϕ(ui/vi), is the second-

order ϕ-divergence distance with the kernel ϕ = −ψ∗ : R++ → R+, where ψ∗ is the Fenchel
transform of ψ .

On the other hand, NR method (6)–(8) is equivalent to the Interior Quadratic Prox for the dual
problem in the rescaled from step to step dual space (see [15,16]), i.e.

λs+1 = argmax

{
d(λ) − 1

2
k−1||λ − λs ||2Rs

| λ ∈ R
q

}
, (10)

where ‖λ‖2
Rs

= λT Rsλ, Rs = (−� ′′
[s](·))−1, � ′′

[s](·) = diag(ψ ′′
[s,i](·))qi=1, ψ ′′

[s,i](·) = ψ ′′(θs
i k

s
i

ci(x
s+1)) and 0 < θs

i < 1.
Let � = {ϕ : ϕ = −ψ∗, ψ ∈ �} be the class of kernels, which corresponds to the class � of

transformations ψ . The properties of the kernels ϕ induced by the properties 10–50 of the original
transformation ψ ∈ � were established in the following theorem.

THEOREM 3.1 [5] The kernels ϕ ∈ � are convex twice continuously differentiable and possess
the following properties:

1. ϕ(s) ≥ 0 ∀s ∈ (0, ∞) and mins≥0 ϕ(s) = ϕ(1) = 0;
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Optimization Methods and Software 145

2. (a) lims→0+ ϕ′(s) = −∞, (b) ϕ′(s) is monotone increasing and (c) ϕ′(1) = 0;
3. (a) ϕ′′(s) ≥ m > 0 ∀s ∈ (0, ∞) and (b) ϕ′′(s) ≤ M < ∞ ∀s ∈ [1, ∞).

Unfortunately, several well-known transformations including exponential ψ1(t) = 1 − e−t [1],
logarithmic ψ2(t) = ln(t + 1) and hyperbolic ψ3(t) = t(t + 1)−1 Modified Barrier Function
(MBF) [13] as well as log-sigmoid ψ4(t) = 2(ln 2 + t − ln(1 + et )) and modified Chen-Harker-
Kanzow-Smale (CHKS) transformation ψ5(t) = t − (t2 + 4η)1/2 + 2

√
η, η>0 (see [15]) do

not satisfy 10–50. Transformations ψ1 − ψ3 do not satisfy the property 30 (m = 0), while for
ψ4 and ψ5 the property 40 is violated (M = ∞). This can be fixed (see [16]) by using the
quadratic extrapolation idea, which was first applied in ref. [3] to modify the logarithmic MBF
transformation ψ2.

Other kernels ϕ ∈ � were considered in ref. [2] (see also [18]). In particular for the regularized
logarithmic MBF kernel ϕ(t) = 0.5ν(t − 1)2 + μ(t − ln t − 1) with ν > 0, μ > 0, the authors in
ref. [2] proved that the dual sequence generated by the Interior Prox method (9) converges to the
dual solution with O((ks)−1) rate under very mild assumptions on the input data.

We would like to point out that the properties 30 and 40 of ψ ∈ � and the correspondent
properties 3(a) and 3(b) of the kernel ϕ ∈ � are critical for our convergence proof of the NR
method (6)–(8) and its dual equivalents (9) and (10) (see [15,16]).

In particular, properties 3(a) and 3(b) of the kernel ϕ ∈ � lead to the following bounds

d(λs+1) − d(λs) ≥ mk−1||λs+1 − λs ||2 (11)

d(λs+1) − d(λs) ≥ kmM−2
∑

i∈I−(xs+1)

c2
i (x

s+1), (12)

where I−(x) = {i : ci(x) < 0}.
The convergence of the primal {xs}∞s=0 and the dual {λs}∞s=0 sequences in value, i.e.

f (x∗) = lim
s→∞ f (xs) = lim

s→∞ d(λs) = d(λ∗),

is a direct consequence of the assumptions A and B, the equivalence of the NR method (6)–(8) to
the Interior Quadratic Prox (10) and bounds (11) and (12) (see [15,16]).

We would like to emphasize that if m = 0 and/or M = ∞, then the bounds (11) and (12) are
trivial and useless, and the convergence of the NR method (6)–(8) even for a particular exponential
transformation become problematic (see [20, p. 3]).

Also, it follows from (12) that for any τ< 0 and any i = 1, . . . , q, the inequality ci(x
s+1)≤τ

is possible only for a finite number of steps. Therefore, from some point onwards, only original
transformations ψ1–ψ5 are used in the NR method. In fact, for k > 0 large enough, the quadratic
branch will be used just once. Therefore, the asymptotic analysis and the numerical performance
of both the NR method (6)–(8) and its dual equivalents (9)–(10) depend only on the properties
of the original transformations ψ1–ψ5 and the corresponding original dual kernels ϕ1–ϕ5. The
transformations ψ1–ψ5 for t ≥ τ are infinite time differentiable and so is the Lagrangian L(x, λ, k)

if the input data has the corresponding property. This allows us to use the Newton method for
solving the PD system, which is equivalent to (6)–(7). We will concentrate on it in Section 4.

Each second-order ϕ-divergence distance function Di(u, v) = ∑q

i=1 v2
i ϕi(ui/vi) leads to a

corresponding Interior Prox method (9) for finding a maximum of a concave function on R
q
+.

Sometimes the origin of the function d(λ) is irrelevant for the convergence analysis of the Prox
method (9) (see [2]). However, when the dual function d(λ) is a product of the Lagrangian duality,
such analysis can produce only limited results, because neither the primal nor the dual sequence
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146 R.A. Polyak

controls the NR method. The NR method is controlled rather by the PD system, solving which is
equivalent to the NR step.

The PD system is defined by the PD map. The properties of the map are critical for establishing
the rate of convergence of NR methods under the standard second-order optimality conditions
(3)–(4) (see [13,14]).

In the remaining part of this section, we just mention some of these results, which we will
use later. The results are taking place for any transformation ψ ∈ � and can be proven using the
correspondent PD map and arguments similar to those in refs. [13,14].

From (8), we have lims→∞ ks
i = k(λ∗

i )
−1, i = 1, . . . , r , i.e. the scaling parameters

corresponding to the active constraints grow linearly with k > 0. Therefore, the technique which
has been used in refs. [13,14] can be applied for the asymptotic analysis of the method (6)–(8).

For a given small enough δ > 0, and large enough k ≥ k0 > 0, we define the following set:

D(λ∗, k, δ) = {(λ, k) ∈ R
q
+ × R

q
++ : λi ≥ δ, |λi − λ∗

i | ≤ δk, i = 1, . . . , r,

0 < λi≤kδ, k ≥k0, i = r + 1, . . . , q; k = (ki = kλ−1
i , i = 1, . . . , q)}.

The following theorem is similar to Theorem 6.2 in ref. [14] and can be proven using the same
technique.

THEOREM 3.2 If f, ci ∈ C2, and the standard second-order optimality conditions (3)–(4) hold,
then there exists sufficiently small δ > 0 and large enough k0 > 0 such that for any (λ, k) ∈ D(·),
we have the following:

(1) There exists x̂ = x̂(λ, k) = argmin{L(x, λ, k) | x∈R
n} such that

∇xL(x̂, λ, k) = 0

and

λ̂i = λiψ
′(kici(x̂)), k̂i = k̂λ−1

i , i = 1, . . . , q.

(2) For the pair (x̂, λ̂), the bound

max{‖x̂ − x∗‖, ‖λ̂ − λ∗‖}≤ck−1‖λ − λ∗‖
holds and c > 0 is independent on k ≥ k0.

(3) The Lagrangian transformation L(x, λ, k) is strongly convex in the neighbourhood of x̂.

The results of Theorem 3.2 do not require convexity of f and all −ci , i = 1, . . . , q. Therefore,
the NR method can be used for solving non-convex optimization problems as long as we can find an
approximation for the minimizer x̂(λ, k) for a large enough k ≥ k0. Then, after the first Lagrange
multipliers and scaling vector update, the NR method (6)–(8) at each step requires finding an
approximation for the minimizer of a strongly convex function. To find an approximation for
the first unconstrained minimizer, one can use the interesting cubic regularization of the Newton
method recently developed in ref. [10].

Finding xs+1 requires solving an unconstrained minimization problem (6), which is generally
speaking, an infinite procedure. The following stopping criteria (see [14]) allows to replace xs+1

by an approximation x̄s+1, which can be found in a finite number of Newton steps by minimizing
L(x, λ̄s, k̄s) in x ∈ R

n. Then, the primal approximation x̄s+1 is used instead of xs+1 in (7) for the
Lagrange multipliers update, and the dual approximation λ̄s+1 is used instead of λs+1 in (8) for
the scaling vector update.

The bounds similar to those established in (2) of Theorem 3.2 remain true.
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For a given small enough σ>0, let us consider the sequence {x̄s , λ̄s , k̄s}, which is generated
by the following formulas:

x̄s+1 : ‖∇xL(x̄s+1, λ̄s, k̄s)‖ ≤ σk−1‖� ′(k̄sc(x̄s+1))λ̄s − λ̄s‖, (13)

λ̄s+1 = � ′(k̄sc(x̄s+1))λ̄s, (14)

where

� ′(k̄sc(x̄s+1)) = diag(ψ ′(k̄s
i ci(x̄

s+1))
q

i=1

and

k̄s+1 = k̄s+1
i = k(λ̄s+1

i )−1, i = 1, . . . , q.

The following theorem can be proven using the same technique that we used for proving
Theorem 7.1 in ref. [14].

THEOREM 3.3 If the standard second-order optimality conditions (3)–(4) hold and the Hessians
∇2f (x) and ∇2ci(x), i = 1, . . . , m satisfy the Lipschitz conditions

‖∇2f (x) − ∇2f (y)‖ ≤ L0‖x − y‖, ‖∇2ci(x) − ∇2ci(y)‖ ≤ Li‖x − y‖, (15)

then there is k0 > 0 large enough such that for the PD sequence {x̄s , λ̄s} generated by the
formulas (13) and (14), the following bounds hold true and c > 0 is independent of k≥k0 for s≥0 :

‖x̄s+1 − x∗‖ ≤ c(1 + σ)k−1‖λ̄s − λ∗‖, ‖λ̄s+1 − λ∗‖ ≤ c(1 + σ)k−1‖λ̄s − λ∗‖. (16)

To find an approximation x̄s+1, one can use the Newton method with step length for minimiza-
tion L(x, λ̄s, ks) in x. It requires, generally speaking, several Newton steps to find x̄s+1. Then
we update the vector of Lagrange multipliers λ̄s using x̄s+1 instead of xs+1 in (7) and update the
scaling vector k̄s using λ̄s+1 instead of λs+1 in (8).

For the logarithmic MBF transformation ψ(t) = ln(t + 1) and λ = e = (1, . . . , 1) ∈ R
q, k =

ke, the Lagrangian L(x, e, ke) = f (x) − ∑q

i=1 k−1 ln(kci (x) + 1) is a self-concordant function
if for example f and −ci, i = 1, . . . , q are linear- or convex-quadratic functions. In such a case,
the interior point methods (see [9]) can be used to find the first approximation x̄0 for the primal
minimizer of the Lagrangian L(x, e, ke).

Having x̄0, we can apply formulas (7)–(8) for finding {λ̄0, k̄0} ∈ D(λ∗, k, δ). It follows from
Theorems 3.2 and 3.3 that the entire sequence {λ̄s , k̄s} ⊂ D(λ∗, k, δ) if this is true for the pair
{λ̄0, k̄0} (see [13, p. 195]). Moreover, the Lagrangians L(x, λ̄s, k̄s) for the equivalent problem are
strongly convex in x in the neighbourhood of x̄s . Therefore, the level sets Ls = {x : L(x, λ̄s, k̄s) ≤
L(x̄s−1, λ̄s, k̄s)} are bounded ∀s ≥ 0.

It allows retaining the classical polynomial complexity bounds (see [9]) at the initial stage and
speeds up the process substantially in the final stage using the PDEP method, which we consider
in the following section.

Instead of finding x̄s+1 and then updating the Lagrange multipliers, we consider a PD system.
Finding an approximate solution for the PD system is equivalent to finding x̄s+1 and λ̄s+1. The
application of the Newton method for solving the PD system leads to the PDEP method.

4. Local PDEP method

In this section, we describe the PDEP method and prove its local quadratic rate of convergence.
One step of the NR method (6)–(8) maps the given triple (x, λ, k) ∈ R

n×R
q
++×R

q
++ into a triple
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(x̂, λ̂, k̂) ∈ R
n×R

q
++×R

q
++ by formulas

x̂ : ∇xL(x̂, λ, k) = ∇f (x̂) −
∑

ψ ′(kici(x̂))λi∇ci(x̂)

= ∇f (x̂) −
∑

λ̂i∇ci(x̂) = 0, (17)

λ̂ : λ̂i = λiψ
′(kici(x̂)), i = 1, . . . , q, (18)

k̂ : k̂i = kλ̂−1
i , i = 1, . . . , q. (19)

By removing the scaling vector update formula (19) from the system (17)–(19), we obtain the
primal–dual NR system

∇xL(x̂, λ̂) = ∇f (x̂) −
q∑

i=1

λ̂∇ci(x̂) = 0, (20)

λ̂ = � ′(kc(x̂))λ, (21)

where � ′(kc(x̂)) = diag(ψ ′(kici(x̂)))
q

i=1.
By solving the PD system, a given vector of Lagrange multipliers is mapped into a new PD pair,

while the penalty parameter and the scaling parameters vector remain fixed. The contractibility
properties of the corresponding map are critical for both the convergence and the rate of conver-
gence. To understand the conditions under which the corresponding map is contractive and to find
the contractibility bounds, one has to analyze the PD map (see [13,14]). It should be emphasized
that neither the primal NR sequence {xs} nor the dual sequence {λs} provides sufficient infor-
mation for this analysis. Only the PD system (20)–(21) has all necessary components for such
analysis. This reflects the important observation that for any multipliers method, neither the primal
nor the dual sequences controls the computational process. The numerical process is governed
rather by the PD system. The importance of the PD system associated with non-linear rescaling
methods has been recognized for quite some time (see [12,13]). It was used recently (see [8,17])
for developing PD methods for convex optimization with up to 1.5-Q-superlinear rate.

In this section, we use the specific properties of the PD system (20)–(21) for developing the
PDEP method, which locally converges to the PD solution with quadratic rate.

From the standard second-order optimality condition (3)–(4) follows the uniqueness of x∗ and
λ∗ and the existence of τ ∗ > 0 that (a) min{ci(x

∗) | r + 1≤i≤q}≥τ ∗ and (b) min{λ∗
i | 1≤i≤r}≥τ ∗.

Therefore, due to (16), there is k0 > 0 large enough such that for any k ≥ k0 and s ≥ 1

(a) min{ci
¯(xs) | r + 1 ≤ i ≤ q} ≥ 0.5τ ∗ and (b) min{λ̄s

i | 1 ≤ i ≤ r} ≥ 0.5τ ∗. (22)

Using formula (14) and the property 20(c), we have

λ̄s+1
i = ψ ′(ks

i ci(x̄
s+1))λ̄s

i ≤2a(kτ ∗)−1(λ̄s
i )

2, s≥1.

Hence, for any fixed k > max{k0, 2a(τ ∗)−1}, we have

λ̄s+1
i ≤ (λ̄s

i )
2, s ≥ 1, r + 1 ≤ i ≤ q.

So for a given accuracy 0 < ε � 1, in at most s = O(ln ln ε−1) Lagrange multipliers updates,
the Lagrange multipliers for the passive constraints will be of the order o(ε2). From this
point onwards, all terms of the Lagrangian L(x, λ, k) related to the passive constraints will
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be automatically ignored in the calculations. Therefore, the PD system (20)–(21) will actually be
reduced to the following system for x̂ and λ̂ = (λ̂1, . . . , λ̂r ):

∇xL(x̂, λ̂) = ∇f (x̂) −
r∑

i=1

λ̂i∇ci(x̂) = 0, (23)

λ̂i = ψ ′(kici(x̂))λi, i = 1, . . . , r. (24)

To simplify the notation, we use L(x, λ) for the truncated Lagrangian, i.e., L(x, λ) = f (x) −∑r
i=1 λici(x), and c(x) for the active constraints vector-function, i.e., cT(x) = (c1(x), . . . , cr (x)).
We use the vector norm ‖x‖ = max1<i≤n |xi | and the matrix A : R

n → R
n norm ‖A‖ =

max1≤i≤n

( ∑n
j=1 |aij|

)
. For a given ε0 > 0, we define the ε0-neighbourhood �ε0 = {y = (x, λ) ∈

R
n × R

q
++ : ‖y − y∗‖ ≤ ε0} of the PD solution y∗ = (x∗, λ∗).

We will measure the distance between the current approximation y = (x, λ) and the solution
y∗ using the following merit function:

ν(y) = ν(x, λ) = max

{
‖∇xL(x, λ)‖, − min

1≤i≤q
ci(x),

q∑
i=1

|λi‖ci(x)|, − min
1≤i≤q

λi

}
,

assuming that the input data is properly scaled.
It follows from the KKT conditions (1) and (2) that

ν(x, λ) = 0 ⇐⇒ x = x∗, λ = λ∗.

Later, we will use the following lemma.

LEMMA 4.1 [8] If the standard second-order optimality condition (3)–(4) and Lipschitz
condition (15) are satisfied, then there exists 0 < m0 < M0 < ∞ and ε0 > 0 small enough such
that

m0‖y − y∗‖ ≤ ν(y) ≤ M0‖y − y∗‖, ∀y ∈ �ε0 . (25)

It follows from (25) that in the neigbourhood �ε0 , the merit function ν(y) is similar to ‖∇f (x)‖
for a strongly convex and smooth enough function f (x). The merit function ν(y) will be used:

(1) to update the penalty parameter k > 0;
(2) to control accuracy at each step as well as for the overall stopping criteria;
(3) to identify ‘small’ and ‘large’ Lagrange multipliers at each PDEP step;
(4) to decide whether the primal or PD direction has to be used at the current step.
(5) to regularize the Hessian ∇2

xxL(x, λ).

At first, we consider the Newton method for solving the PD system (23)–(24) and show its
local quadratic convergence. To find the Newton direction (�x, �λ), we have to linearize the
system (23)–(24) at y = (x, λ).
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We start with system (24). Due to 30, the inverse ψ ′−1 exists. Therefore, using the identity
ψ ′−1 = ψ∗′ and keeping in mind ϕ = −ψ∗ and (19), we can rewrite (24) as follows:

ci(x̂) = k−1λiψ
′−1

(
λ̂i

λi

)
= k−1λiψ

∗′
(

λ̂i

λi

)
= −k−1λiϕ

′
(

λ̂i

λi

)
.

Assuming x̂ = x + �x and λ̂ = λ + �λ, keeping in mind ϕ′(1) = 0 and ignoring the terms of
the second- and higher-order, we obtain

ci(x̂) = ci(x) + ∇ci(x)�x = −k−1λiϕ
′
(

(λi + �λi)

λi

)
= −k−1λiϕ

′
(

1 + �λi

λi

)
= −k−1ϕ′′(1)�λi, i = 1, . . . , r,

or

ci(x) + ∇ci(x)�x + k−1ϕ′′(1)�λi = 0, i = 1, . . . , r.

Now, we linearize the system (23) at y = (x, λ). We have

∇f (x) + ∇2f (x)�x −
r∑

i=1

(λi + �λi)(∇ci(x) + ∇2ci(x)�x) = 0.

Again, ignoring the terms of the second- and higher-orders, we obtain the following linearized
PD system:

∇2
xxL(x, λ)�x − ∇cT(x)�λ = −∇xL(x, λ), (26)

∇c(x)�x + k−1ϕ′′(1)I r�λ = −c(x), (27)

where I r is the identity matrix in Rr and ∇c(x) = J (c(x)) the Jacobian of the vector-function
c(x). Let us introduce matrix

Nk(x, λ) ≡ Nk(y) ≡ Nk(·) =
[
∇2

xxL(·) −∇cT (·)
∇c(·) k−1ϕ′′(1)I r

]
.

Then, we can rewrite the system (26)–(27) as follows:

Nk(·)
[
�x

�λ

]
=

[
−∇xL(·)
∇λL(·)

]
=

[
−∇xL(·)

−c(·)

]
.

The local PDEP method consists of the following operations:

(1) Find the PD Newton direction �y = (�x, �λ) from the system

Nk(·)
[
�x

�λ

]
=

[
−∇xL(·)

−c(·)

]
. (28)

(2) Find the new PD vector ŷ = (x̂, λ̂) by formulas

x̂ := x+�x, λ̂ := λ+�λ. (29)
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(3) Update the scaling parameter

k̂ = (ν(ŷ))−1. (30)

Along with the matrix Nk(·), we consider the matrix

N∞(y) = N∞(·) =
[∇2L(·) −∇cT (·)

∇c(·) 0

]
.

Later, we will use the following technical lemmas.

LEMMA 4.2 Let A : R
n → R

n be an invertible matrix and ‖A−1‖ ≤ c0. Then for small enough
δ > 0 and any B : R

n − R
n such that ‖A − B‖ ≤ δ, the matrix B is invertible and the following

bounds hold:

(a) ‖B−1‖ ≤ 2c0 and (b) ‖A−1 − B−1‖ ≤ 2c2
0δ. (31)

Proof The (31(a)) was proven in ref. [8] (see Lemma 2). The (31(b)) follows from the identity
A−1 − B−1 = B−1(B − A)A−1, the inequality (31(a)) and the upper bounds for ||A−1|| and ||A −
B||. �

LEMMA 4.3 If the standard second-order optimality conditions (3)–(4) and the Lipschitz condi-
tions (15) hold, then there exists small enough ε0 > 0 and large enough k0 > 0 such that both
matrices N∞(y) and Nk(y) are non-singular and there is c0 > 0 independent of y ∈ �ε0 and
k ≥ k0, so that

max{‖N−1
∞ (y)‖, ‖N−1

k (y)‖} ≤ 2c0 ∀y ∈ �ε0 , ∀k ≥ k0. (32)

Proof It is well known (see [11, Lemma 2, chapter 8]) that under the standard second-order
optimality conditions (3)–(4), the matrix

N∞(x∗, λ∗) = N∞(y∗) =
[
∇2L(x∗, λ∗) −∇cT (x∗)

∇c(x∗) 0

]

is non-singular; hence, there exists c0 > 0 such that ‖N−1∞ (y∗)‖≤c0. Due to the Lipschitz
condition (15), there exists L > 0 such that ‖Nk(y) − N∞(y∗)‖ ≤ L‖y − y∗‖ + k−1ϕ′′(1) and
‖N∞(y) − N∞(y∗)‖ ≤ L‖y − y∗‖. Therefore, for a given small enough δ > 0, there exist small
ε0 > 0 and large k0 > 0 so that

max{‖Nk(y) − N∞(y∗)‖, ‖N∞(y) − N∞(y∗)‖} ≤ δ, ∀y ∈ �ε0 , ∀k ≥ k0.

Applying Lemma 4.2 first with A = N∞(y∗) and B = Nk(y) and then with A = N∞(y∗) and
B = N∞(y), we obtain (32). �

The following theorem establishes the local quadratic convergence of the PDEP method.

THEOREM 4.1 If the standard second-order optimality conditions (3)–(4) and the Lipschitz
condition (15) are satisfied, then there exists ε0 > 0 small enough such that for any PD pair
y = (x, λ) ∈ �ε0 , the PDEP method (28)–(30) generates the PD sequence that converges to the
PD solution with quadratic rate, i.e., the following bound holds:

‖ŷ − y∗‖ ≤ c‖y − y∗‖2, ∀y ∈ �ε0 ,

and c > 0 is independent on y ∈ �ε0 .
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Proof We find the PD Newton direction �y = (�x, �λ) from the system

Nk(y)�y = b(y), (33)

where

b(y) =
[
−∇xL(x, λ)

−c(x)

]
.

Along with the PD system (26)–(27), we consider the Lagrange system of equations, which
corresponds to the active constraints at the same point y = (x, λ):

∇xL(x, λ) = ∇f (x) − ∇c(x)T λ = 0, (34)

c(x) = 0. (35)

We apply the Newton method to Lagrange system (34)–(35) from the same starting point
y = (x, λ). We obtain the Newton direction �ȳ = (�x̄, �λ̄) for the system (34)–(35) from the
following system of linear equations:

N∞(y)�ȳ = b(y).

The new approximation for the system (34)–(35) is then obtained by formulas

x̄ = x + �x̄, λ̄ = λ + �λ̄ or ȳ = y + �ȳ.

Under standard second-order optimality conditions (3) and (4) and the Lipschitz conditions
(15), there is c1 > 0 independent on y ∈ �ε0 so that the following bound holds (see [11, Theorem
9, Chapter 8]):

‖ȳ − y∗‖ ≤ c1‖y − y∗‖2
. (36)

Let us prove a similar bound for ‖ŷ − y∗‖. We have

‖ŷ − y∗‖ = ‖y + �y − y∗‖ = ‖y + �ȳ + �y − �ȳ − y∗‖
≤ ‖ȳ − y∗‖ + ‖�y − �ȳ‖.

For ‖�y − �ȳ‖, we obtain

‖�y − �ȳ‖ = ‖(N−1
k (y) − N−1

∞ (y))b(y)‖ ≤ ‖N−1
k (y) − N−1

∞ (y)‖‖b(y)‖.
From Lemma 4.3, we have max{‖N−1

k (y)‖, ‖N−1∞ (y)‖}≤2c0. Besides, ‖Nk(y) − N∞(y)‖ =
k−1ϕ′′(1); therefore, using Lemma 4.2 with A = Nk(y) and B = N∞(y), we obtain

‖�y − �ȳ‖ ≤ 2k−1ϕ′′(1)c2
0‖b(y)‖. (37)

In view of ∇xL(x∗, λ∗) = 0, c(x∗) = 0 and the Lipschitz condition (15), we have

‖b(y)‖≤L‖y − y∗‖, ∀y ∈ �ε0 .

Using (25), (30) and (37), we obtain

‖�y − �ȳ‖ ≤ 2ϕ′′(1)c2
0ν(y)L‖y − y∗‖

≤ 2ϕ′′(1)c2
0M0L‖y − y∗‖2

.
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Therefore, for c2 = 2ϕ′′(1)c2
0M0L, which is independent of y ∈ �ε0 , we have

‖�y − �ȳ‖ ≤ c2‖y − y∗‖2
. (38)

Using (36) and (38), for c = 2 max{c1, c2}, we obtain

‖ŷ − y∗‖ ≤ ‖ȳ − y∗‖ + ‖�y − �ȳ‖ ≤ c‖y − y∗‖2
, ∀y ∈ �ε0

and c > 0 is independent of y ∈ �ε0 . We completed the proof. �

5. Global PDEP method

In this section, we develop a globally convergent PDEP method and prove its asymptotic quadratic
convergence rate under standard second-order optimality conditions.

The globally convergent PDEP method, roughly speaking, works as the Newton NR method in
the initial phase and as the local PDEP method (28)–(30) in the final phase of the computational
process.

We would like to emphasize that PDEP is not just a mechanical combination of two different
methods, but is a unified procedure. Each step of the PDEP method consists of finding the PD
direction �y = (�x, �λ) by solving the linearized PD system (20)–(21). Then, we use either the
PD Newton direction �y to find a new PD approximation ŷ or the primal Newton direction �x

to minimize L(x, λ, k) in x.
The choice at each step depends on the reduction of the merit function ν(y) per step. If y ∈ �ε0 ,

then according to Theorem 4.1, each PDEP step produces a PD pair ŷ = (x̂, λ̂) such that

‖ŷ − y∗‖ ≤ c‖y − y∗‖2.

From the left inequality (25), we have ‖y − y∗‖ ≤ m−1
0 ν(y); therefore, ‖ŷ − y∗‖ ≤ c‖y −

y∗‖2 ≤ cm−2
0 (ν(y))2. Using the right inequality (25), we have

ν(ŷ) ≤ M0‖ŷ − y∗‖ ≤ c0M0‖y − y∗‖2 ≤ cM0m
−2
0 ν(y)2.

Also, ν(y) ≤ M0‖y − y∗‖ ≤ M0ε0, ∀y ∈ �ε0 . Thus for a small enough ε0 > 0, we obtain

ν(ŷ) ≤ ν(y)1.5, ∀y ∈ �ε0

Therefore, if the PD step produces at least a 1.5-superlinear reduction of the merit function, then
the PD step is accepted; otherwise, we use the primal direction �x to minimize L(x, λ, k) in x.

The important part of the method is the way the PD system (20)–(21) is linearized. Let us start
with y = (x, λ) ∈ R

n × R
q
++ and compute ν(y).

By linearizing the system (20), we obtain

∇2
xxL(x, λ)�x − ∇cT(x)�λ = −∇xL(x, λ). (39)

The system (21) is split into two sub-systems. The first is associated with the set I+(y) = {i :
λi > ν(y)} of ‘big’ Lagrange multipliers, whereas the second is associated with the set I0(y) =
{i : λi ≤ ν(y)} of ‘small’Lagrange multipliers. Therefore, I+(y)∩I0(y) = ∅ and I+(y)∪I0(y) =
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{1, . . . , q}. We consider two sub-systems:

λ̂i = ψ ′(kici(x̂))λi, i ∈ I+(y), (40)

and

λ̂i = ψ ′(kici(x̂))λi, i∈I0(y). (41)

The system of Equations (40) can be rewritten as follows:

kici(x̂) = ψ ′−1(λ̂i/λi) = −ϕ′(λ̂i/λi).

Let x̂ = x + �x and λ̂ = λ + �λ, then

ci(x) + ∇ci(x)�x = −k−1
i ϕ′(1 + �λi/λi), i ∈ I+(y).

Taking into account ϕ′(1) = 0, formula (8) and ignoring the terms of the second- and higher-
order, we obtain

ci(x) + ∇ci(x)�x = −(kiλi)
−1ϕ′′(1)�λi = −k−1ϕ′′(1)�λi, i ∈ I+(y). (42)

Let c+(x) be the vector function associated with ‘big’ Lagrange multipliers, i.e., c+(x) =
(ci(x), i ∈ I+(y)), ∇c+(x) = J (c+(x)) the correspondent Jacobian and �λ+ = (�λi, i∈I+(y))

the dual Newton direction associated with ‘big’ Lagrange multipliers. Then the system (42) can
be rewritten as follows:

∇c+(x)�x + k−1ϕ′′(1)�λ+ = −c+(x). (43)

Now let us linearize the system (41). Keeping in mind (8) and ignoring the terms of the second-
and higher-order, we obtain

λ̂i = λi + �λi = ψ ′(ki(ci(x) + ∇ci(x)�x))λi (44)

= ψ ′(kici(x))λi + kψ ′′(kici(x))λi�ci(x)�x

= λ̄i + kψ ′′(kici(x))λi∇ci(x)�x, i ∈ I0(y).

where λ̄i = ψ ′(kici(x)λi , i ∈ I0(y).
Let c0(x) be the vector function associated with ‘small’ Lagrange multipliers, ∇c0(x) =

J (c0(x)) the corresponding Jacobian, λ0 = (λi, i∈I0(y)) the vector of ‘small’ Lagrange
multipliers and �λ0 = (λi, i∈I0(y)) the corresponding dual Newton direction. Then (44) can
be rewritten as follows:

−k� ′′(k0c0(x))�c0(x)�0�x + �λ0 = λ̄0 − λ0, (45)

where λ̄0 = � ′(k0c0(x))λ0,

� ′(k0c0(x)) = diag(ψ ′(kici(x)))i∈I0(y), �0 = diag(λi)i∈I0(y)

� ′′(k0c0(x)) = diag(ψ ′′(kλ−1
i ci(x)))

i∈I0(y)
.

Combining (39), (44), and (45), we obtain the following system for finding the PD direction
�y = (�x, �λ), where �λ = (�λ+, �λ0) and IB and IS are identity matrices in spaces of ‘big’
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and ‘small’ Lagrange multipliers:

M(x, λ)�y =
⎡⎢⎣ ∇2

xxL(x, λ) −∇cT+(x) −∇cT
0 (x)

∇c+(x) k−1ϕ′′(1)IB 0

−k� ′′(k0c0(x))�0∇c0(x) 0 IS

⎤⎥⎦
⎡⎢⎣ �x

�λ+
�λ0

⎤⎥⎦

=
⎡⎢⎣−∇xL(x, λ)

−c+(x)

λ̄0 − λ0

⎤⎥⎦. (46)

To guarantee the existence of the PD direction �y for any (x, λ) ∈ R
n × R

q
+, we replace the

system (46) by the following regularized system, where I n is the identity matrix in R
n:

Mk(x, λ)�y =
⎡⎢⎣ ∇2

xxL(x, λ) + k−1I n −∇cT+(x) −∇cT
0 (x)

∇c+(x) k−1ϕ′′(1)IB 0

−k� ′′�0(k0c0(x))∇c0(x) 0 IS

⎤⎥⎦
⎡⎢⎣ �x

�λ+
�λ0

⎤⎥⎦

=
⎡⎢⎣−∇xL(x, λ)

−c+(x)

λ̄0 − λ0

⎤⎥⎦ . (47)

Finding the PDEP direction �y = (�x, �λ) from system (47), we call the PDEPD(x, λ)

procedure.
Now, we are ready to describe the global PDEP method.

Step 1. Initialization: We choose an initial primal approximation x0 ∈ R
n, Lagrange multipliers

vector λ0 = (1, . . . , 1) ∈ R
q , large enough penalty parameter k > 0 and vector of scaling

parameters k0 = kλ0. Let ε > 0 be the overall accuracy. We choose parameters 0 < η < 0.5,
0.5 < σ ≤ 1 and 0 < θ < 0.25. Set x := x0, λ = λ0, ν := ν(x, λ), λc := λ0, k := k0 and
kc := k.

Step 2. If ν ≤ ε then stop. Output: x, λ.
Step 3. Find the PD direction: �y = (�x, �λ) := PDEPD(x, λc). Set x̂ := x + �x; λ̂ := λ +

�λ.
Step 4. If ν < 1 and ν(x̂, λ̂) ≤ ν1.5, set x := x̂, λ := λ̂, ν := ν(x, λ) and k := ν−1. Go to Step 2.
Step 5. Set t := 1, decrease 0 < t ≤ 1 until L(x + t�x, λc, kc) − L(x, λc, kc) ≤

ηt〈∇xL(x, λc, kc), �x〉.
Step 6. Set x := x + t�x and λ̂ := � ′(kcc(x))λc.
Step 7. If ‖∇xL(x, λc, kc)‖ ≤ (σ/k)‖λ̂ − λc‖, go to step 9.
Step 8. Find the PD direction �y = (�x, �λ) := PDEPD(x, λc). Go to step 5.
Step 9. If ν(x, λ̂) ≤ (1 − θ)ν, set λ := λ̂, λc := λ, ν := ν(x, λ), k := max{ν−1, k}, k := (ki =

kλ−1
i , i = 1, . . . , q) and kc := k. Go to step 2.

Step 10. Set k := k(1 + θ), go to step 8.

The following theorem proves the global convergence of the PDEP method and establishes the
asymptotic quadratic rate.

THEOREM 5.1 If the standard second-order optimality conditions (3)–(4) and the Lipschitz con-
dition (15) are satisfied, then the PDEP method generates a globally convergent PD sequence
that converges to the PD solution with asymptotic quadratic rate.

Proof First of all, the matrix Mk(y) ≡ Mk(x, λ) is non-singular for any (x, λ) ∈ R
n × R

q
++,

λ∈R
q
+ and any k > 0. Let us consider a vector w = (u, v+, v0). Keeping in mind ψ ′′(t) < 0,
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156 R.A. Polyak

convexity f (x), concavity ci(x) and the regularization term k−1I n, it is easy to see that Mk(y)w =
0→w = 0. Therefore, M−1

k (y) exists and the primal–dual NR direction �y can be found for any
y = (x, λ) ∈ R

n × R
q
+ and any k > 0.

We consider now the PD sequence {ys = (xs, λs)} along with the sequence of scaling vectors
{ks}, as well as the penalty parameter sequence {ks} and the merit function sequence {νs = ν(ys)}
generated by the PDEP method.

It follows from steps 4, 9, and 10 that the sequence {ks} is monotonically increasing. At the
same time, it follows from steps 4 and 9 that {νs} is monotonically decreasing.

Due to the monotonicity of {νs} for a given small ε0 > 0, steps 3 and 4 can occur not more than
O(ln ln ε−1

0 ) times before we reach a PD approximation with accuracy ε0 > 0. We will show later
that from this point onwards, the PDEP method generates a sequence {ys}s≥s0 , which converges
to the PD solution with quadratic rate.

Let us concentrate now on steps 5–9. First of all, due to 20(a) and formula (7) for the Lagrange
multipliers update (see step 6), we have λs ∈ R

q
++. Therefore, due to update formula (8), the

scaling vectors ks ∈ R
q
++. Keeping in mind the monotonicity of {νs} and the definition of the

merit function, we have

ci(x
s) ≥ −ν0 = ν(y0), i = 1, . . . , q, ∀ s ≥ 0.

Using the Corollary 20 from ref. [16], we conclude that the boundness of �0 = {x : ci(x) ≥
−ν0, i = 1, . . . , q} follows from the boundness of �. It means that the primal sequence {xs} is
bounded. Moreover, it follows from steps 4, 9, and 10 that lims→∞ νs = 0. Therefore, using the
definition of the merit function again, we have

lim
s→∞ ‖∇xL(xs, λs)‖ = lim

s→∞ ‖∇f (xs) −
q∑

i=1

λs
i ∇ci(x

s)‖ = 0.

We recall that λs ∈ R
q
++. Let us show that {λs} is bounded.

Assuming the opposite, that the dual sequence {λs} is unbounded, we obtain λs
is

= max{λs
i |

1 ≤ i ≤ q} → ∞. Therefore, keeping in mind the boundness of {xs}, we have

lim
s→∞

∥∥∥∥∥(
λs

is

)−1 ∇f (xs) −
q∑

i=1

(
λs

is

)−1
λs

i ∇ci(x
s)

∥∥∥∥∥
= lim

s→∞

∥∥∥∥∥(
λs

is

)−1 ∇f (xs) −
q∑

i=1

λ̄s
i ∇ci(x

s)

∥∥∥∥∥
= lim

s→∞

∥∥∥∥∥
q∑

i=1

λ̄s
i ∇ci(x

s)

∥∥∥∥∥ = 0.

Now, using the boundness of {λ̄s
i }, we can find a converging subsequence of {λ̄s

i }. Without losing
generality, we can assume that lims→∞ λs = λ̄ and lims→∞ xs = x̄ ∈ �. Let Ī = {i : ci(x̄) = 0},
then ci(x̄) > 0, i∈̄Ī . Due to 20(c), we have λ̄i = 0, i∈̄Ī . Therefore,

∑
i∈I λ̄ici(x̄) = 0, which is

impossible due to the Slater condition, which follows from (3). Thus, both the primal {xs} and
the dual sequence {λs} are bounded.

The existence of τ>0 that ν(ys) ≥ τ, ∀y /∈ �ε0 , follows from (25). Therefore, from (30), we
have k−1 = ν(ys) ≥ τ .
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After finding �λ+ and �λ0 from the second and third system in (47) and substituting their
values into the first system, we obtain

Pk(y
s)�x ≡ Pk(x

s, λs)�x = −∇xL(xs, λ̄s) = −∇xL(xs, λs, ks), (48)

where

Pk(y
s) = ∇2

xxL(xs, λs) + k−1I n + k(ϕ′′(1))
−1∇cT

+(xs)∇c+(xs)

− k∇cT
0 (xs)�s

0�
′′(k0c0(x

s))∇c0(x
s) (49)

and λ̄s = (λ̄s+, λ̄s
0) – where λ̄s+ = λs+ − k(ψ ′′(1))

−1
c+(xs) and λ̄s

0 = (λs
i = ψ ′(kici(x

s))λs−1
i ,

i∈I0(y
s)).

Due to the convexity f and concavity ci, i = 1, . . . , q, the Hessian ∇2
xxL(xs, λs) is non-negative

definite. It follows from 30 that � ′′(k0c0(x
s)) is a diagonal matrix with negative entries. It follows

from Theorem 3.1 that ϕ
′′
(1) > 0. Therefore, the third and the fourth terms in (49) are non-negative

definite matrices. Keeping in mind the second term in (49), we conclude that the symmetric matrix
Pk(y

s) is positive definite.
It follows from (25) that there is τ > 0 that k−1 = ν(ys) > τ , ∀ys /̄∈�ε0 , i.e. mineigenvalue

Pk(y
s) = μk(y

s) ≥ τ, ∀ys /∈ �ε0 . On the other hand, for any ys ∈ �ε0 and k ≥ k0, we have
μk(y

s) ≥ ρ > 0 due to the Debreu lemma [5], the standard second-order optimality condition
(3)–(4) and the Lipschitz condition (15).

Therefore, μk(y) ≥ μ = min{τ, ρ} > 0, ∀ y ∈ R
n × R

q
+, ∀k ≥ k0, i.e.

〈Pk(y
s)v, v〉 ≥ μ〈v, v〉, μ > 0, ∀ v ∈ R

n, ∀ ys ∈ R
n × R

q
+.

From (48), we have

〈∇xL(xs, λs, ks), �x〉 = −〈Pk(y
s)�x, �x〉≤ − μ‖�x‖2

2. (50)

Therefore, the primal Newton direction �x defined by (47) is a descent direction for minimization
L(x, λs, ks) in x. It follows from Theorem 3.3 that step 10 can be used only finite times. Thus,
there is k̄ > 0 that the penalty parameter ks ≤ k̄, which together with the boundness of the PD
sequence {xs, λs} means that there is M̄ > 0 such that ‖∇2

xxL(xs, λs, ks)‖ ≤ M̄ . Therefore, for
0<η≤0.5, we can find t≥t0>0 such that

L(xs + t�x, λs, ks) − L(xs, λs, ks) ≤ ηt〈∇xL(xs, λs, ks), �x〉 ≤ −μtη‖�x‖2
2. (51)

It follows from Theorem 3.2 that for any given pair (λs, ks) ∈ D(λ∗, k, δ), the minimizer x̂s+1 =
x̂(λs, ks) exists and L(x, λs, ks) is strongly convex in the neighbourhood of x̂s+1. Therefore, the
level set Ls = {x : L(x, λs, ks) ≤ L(xs−1, λs, ks)} is bounded.

Hence, the primal sequence generated by PDEPD (see step 6) with t ≥ t0 > 0 defined from
(51) converges to x̂s+1 = x̂(λs, ks) : ∇xL(x̂s+1, λs, ks) = ∇xL(x̂s+1, λ̂s+1) = 0.

Keeping in mind the standard second-order optimality condition (3)–(4) and the Lipschitz
condition (15), it follows from Theorem 3.3 that for the PD approximation (x̄s+1, λ̄s+1), the
bound (16) holds. It requires a finite number of Newton steps to find x̄s+1. After s0 = O(ln ε−1

0 )

Lagrange multipliers and scaling parameters updates, we find the PD approximation ys ∈ �ε0 .
Let 0 < ε � ε0 < 1 be the desired accuracy.
Keeping in mind the properties 20(c) and 20(d) for the transformation ψ∈� as well as (22),

(25) and (30) after s1 = O(ln lnε−1) updates, we obtain

max{||k� ′′k(λs
0)

−1c0(x
s))||, ||λ̄s

0 − λs
0‖} = o(ε2), i ∈ I0. (52)

For any ys∈�ε0 , the term ‖∇c0(x
s)‖ is bounded. The boundedness of ‖�x‖ follows from the

boundedness of ‖∇2
xxL(xs, λ̄s)‖ and the fact that Pk(y

s) has a mineigenvalue bounded from below
by μ > 0 uniformly in y ∈ �ε0 .
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158 R.A. Polyak

Let us consider the third part of the system (47), which is associated with the ‘small’ Lagrange
multipliers

k� ′′k(λ0
s)−1c0(x

s))∇c0(x
s)�xs + �λs

0 = λ̄s
0 − λs

0.

It follows from (52) that ‖�λs
0‖ = o(ε2). This means that after s = max{s0, s1} updates, the

part of the system (47) associated with ‘small’ Lagrange multipliers becomes irrelevant for the
calculation of a Newton direction from (47).

In other words, the PDEP automatically reduces (47) to the following system:

M̄k(x
s, λs)�ȳs = b̄(xs, λs), (53)

where (�ȳs)T = (�xs, �λs+), b̄(xs, λs)T = (−∇xL(xs, λs), −c+(xs)) and

M̄k(x
s, λs) =

[∇2
xxL(xs, λs) + k−1I n −∇cT

(+)(x
s)

∇c(+)(x
s) k−1ϕ′′(1)IB

]
.

At this point, we have ys ∈ �ε0 ; therefore, it follows from (25) that ν(ys) ≤ M0ε0. Hence,
for small enough ε0 > 0 from |λs

i − λ∗
i | ≤ ε0, we obtain λs

i ≥ν(ys), i∈I ∗. On the other hand,
we have ν(ys) > λs

i = O(ε2), i ∈ I0; otherwise, we obtain ν(ys)≤O(ε2) and from (25) follows
‖ys − y∗‖ = o(ε2). So, if after s = max{s0, s1} Lagrange multipliers updates, we have not solved
the problem with a given accuracy ε > 0, then I+(y) = I ∗ = {1, . . . , r} and I0(y) = I ∗

0 = {r +
1, . . . , q}.

From this point onwards, the global PDEP is, in fact, automatically reduced to (28)–(30) with
matrix

M̄k(y
s) = M̄k(x

s, λs) =
[∇2

xxL(xs, λs) + k−1I n −∇cT
(r)(x

s)

∇c(r)(x
s) k−1ϕ′′(1)I r

]
instead of Nk(·), where L(xs, λs) = f (xs) − ∑r

i=1 λs
i ci(x

s
i ) is the truncated Lagrangian.

Therefore, we have

||�ys − �ȳs || = ||(M̄−1
k (ys) − N−1

∞ (ys))b(ys)|| ≤ ||M̄−1
k (ys) − N−1

∞ (ys)||||b(ys)||.
On the other hand, ‖M̄k(y

s) − N∞(ys)‖ ≤ k−1(1 + ϕ′′(1)). From Lemma 4.3, we have
max{‖M̄−1

k (ys)‖, ‖N−1∞ (ys)‖} ≤ 2c0. Keeping in mind (15), (25) and (30), we obtain the following
bound:

‖�ys − �ȳs‖ ≤ 2c0
2k−1(1 + ϕ′′(1))‖b̄(ys)‖ = 2c2

0ν(ys)(1 + ϕ′′(1))‖b̄(ys)‖
≤ 2(1 + ϕ′′(1))c2

0M0L‖ys − y∗‖2 = c3‖ys − y∗‖2
, (54)

where c3 > 0 is independent of y ∈ �ε0 .
By using the bound (54) instead of (38) and repeating the arguments we used in Theorem 4.4,

we conclude that the PD sequence generated by the PDEP method converges to the PD solution
(x∗, λ∗) with asymptotic quadratic rate. Therefore, in the case when ε � ε0, it takes another
O(ln ln ε−1) PDEP steps to obtain approximation for (x∗, λ∗) with accuracy ε > 0 starting with
any y ∈ �ε0 . �

6. Concluding remarks

The PDEP is fundamentally different from the Newton NR method. The distinct characteristic of
the PDEP is its global convergence with asymptotic quadratic rate. The PDEP combines the best
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features of the Newton NR method and the Newton method for the Lagrange system of equations
corresponding to the active constraints. At the same time, the PDEP is free from their critical
drawbacks. In the initial phase, PDEP is similar to the Newton NR method, i.e. the Newton
method for minimization of the Lagrangian L(x, λ, k) in x followed by Lagrange multipliers
and scaling parameters update. Such a method (see Theorem 3.3) converges under a fixed penalty
parameter. This allows us to reach the ε0-neighbourhood of the PD solution in O(ln ε−1

0 ) Lagrange
multipliers updates without compromising the condition number of the Hessian, ∇2

xxL(x, λ, k).
Once in the neighbourhood of the PD solution, the penalty parameter, which is inversely pro-

portional to the merit function, grows extremely fast. Again, the unbounded increase of the scaling
parameter at this point does not compromise the numerical stability, because instead of uncon-
strained minimization, the PDEP method solves the primal–dual NR system. Moreover, the PD
direction �y turns out to be very close to the Newton direction (see (54)) for the Lagrange system
of equations corresponding to the active constraints. This guarantees the asymptotic quadratic
convergence.

The situation in some sense recalls the Newton method with step length for unconstrained
smooth convex optimization.

Several issues remain for future research.
First, the neighbourhood of the PD solution where the quadratic rate of convergence occurs

needs to be characterized through parameters that measure the non-degeneracy of constrained
optimization problems.

Second, the value of the scaling parameter k0 > 0 is a priori unknown and depends on the con-
dition number of the problem (P), which can be estimated through parameters of a constrained
optimization problem at the solution (see [13]). These parameters are obviously unknown. There-
fore, it is important to find an efficient way to adjust the penalty parameter k > 0 using the merit
function value.

Third, we have to understand to what extent the PDEP method can be used in the non-convex
case. In this regard, recent results from ref. [10] together with local convexity properties of the
Lagrangian (5) that follow from the Debreu lemma [5] may play an important role.

Fourth, numerical experiments using various versions of primal–dual NR methods produce
very encouraging results (see [7,8,17]). On the other hand, the PDEP method has certain specific
features that require more numerical work to better understand its practical efficiency.
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