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Here x = (x1; : : : ; xn)T and the functions f and f ci g will be assumed to be twicecontinuously di�erentiable. We have in mind cases where n is large.The methods we will consider for solving (1) will be based on classical barrierfunctions. The constrained problem is converted to a sequence of unconstrainedproblems. If the logarithmic barrier function is used, then the unconstrained problemshave the form �(x; �) = f(x)� � mXi=1 ln(ci(x));involving a \barrier parameter" � > 0. If x�(�) denotes a minimizer of �(x; �) then,under appropriate conditions, it can be shown that (as � ! 0) any limit point x�of the sequence fx�(�) g is a solution of (1) [FiaM68]. In addition, the associatedLagrange multiplier estimates converge to the Lagrange multipliers at x�.It is well known that the Hessian of the barrier function becomes increasinglyill-conditioned as �! 0 and a solution to (1) is approached. (This will be discussedin more detail in Section 3.) More speci�cally, if k constraints are binding at x� and0 < k < n then lim�!0+ cond(r2�(x�(�); �)) = +1:Thus the classical barrier method \breaks down" as the method converges to thesolution of the original constrained problem.We will examine two approaches that avoid this \structural" ill-conditioning (i.e.,the ill-conditioning associated with the method, as distinct from the conditioning ofthe underlying optimization problem). The �rst uses a numerically stable approx-imation to the Newton direction for the classical barrier function [NasS93a]. Thesecond uses a modi�ed barrier function, where the resulting barrier terms are scaledby estimates of the Lagrange multipliers at the solution [Poly92]. When appropri-ately implemented the Hessian of the modi�ed barrier function can be shown to havebounded condition number. Both techniques solve a sequence of unconstrained opti-mization problems involving a (possibly modi�ed) barrier function, for a sequence ofbarrier parameters and/or Lagrange multiplier estimates.In this paper, each of these unconstrained problems will be solved using a trunca-ted-Newton method. In this method, the Newton equations for a search direction aresolved approximately using the conjugate-gradient method. Why choose a truncated-Newton method? It is a Newton-type method, that requires only �rst derivatives(although second derivatives may be utilized if desired); it has low storage costs; itcan be adapted to solve nonconvex problems; and it vectorizes well. Thus methodreduces the costs of Newtons method while maintaining rapid convergence, and istherefore suitable for large-scale problems. In practice the method has proven tobe robust, e�ective and competitive on a wide set of unconstrained minimizationproblems.The stabilized barrier method is the same as in [NasS93a], although it is testedhere on a larger set of problems (and using a di�erent computer). The modi�ed2



barrier method software is new, although it was obtained by modifying the softwarefor the stabilized barrier method. Because much of the software for the two methodsis the same, we believe that this gives a clearer comparison of the properties of thetwo methods.2 The Truncated-Newton MethodIn both the modi�ed barrier method and the stabilized barrier method, the uncon-strained subproblems will be solved using a modifed version of the truncated-Newtonsoftware described in [NasN91]. A summary of this method will be given here, asapplied to an unconstrained problemminimizex f(x):The notation rf = rf(x) is used for the gradient of f evaluated at a point x.Given some initial guess x0, at the j-th iteration the new estimate x̂ of the solutionis given by x̂ = x+ �p:The search direction p must satisfy pTrf < 0 (i.e., it is a descent direction for f atthe point x).The step length � > 0 is chosen to guarantee that f(x̂) < f(x), along with otherconditions designed to guarantee convergence to a local minimizer [OrtR70]. Theparticular line search algorithms used are discussed below. performance.The search direction p is computed as an approximate solution of the Newtonequations (r2f)p = �rf (2)where r2f � r2f(x) is the Hessian matrix of second derivatives at the current pointx. The approximate solution is obtained by applying the conjugate-gradient methodto (2). This iterative method is \truncated" before the exact solution is obtained.On parallel computers, a block conjugate gradient method could be used to solve(2) [NasS91], resulting in a parallel barrier method. This idea has been applied tobound-constrained problems for the stabilized barrier method [Nash92].The conjugate-gradient method corresponds to minimizing the quadratic modelQ(p) = 12pTr2fp+ pTrf as a function of p over a sequence of subspaces of increasingdimension. These are called the Krylov subspaces.The truncated-Newton software used here includes automatic preconditioningstrategies designed to accelerate convergence of the conjugate-gradient method. Thesewere not modi�ed in the computational tests used in this paper, because of the spe-cial form of the bound constraints. For problems with more general constraints, itis likely that the preconditioners would have to be adjusted to take into account the3



special structure of the barrier subproblems. Techniques for doing this are discussedin [NasS93b].3 The Stabilized Barrier MethodThe discussion here is adapted from [NasS93a], and presents a summary of the sta-bilized barrier method. For a more complete discussion, the reference should beconsulted.We will assume that a strictly feasible initial guess of the solution has been pro-vided. For problems with bound constraints, such a point can be easily found. Inaddition, we make the following standard assumptions: (a) the feasible set is compactand has a non-empty interior; (b) a solution x� lies in the closure of the interior ofthe feasible region; (c) x� is a regular point of the constraints (i.e., the gradients ofthe active constraints at x� are linearly independent) which satis�es the second-ordersu�ciency conditions for optimality (see [FiaM68]).The logarithmic barrier method converts the problem (1) to a sequence of uncon-strained problems: minimizex �(x; �) = f(x)� � mXi=1 ln(ci(x)); (3)for a sequence of positive barrier parameters � ! 0. Let x�(�) denote an uncon-strained minimizer of �(x; �). Under quite mild conditions it can be shown that anylimit point x� of the sequence x�(�) is a solution of (1). Furthermore if we de�ne�i(�) � �=ci(x�(�));then as x�(�) ! x�, �(�) ! ��, where �� is the vector of Lagrange multiplierscorresponding to x� [FiaM68].The Newton direction for the barrier subproblem (3) at the point x is obtainedby solving Bp = �b;where b and B are the gradient and Hessian, respectively, of the logarithmic barrierfunction: b = rf � � mXi=1 rcici ;B = r2f � � mXi=1 r2cici + � mXi=1 rcircTic2i : (4)4



(To simplify the formulas, f is written for f(x), etc.) If we de�ne �i = �=ci, then (4)can be expressed in the formb = rf � mXi=1 �irci;B = r2f � mXi=1 �ir2ci + 1� mXi=1 �2ircircTi : (5)The �nal term in (5) reveals the ill-conditioning in the barrier subproblem. Ifa constraint is active at the solution, and its corresponding Lagrange multiplier isnon-zero, then the ratio �2i =� ! 1 as � ! 0. Thus the Hessian matrix becomesprogressively more ill conditioned as the solution (see [Murr71]).The stabilized barrier method avoids this ill conditioning by using an approxi-mation to the Newton direction for the barrier function. This approximation di�ersfrom the Newton direction by terms of O(�) and so becomes more accurate as �! 0.The approximation is obtained by examining the range- and null-space componentsof the search direction, de�ned in terms of a \working set" of constraints, analogousto the working set used in an active-set method for constrained optimization (see, forexample, [GiMW81]). The approach we propose does not require that the Hessian ofthe barrier be formed explicitly. A di�erent approach that avoids the ill conditioningbut that requires explicit matrix factorizations is described in [Wrig92].To develop the formulas for the search direction, we de�ne I to be the index setof those constraints that contribute to the ill conditioning of the Hessian. This setis a prediction of the set of constraints that are binding at the solution of (1). LetN be the Jacobian matrix of the constraints in I, and assume that N has full rank.(The columns of N consist of the vectors rci.) We de�ne D = diag(�2i ; i 2 I), andchoose Z as a basis for the null space of NT. Let N# be a pseudo-inverse for N .(For bound-constrained problems, the columns of N and Z are just columns of theidentity matrix.) Finally, de�neH = r2f � mXi=1 �ir2ci + 1�Xi 62I �2ircircTi ;i.e., the \good" part of the Hessian B, omitting the ill-conditioned terms.Using these de�nitions the Newton direction can be approximated viap � p1 + �p2;where p1 = �Z(ZTHZ)�1ZTb;�̂ = N#(Hp1 + b); (6)p2 = �(N#)TD�1�̂:5



These formulas correspond to an O(�) approximation to the Newton direction. (Arelated stabilized formula for the search direction was derived in [Murr71].)The formulas (6) only require (ZTHZ)�1. In our algorithm this is implementedby applying the conjugate-gradient method toZ(ZTHZ)�1ZTp1 = �b;with the iteration truncated as in the unconstrained case. The costs of �nding thesearch direction in this approach are comparable to those of a naive barrier methodthat does not deal with the ill conditioning. The approximate direction obtained us-ing the formulas (6), together with a truncated conjugated-gradient iteration, can beshown to be a descent direction for the barrier function under appropriate assump-tions.A number of computational enhancements were used to improve the performanceof the stabilized barrier method. These are discussed brie
y in Section 5.4 The Modi�ed Barrier MethodWe now describe the modi�ed barrier method for the constrained problem (1). An ex-tensive discussion of the theory of modi�ed barrier methods can be found in [Poly92].At each major iteration of the modi�ed barrier method the unconstrained problemminimizex M(x; �; �) (7)is solved where M(x; �; �) = f(x)� � mXi=1 �i (��1ci(x) + 1);and the solution x̂ is used to update f �i gmi=1 via�̂i = �i 0(��1ci(x̂) + 1): (8)The parameters f�i g are estimates of the Lagrange multipliers at the solution x�.The function  is a monotone, strictly concave, and twice continuously di�erentiablefunction de�ned on the interval (0;+1); one possible choice is  (�) = ln(�), althoughour algorithm will use a more complicated de�nition of  . It is also possible to usethe inverse function  (�) = 1=(�) although this choice is not tested here.If, for example,  (�) = ln(�), then the feasible region for (1) is equivalent to theset nx : � (��1ci(x) + 1) � 0o :Thus the modi�ed barrier function is the classical Lagrangian for the problem (1)with the constraints expressed in this equivalent form. The use of the barrier term (��1ci(x) + 1)6



corresponds to perturbing the constraints so that they have the formci(x) � ��:This represents an expansion of the feasible region. Hence the implied \feasibleregion" for the modi�ed barrier subproblem varies with the barrier parameter �.Unlike the classical logarithmic barrier function, the modi�ed barrier function andits derivatives exist at a solution x� for any positive barrier parameter �. In particular,if �� is the vector of Lagrange multipliers corresponding to x�, and if  (�) = ln(�),then the modi�ed barrier function has the following properties for any � > 0:P1: M(x�; ��; �) = f(x�)P2: rxM(x�; ��; �) = rf(x�)� mXi=1 ��rci(x�) = 0P3: r2xM(x�; ��; �) = r2f(x�)� mXi=1 ��ir2ci(x�) + ��1rc(x�)diag(��)2rc(x�)TWhen the problem is a a convex program, it follows from P2 thatP4: x� = arg minfM(x; ��; �) g for any � > 0:This means that if the optimal Lagrange multipliers �� are known, one can solve theconstrained problem (1) using a single unconstrained optimization problem regardlessof the value of the barrier parameter. Moreover, if the constrained optimizationproblem is nonconvex but the second-order su�ciency and strict complementarityconditions are satis�ed at x� then there exists a �� and a �� > 0 such that:P5: min eigr2xM(x�; ��; �) � �� for � < ��.Thus it is again possible to solve (1) using a single unconstrained optimization problemof the form (7) provided that the barrier parameter is su�ciently small. Of course,in practice only a local minimizer may be found.Polyak [Poly92] has shown that if the initial Lagrange multipliers are positive, andthe barrier parameters are below some threshhold value ��, then the method converges.Furthermore, for su�ciently small �, the successive iterates satisfymaxn kx̂� x�k ; 


�̂� ��


 o � c� k� � ��k : (9)The constant c > 0 is independent of � � ��.For a convex programming problem it is possible to prove a stronger result. Undermild conditions on the primal and dual feasible regions the modi�ed barrier methodconverges for any �xed positive value of the barrier parameter �, provided that theinitial vector of Lagrange multipliers is positive (see [JenP92]).The result (9) shows that the modi�ed barrier method converges at a superlinearrate if the barrier parameter is changed from subproblem to subproblem in such a way7



that �! 0. However it is not necessary that �! 0 in order to achieve convergence; itis only necessary that � be reduced below the threshhold value ��. Thus the conditionnumber of the Hessian of the modi�ed barrier function can remain bounded as thesolution is approached, unlike in the classical case.On practical problems, it is not possible to know a priori whether the initialparameter chosen is indeed below the threshhold ��, a general-purpose code for solving(1) must also include some mechanism for reducing the barrier parameter. Howeversome caution is required. If a solution x̂(�) to a modi�ed barrier subproblem has beenfound, and � is reduced to a new value �̂ it is possible that x̂(�) will be \infeasible"for the new subproblem: ci(x̂(�)) 6� ��̂:Suppose that the function  is chosen as  (�) = ln(�). Then if �̂ < � and ci(x̂) < 0 itis possible that  (�̂�1ci(x̂) + 1) = ln(�̂�1ci(x̂) + 1)might be unde�ned. This limits the 
exibility of the modi�ed barrier method (itlimits how quickly � can be reduced) and it can greatly complicate software for thisalgorithm, particularly if the constraints are nonlinear [BreS93].For this reason we have chosen to use a more elaborate de�nition of the function , a de�nition that varies with the value of �. In our implementation we use amodi�cation that has been suggested in [BeTY92]. Let t = ci(x). If t � ��=2 thenwe de�ne  (��1t+ 1) = ln(��1t+ 1):If t < ��=2 then we de�ne  (��1t+ 1) = q(t)where q(t) is a quadratic function for which q(��=2), q0(��=2), and q00(��=2) matchthe corresponding values for the logarithm function at the point t = ��=2. Sincethe quadratic function does not have a singularity at �� (or at any other point), thebarrier parameter can be reduced at any desired rate without worrying whether themodi�ed barrier function will become unde�ned or singular.Our software for the modi�ed barrier algorithm was obtained by adapting thesoftware for the stabilized barrier method. The underlying unconstrained optimiza-tion method is the same truncated-Newton method. More speci�c details (chosen asa result of considerable numerical testing) are discussed in Section 5.5 ImplementationA number of computational enhancements were used to improve the performance ofthe stabilized barrier method. We give a brief description of these enhancements anddiscuss their e�ect when implemented within a modi�ed barrier method.8



5.1 The Line SearchBecause the logarithmic barrier function has a singularity at the boundary of thefeasible region, standard line search algorithms based on low-order polynomial in-terpolation may not be e�ective. For example, in implementing an inverse cubicinterpolation line search we found that an usually large proportion (often more than50%) of the overall computational e�ort was spent within the line search. Replacingthis line search by a Armijo-type strategy reduced the fraction of time spent in theline search but increased the overall computational e�ort substantially.For this reason we implemented a special line search [MurW76] devised speci�-cally for the logarithmic barrier function. This line search approximates the barrierfunction along the search direction with a one-dimensional function consisting of aquadratic term plus a logarithmic singularity. We have found this line search to bee�ective when implemented within a classical barrier method. For example, on a setof problems tested in [NasS93], the special line search led to a 27% reduction in theoverall computational e�ort.The special line search was not as bene�cial when implemented within a modi�edbarrier method. This may be due to the fact that our elaborate de�nition of  nolonger has a logarithmic singularity. The line search currently implemented in oursoftware is a standard line search for unconstrained minimization based on inversecubic interpolation with an acceptance test based on a Wolfe condition (the \default"line search for the truncated-Newton method).5.2 ExtrapolationA (classical) barrier method can be improved signi�cantly by extrapolation. Thistechnique uses the solutions of the subproblems for previous barrier parameters to�t a low-order polynomial to the barrier trajectory. The polynomial is then used topredict the solution of the subproblem for the new barrier parameter. This providesa better initial guess for the new problem.Our own experience indicates that substantial gains may be obtained by usingquadratic extrapolation, and that modest additional gains may be obtained by usingcubic interpolation instead. The stabilized barrier software uses cubic extrapolation.Our attempts to accelerate the modi�ed barrier using either linear, quadraticor cubic extrapolation were not successful. The reason is that the solutions to themodi�ed barrier subproblems do not lie on a simple trajectory parameterized by �, asis true for the classical barrier function. Thus in the current code, no extrapolation isused to obtain the initial guess for a new subproblem, and the solution to the previoussubproblem is used as an initial guess without modi�cation.9



5.3 Initializing the barrier parameterThe selection of the initial barrier parameter can have a dramatic e�ect on the runningtime of the algorithm. A parameter that is too small may cause the subproblem tobe ill-conditioned and therefore di�cult to solve. A parameter that is too large mayrequire the solution of too many subsequent subproblems.The best initialization scheme that we found for the stabilized barrier method isa heuristic that attempts to �nd the barrier parameter corresponding to the pointon the barrier trajectory which is \closest" to the initial point. The same schemedoes not appear to be e�ective for the modi�ed barrier method: the resulting initialparameter tends to be \too large." Better results were obtained by setting the initialbarrier parameter to a relatively small value.5.4 PreconditioningTo be e�ective, a truncated-Newton method must use preconditioning. The truncated-Newton software uses a preconditioner based on a limited-memory quasi-Newton for-mula obtained from consecutive truncated-Newton iterations, which in turn is scaledby a diagonal approximation to the Hessian obtained from the conjugate gradientiterations. The stabilized barrier software uses the �nal preconditioner from one sub-problem as the initial preconditioner for the next subproblem. The modi�ed barriermethod uses the same strategy.5.5 Customized matrix-vector productThe stabilized barrier method uses a customized matrix-vector product for the conju-gate-gradient iteration that isolates the terms associated with the working set I.This is necessary so that rounding errors from the ill- conditioned terms do notcontaminate the well-conditioned terms in the Hessian, and hence destroy the e�ectsof the stabilized approximation to the Newton direction.If B denotes the Hessian of the barrier function then the product Bu is computedvia the formula Bu = (r2f)u� � mXi=1 (r2ci)uci + � mXi=1 (rcTiu)rcTic2i :The terms (r2f)u and (r2ci)u are computed via �nite di�erencing:(r2f)u � rf(x+ hu)�rf(x)h ;where h is (approximately) the square root of the machine precision. It is not safe toapply �nite di�erencing directly to Bu because of the singularity of the logarithmicfunction. The �nal summation in the formula for Bu is computed straightforwardly10



from the formulas above. When the stabilized formulas for the search direction areused, the product Hu must be computed. This is done in the same way, except thatthe ill-conditioned terms are omitted from the �nal summation.The modi�ed barrier uses a similar approach, except applied to the Hessian of themodi�ed barrier function.6 Computational TestsIn this section we compare the modi�ed barrier method and the stabilized barriermethod on a set of test problems with bound constraints.Many of our test problems are derived from a set of unconstrained optimizationproblems; see Table 1. For more detailed information about problems 1{52, see[NasN91]. Problems 54 and 55 are from [CoGT88]. The �nal two problems arefrom release 2 of the Minpack-2 collection [AvCM91]. They are DPJBFG (pressurein a journal bearing) and DEPTFG (elastic-plastic torsion). These are the onlytwo minimization problems in this collection which have bound constraints that arebinding at the solution. For problem DPJBFG we set nx = ny = pn, ecc = 0:1, andb = 10. For problem DEPTFG we set nx = ny = pn, and c = 5.The constrained problems 1{55 are as in [NasS93a]. In each case, we �rst solvethe corresponding unconstrained problem, computing x̂ satisfyingkg(x̂)k1 � 10�5(1 + jf(x̂)j)using the standard initial point x0. Lower and upper bounds are then derived fromx̂. If i is odd then �100 � xi � 100;if i is a multiple of 4 then (x̂)i + 0:1 � xi � (x̂)i + 10:0;if i is even but not a multiple of 4 then(x̂)i � 10:0 � xi � (x̂)i � 0:1:Then a strictly feasibly initial point for the barrier method is generated. If (x0)i < `ithen (x0)i = `i + 0:5; if (x0)i > ui then (x0)i = ui � 0:5. If (x0)i = `i then (x0)i =`i +10�4; if (x0)i = ui then (x0)i = ui� 10�4. Then x0 is used as the initial point forthe barrier method.The algorithms were programmed in Fortran 77 and the runs were made usingdouble precision on an IBM 320H RISC workstation. The \stabilized" algorithmuses the stabilized formula for the Newton direction when � is small; the \modi-�ed" algorithm uses the modi�ed barrier method. The two methods incorporate theenhancements described in Section 5. 11



Both methods compute a search direction using a conjugate-gradient iterationterminated as in [NasS90a], using a rule based on the value of the quadratic modelwith tolerance 0:5. Both barrier methods were terminated when the norm of thecomplementary slackness vector (scaled by 1 + jf(x)j) was less than �1 = 10�8, andwhen the norm of the Lagrangian gradient (also scaled by 1 + jf(x)j) was less than�2 = 10�5. In addition, we required that the solution from the modi�ed barriermethod not be infeasible with respect to any constraint by more than �1 = 10�8.We list here a number of implementation details for the stabilized barrier method.For further information, see [NasS93a].� The line search was terminated using an Armijo-type test with parameter� = 0:2.� The barrier parameter was updated using �k+1 = �k=10.� The truncated-Newton method (for a given �) was terminated when the normof the gradient (scaled as above) was less than �3 = 10�3, and when the smallestLagrange multiplier estimate was greater than ��4, where �4 = 10�6.� The stabilized formula for the Newton direction was invoked when the normof the scaled complementary slackness vector was less than �5 = 10�4.We made many test runs using the modi�ed barrier method, and some of the moreinteresting ones are described below. However, we will only be providing detailedresults for the best of these runs, for which the following parameter settings wereused:� The line search was terminated using a Wolfe-type test with parameter � =0:25.� the initial barrier parameter was the same for all test problems, �0 = 10�3;the barrier parameter was updated using �k+1 = �k=2;� the initial Lagrange multiplier estimates were chosen to be �i = 1, i = 1; : : : ;m;� for the �rst subproblem, the truncated-Newton method was terminated whenthe norm of the scaled gradient was less than �3 = 10�3;� for subsequent subproblems, the truncated-Newton method was terminatedwhen the norm of the scaled gradient was less than �3 = 10�6;For a particular algorithm, a single set of parameter settings was used to solve allof the test problems. The algorithms were not \tuned" to particular problems.The detailed results are given in Table 2. The table records the costs of runningthe barrier method, but not the costs associated with determining the initial pointand the bounds (that is, the costs of solving the initial unconstrained problem areignored). An entry in the table consists of four numbers: \it" (the total number ofouter iterations), \ls" (the number of gradient evaluations used in the line search),\cg" (the number of gradient evaluations used in the inner iteration to compute theHessian-vector products), and \total" (the sum of \ls" and \cg").The results in Table 2 indicate that the modi�ed barrier method performs notablybetter than the stabilized barrier method on these problems. The modi�ed barrier12



method requires only 74% as many truncated-Newton iterations, and only 68% asmany gradient evaluations. In examining individual problems it is seen that thestabilized barrier method only beats the modi�ed barrier method on 9 of the 33problems: problems 1 (n = 100; 1000), 12, 42, 49, 54, 102 (n = 100; 1024), 105(n = 100). We should emphasize that these individual results are a by-product ofour desire to use a single set of parameter settings for all test problems. By seekingparameter settings that minimize the grand total for the entire test set, the behavior ofthe method on individual problems can deteriorate. In particular, by �ne-tuning theparameters for these problems it is possible to obtain much better performance fromthe modi�ed barrier method (at the cost of poorer performance on other problems).For the other computational tests of the modi�ed barrier method we will only listthe totals for the four table entries. Note that for the best version of the method thatwe were able to �nd, the totals were( 1592 3361 7613 10974 )We experimented with solving the �rst subproblem both more and less accurately,but this was less e�ective. When the initial subproblem was terminated when thenorm of the scaled gradient was less than �3 = 10�2 (instead of �3 = 10�3) then thetotals were: ( 1748 3463 8705 12168 )Similar results were obtained when the �rst subproblem was terminated after a �xednumber (6) truncated-Newton iterations. When the �rst subproblem was solved to\full" accuracy (�3 = 10�6), then the results were worse:( 1608 3480 8519 11999 )The overall convergence of the modi�ed barrier method seems to be driven by theaccuracy of the multipliers. By solving the �rst subproblem less accurately we hopeto get better initial Lagrange multiplier estimates at relatively low expense. If the�rst subproblem is solved too crudely, however, it is possible to obtain poor estimatesof the Lagrange multipliers. Solving the �rst subproblem to full accuracy can also bewasteful, though, because it does not make sense to accurately solve a subproblemwith arbitrary Lagrange multipliers (�i = 1).We experimented with \more sophisticated" choices of the initial Lagrange multi-plier estimates, trying to use gradient and residual information at the initial point x0to compute �rst-order multiplier estimates. The results were poor (with grand totalsnear 20,000).In another set of experiments we varied the choice of the initial barrier parameter�0 from the value used above (�0 = 10�3), but with the other parameter settingsunchanged. The following totals were obtained with �0 = 10�1:( 2367 3928 10005 13933 )13



with �0 = 10�2: ( 1875 3364 8650 12014 )with �0 = 10�4: ( 2002 6836 12151 18987 )We also attempted to de�ne �0 adaptively based on gradient information at x0, aswas done for the barrier function. This attempt failed, with grand totals near 20,000.Tests were also performed where the subproblems were solved less accurately (us-ing �3 > 10�6). These were not successful. The modi�ed barrier method seems torequire accurate Lagrange multiplier estimates, and these cannot be obtained withoutsolving the subproblems accurately.Finally we experimented with di�erent rates of reducing the barrier parameter. Asurprisingly successful strategy on a large number of the test problems was to leavethe barrier parameter �xed at � = 10�3 for all subproblems. However, this strategybehaved poorly on a few subproblems, making it noncompetitive overall. Reducingthe barrier method more rapidly did not work well, in contrast to our experiencewith the stabilized barrier method. We think that it might be possible to reducethe barrier parameter more quickly if some form of extrapolation procedure could befound for the modi�ed barrier method.The strategies for running the two methods e�ectively are di�erent. In the sta-bilized barrier method a larger number of subproblems are used, each one solvedcoarsely, and the barrier parameter is reduced quickly. Extrapolation techniques andother enhancements are then used to safeguard and accelerate the method. For themodi�ed barrier method, fewer subproblems are used, each one is solved accurately,the barrier parameter is reduced slowly (and frequently need not be reduced at all).In Tables 3 and 4 these points are illustrated, with the two methods being applied toproblem 51 with n = 1000.For completeness we also illustrate the performance of a \naive" barrier methodon the same problem. The \naive" barrier method is simply a barrier method withoutthe special enhancements. It uses a line search based on inverse cubic interpolation,it does not use extrapolation, special initialization of �, or the 1-inverse formula, andit does not save the preconditioners from one subproblem to the next. The resultsfor this method are shown in Table 5.7 ConclusionsWe have compared the performance of a stabilized barrier method with the perfor-mance of a modi�ed-barrier method. Our past experience indicates that the stabilizedbarrier method is a robust and e�ective method for solving bound-constrained prob-lems. Our software for the stabilized barrier method is a result of much testingand enhancement, and represents a considerable improvement over \naive" barrier14
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Problem Name n1 Calculus of variations 1 100, 10002 Calculus of variations 2 100, 10003 Calculus of variations 3 100, 10006 Generalized Rosenbrock 100, 10008 Penalty 1 10009 Penalty 2 10010 Penalty 3 100012 Quadratic 100028 Extended Powell singular 100030 Trigonometric 10031 Brown almost-linear 10038 Tridiagonal 1 100039 Linear minimal surface 96140 Boundary-value problem 100041 Broyden tridiagonal nonlinear 100042 Extended ENGVL1 100043 Ext. Freudenstein and Roth 100045 Wrong extended Wood 100048 Extended Rosenbrock 100049 Extended Powell 100050 Tridiagonal 2 100051 Trigonometric 100052 Penalty 1 (2nd version) 100054 Toint 61 100055 Toint 62 1000102 Minpack-2 (DJOURB) 100, 1024105 Minpack-2 (DTOR) 100, 1024Table 1: List of test problems.
17



Problem n Modi�ed Stabilizedit ls cg total it ls cg total1 1000 78 258 432 690 49 83 212 2951 100 46 187 195 382 39 75 153 2282 1000 70 103 361 464 82 140 789 9292 100 33 46 86 132 44 68 144 2123 1000 77 144 448 592 97 167 834 10013 100 50 103 201 304 59 88 279 3676 1000 48 88 166 254 114 192 1321 15136 100 32 56 88 144 66 117 305 4228 1000 16 36 42 78 23 49 49 989 100 42 86 165 251 114 284 301 58510 1000 45 68 174 242 87 212 316 52812 1000 69 146 434 580 57 116 448 56428 1000 19 25 57 82 16 36 46 8230 100 32 52 90 142 36 57 86 14331 100 38 128 112 240 53 119 152 27138 1000 60 128 324 452 76 135 501 63639 961 56 128 572 700 98 243 1134 137740 1000 32 88 141 229 35 65 175 24041 1000 39 82 164 246 50 92 240 33242 1000 42 101 179 280 37 83 95 17843 1000 38 57 147 204 55 111 292 40345 1000 42 65 142 207 55 128 153 28148 1000 29 86 89 175 60 157 149 30649 1000 19 25 57 82 16 36 46 8050 1000 63 139 339 478 72 129 599 72851 1000 57 122 190 312 49 79 283 36252 1000 54 148 283 431 69 113 579 69254 1000 56 138 248 386 68 108 247 35555 1000 59 120 232 352 255 413 801 1214102 1024 91 151 685 836 82 134 573 707102 100 47 82 176 258 40 74 148 222105 1024 69 106 437 543 64 115 508 623105 100 44 69 157 226 37 71 120 191Totals 1592 3361 7613 10974 2154 4089 12078 16165Table 2: Results using (a) modi�ed barrier method, (b) stabilized barrier methodplus enhancements. Column \it" records the number of outer iterations, \ls" recordsthe number of gradient evaluations used in the line search, \cg" records the number ofgradient evaluations used in the inner iteration, and \total" records the total numberof gradient evaluations (\ls" plus \cg"). 18



� Individual Cumulative Gap rLit ls cg it ls cg total1:46 � 105 1 2 2 1 2 2 4 6:8 � 10�3 5:5� 10�61:46 � 104 5 9 29 6 11 31 42 1:1 � 10�2 6:7� 10�31:46 � 103 6 7 69 12 18 100 118 5:4 � 10�3 1:4� 10�31:46 � 102 5 7 30 17 25 130 155 2:6 � 10�3 2:9� 10�41:46 � 101 9 16 46 26 41 176 217 6:4 � 10�4 3:5� 10�61:46 � 100 11 18 62 37 59 238 297 8:5 � 10�5 1:2� 10�51:46 � 10�1 7 12 28 44 71 266 337 8:8 � 10�6 1:1� 10�51:46 � 10�2 3 4 13 47 75 279 354 8:8 � 10�7 1:0� 10�51:46 � 10�3� 1 2 2 48 77 281 358 8:8 � 10�8 2:8� 10�91:46 � 10�4� 1 2 2 49 79 283 362 8:8 � 10�9 1:8� 10�10Table 3: Using the stabilized barrier method to solve problem 51 with n = 1000.An � indicates subproblems where the 1-inverse formula for the search direction wasused. Column \it" records the number of outer iterations, \ls" records the numberof gradient evaluations used in the line search, \cg" records the number of gradientevaluations used in the inner iteration, and \total" records the total number of gra-dient evaluations (\ls" plus \cg"). The column \Gap" records the (scaled) dualitygap, and the column \krLk" records the norm of the (scaled) Lagrangian function.� Individual Cumulative Gap rL Infeasibility1:00 � 10�3 13 23 55 13 23 55 78 1:1� 10�2 2:1 � 10�3 5:7� 10�25:00 � 10�4 17 25 56 30 48 111 159 1:6� 10�4 5:5 � 10�7 1:2� 10�32:50 � 10�4 15 45 45 45 93 156 249 1:1� 10�6 1:5 � 10�6 7:9� 10�61:25 � 10�4 7 8 20 52 101 176 277 3:7� 10�9 3:5 � 10�7 2:7� 10�86:25 � 10�5 5 21 14 57 122 190 312 7:4� 10�11 7:7 � 10�7 7:6� 10�10Table 4: Using the modi�ed barrier method to solve problem 51 with n = 1000. Col-umn \it" records the number of outer iterations, \ls" records the number of gradientevaluations used in the line search, \cg" records the number of gradient evaluationsused in the inner iteration, and \total" records the total number of gradient eval-uations (\ls" plus \cg"). The column \Gap" records the (scaled) duality gap, thecolumn \krMk" records the norm of the (scaled) Lagrangian function, and the col-umn \Infeasibility" records the in�nity norm of the infeasibilities with respect to thebound constraints. 19



� Individual Cumulative Gap rL1:00 � 102 15 55 59 15 55 59 114 2:0� 10�3 3:8� 10�61:00 � 101 19 106 65 34 161 124 285 4:7� 10�4 3:6� 10�71:00 � 100 22 72 98 56 233 222 455 5:8� 10�5 8:7� 10�91:00 � 10�1 20 122 107 76 355 329 684 6:0� 10�6 5:1� 10�81:00 � 10�2 19 69 104 95 424 433 857 6:0� 10�7 4:3� 10�81:00 � 10�3 19 102 118 114 526 551 1077 6:0� 10�8 8:1� 10�81:00 � 10�4 19 59 97 133 585 648 1233 6:0� 10�9 2:7� 10�8Table 5: Using a naive barrier method to solve problem 51 with n = 1000. Column\it" records the number of outer iterations, \ls" records the number of gradient eval-uations used in the line search, \cg" records the number of gradient evaluations usedin the inner iteration, and \total" records the total number of gradient evaluations(\ls" plus \cg"). The column \Gap" records the (scaled) duality gap, and the column\krLk" records the norm of the (scaled) Lagrangian function.
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