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Abstract. In this paper we developed a general primal-dual nonlinear rescaling method with dynamic scaling
parameter update (PDNRD) for convex optimization. We proved the global convergence, established 1.5-
Q-superlinear rate of convergence under the standard second order optimality conditions. The PDNRD was
numerically implemented and tested on a number of nonlinear problems from COPS and CUTE sets. We
present numerical results, which strongly corroborate the theory.
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1. Introduction

The success of the primal-dual (PD) methods for linear programming (see [16]–[18],
[32]–[34] and references therein) has stimulated substantial interest in the primal-dual
approach for nonlinear programming calculations (see [10], [11], [22], [30]). The best
known approach for developing primal-dual methods is based on path-following ideol-
ogy (see e.g. [30]). It requires an unbounded increase of the scaling parameter to guar-
antee the convergence. Another approach (see [29]) is based on the nonlinear rescaling
(NR) methods (see [24]–[28]). The NR method does not require an unbounded increase
of the scaling parameter because it has an extra tool to control convergence: the Lagrange
multipliers vector. Each step of the NR method alternates the unconstrained minimiza-
tion of the Lagrangian for the equivalent problem with the Lagrange multipliers update.
The scaling parameter can be fixed or updated from step to step. Convergence of the
NR method under the fixed scaling parameter allows avoiding the ill-conditioning of
the Hessian of the minimized function. Moreover, under the standard second order opti-
mality conditions the NR methods converge with Q-linear rate for any fixed but large
enough scaling parameter.

To improve the rate of convergence one has to increase the scaling parameter from
step to step.Again, it leads to the ill-conditioned Hessian of the minimized function and to
a substantial increase of the computational work per Lagrange multipliers update. There-
fore, in [29] the authors introduced and analyzed the primal-dual NR method (PDNR).
The unconstrained minimization and the Lagrange multipliers update are replaced with
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solving the primal-dual system using Newton’s method. Under the standard second order
optimality conditions, the PDNR method converges with linear rate. Moreover, for any
given factor 0 < γ < 1 there exists such a fixed scaling parameter that from some point
on just one Newton step shrinks the distance between the current approximation and the
primal-dual solution by factor γ.

In this paper we show that the rate of convergence can be substantially improved
without compromising computational effort per step. The improvement is achieved by
increasing in a special way the scaling parameter from step to step.

The fundamental difference between the PDNR and the Newton NR methods ([19],
[26]) lies in the fact, that in the final phase of the computational process the former does
not perform the unconstrained minimization at each step. Therefore the ill-conditioning
becomes irrelevant for the PDNR method while for the Newton NR method it leads
to numerical difficulties. Moreover, the drastic increase of the scaling parameter in the
final stage makes the primal-dual Newton direction close to the corresponding direction
obtained by Newton’s method for solving the Lagrange system of equations that corre-
sponds to the active constraints. This is critical for improving the rate of convergence.

Our first contribution is the globally convergent primal-dual nonlinear rescaling
method with dynamic scaling parameter update (PDNRD). Our second contribution is
the proof that the PDNRD method with a special scaling parameter update converges
with 1.5-Q-superlinear rate under the standard second order optimality conditions. Our
third contribution is the MATLAB based code, which has been tested on a large number
of NLP including problems from COPS [5] and CUTE [6] sets. The obtained numerical
results corroborate the theory and show that the PD approach in the NR framework has
a good potential to become a competitive tool in the NLP area.

The paper is organized as follows. In the next section we consider the convex optimi-
zation problem with inequality constraints and discuss the basic assumptions. In section
3 we describe the classical NR multipliers method which has the Q-linear rate of conver-
gence under the fixed scaling parameter. In section 4 we describe and study the PDNRD
method. Our main focus is the asymptotic 1.5-Q-superlinear rate of convergence of the
PDNRD method. Section 5 describes the globally convergent PDNRD method together
with its numerical realization. Section 6 shows the numerical results obtained by test-
ing the PDNRD method. We conclude the paper by discussing issues related to future
research.

2. Statement of the problem and basic assumptions

Let f : IRn → IR1 be convex, all ci : IRn → IR1, i = 1, . . . , m be concave and smooth
functions. We consider a convex set � = {x ∈ IRn : ci(x) ≥ 0, i = 1, . . . , m} and the
following convex optimization problem

x∗ ∈ X∗ = Argmin{f (x)|x ∈ �}. (P)

We assume that:

A. The optimal set X∗ is not empty and bounded.
B. The Slater’s condition holds, i.e. there exists x̂ ∈ IRn : ci(x̂) > 0, i = 1, . . . , m.
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Due to the assumption B, the Karush-Kuhn-Tucker’s (K-K-T’s) conditions hold
true, i.e. there exists a vector λ∗ = (λ∗

1, . . . , λ
∗
m) ∈ IRm+ such that for the Lagrangian

L(x, λ) = f (x)− ∑m
i=1 λici(x) we have

∇xL(x∗, λ∗) = ∇f (x∗)−
m∑

i=1

λ∗
i ∇ci(x∗) = 0, (2.1)

and the complementary slackness conditions

λ∗
i ci(x

∗) = 0, i = 1, . . . , m (2.2)

hold true.
Let us assume that the active constraint set at x∗ is I ∗ = {i : ci(x∗) = 0} =

{1, . . . , r}. We consider the vectors functions cT (x) = (c1(x), . . . , cm(x)), c
T
(r)(x) =

(c1(x), . . . , cr (x)), and their Jacobians ∇c(x) = J (c(x)) and ∇c(r)(x) = J (c(r)(x)).

The sufficient regularity conditions

rank∇c(r)(x∗) = r, λ∗
i > 0, i ∈ I ∗ (2.3)

together with the sufficient condition for the minimum x∗ to be isolated

(∇2
xxL(x

∗, λ∗)y, y) ≥ ρ(y, y), ρ > 0,∀y �= 0 : ∇c(r)(x∗)y = 0 (2.4)

comprise the standard second order optimality conditions.

3. Equivalent problem and nonlinear rescaling method

Let −∞ < t0 < 0 < t1 < ∞.We consider a class� of twice continuously differentiable
functions ψ : (t0, t1) → IR, which satisfy the following properties

10. ψ(0) = 0.
20. ψ ′(t) > 0.
30. ψ ′(0) = 1.
40. ψ ′′(t) < 0.
50. there is a > 0 that ψ(t) ≤ −at2, t ≤ 0.
60. a) ψ ′(t) ≤ b1t

−1, b) −ψ ′′(t) ≤ b2t
−2, t > 0, b1 > 0, b2 > 0.

Let us consider a few transformations ψ ∈ �.
1. Exponential transformation [15]

ψ1(t) = 1 − e−t .

2. Logarithmic MBF [24]

ψ2(t) = ln(t + 1).
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3. Hyperbolic MBF [24]

ψ3(t) = t

1 + t
.

Each of the above transformations can be modified in the following way. For a given
−1 < τ < 0 we define quadratic extrapolation of the transformations 1. − 3. by
formulas

4.

ψqi (t) =
{
ψi(t), t ≥ τ,

qi(t) = ait
2 + bit + ci, t ≤ τ.

where ai, bi, ci we find from the following equations: ψi(τ) = qi(τ ), ψ
′
i (τ ) = q ′

i (τ ),

ψ ′′
i (τ ) = q ′′

i (τ ).We obtain a = 0.5ψ ′′(τ ), b = ψ ′(τ )−τψ ′′(τ ), c = ψ(τ)−τψ ′(τ )+
τ 2ψ ′′(τ ), so ψqi (t) ∈ C2. Such modification of logarithmic MBF was introduced in [3]
and successfully used for solving large-scale NLP (see [2], [3], [7], [20]). It is easy to
check that transformations 1.− 4. satisfy properties 10 − 60.

Modification 4. leads to transformations, which are defined on (−∞,∞) and along
with penalty function properties, have some extra important features. One can find other
examples of transformations with similar properties in [1], [3], [25].

For any given transformation ψ ∈ � and any k > 0 due to 10 − 30 we obtain

� =
{
x : k−1ψ(kci(x)) ≥ 0, i = 1, . . . , m

}
. (3.1)

Therefore for any k > 0 the following problem

x∗ ∈ X∗ = Argmin{f (x)|k−1ψ(kci(x)) ≥ 0, i = 1, . . . , m} (3.2)

is equivalent to the original problem P.The Classical Lagrangian L : IRn×IRm+×IR1++ →
IR1 for the equivalent problem (3.2)

L(x, λ, k) = f (x)− k−1
m∑

i=1

λiψ(kci(x)). (3.3)

is our main tool.
Let λ0 ∈ IRm++ be the initial Lagrange multipliers vector. We consider a mono-

tone increasing sequence {ks} : k0 > 0, lims→∞ ks = ∞ of scaling parameters. The
NR method with the dynamic scaling parameter update for a given scaling parameters
sequence {ks} generates the primal-dual sequence {xs, λs} as follows. Let us assume
that a primal-dual pair (xs, λs) ∈ IRn × IRm++ have been already found, we find the next
approximation (xs+1, λs+1) by the following formulas

xs+1 = argmin
{L(x, λs, ks) | x ∈ IRn

}
, (3.4)

or

xs+1 : ∇xL(xs+1, λs, ks) = ∇f (xs+1)−
m∑

i=1

ψ ′
(
ksci(x

s+1)
)
λsi∇ci(xs+1) = 0,

(3.5)
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and

λs+1
i = ψ ′

(
ksci(x

s+1)
)
λsi , i = 1, . . . , m. (3.6)

or

λs+1 = � ′
(
ksc(x

s+1)
)
λs, (3.7)

where � ′ (ksc(xs+1)
) = diag

(
ψ ′ (ksci(xs+1)

))m
i=1 .

The Nonlinear Rescaling (NR) method (3.4)–(3.7) is well defined due to the proper-
ties 40 −60 of transformationψ(t), convexity of the original problem P and assumption
A (see [1]).

Under the standard second order optimality conditions (2.4)–(2.5) the trajectory
{xs, λs} generated by (3.4)–(3.7) converges to the primal-dual solution with superlinear
rate when k0 > 0 is large enough (see ([24], [29]). In other words the following bounds
hold

‖xs+1 − x∗‖ ≤ ck−1
s ‖λs − λ∗‖, ‖λs+1 − λ∗‖ ≤ ck−1

s ‖λs − λ∗‖, (3.8)

where c > 0 is independent from {ks}.
Finding xs+1 requires solving an unconstrained minimization problem (3.4), which

is generally speaking an infinite procedure. The stopping criteria (see [26], [29]) allows
to replace xs+1 by an approximation x̄s+1, which can be found in a finite number of
Newton steps. If x̄s+1 is used in the formula (3.7) for the Lagrange multipliers update
then bounds similar to (3.8) remain true.

Let us consider the sequence {x̄s , λ̄s} generated by the following formulas

x̄s+1 : ‖∇xL(x̄s+1, λ̄s , ks)‖ ≤ σk−1
s ‖� ′

(
ksc(x̄

s+1)
)
λ̄s − λ̄s‖, (3.9)

λ̄s+1 = � ′
(
ksc(x̄

s+1)
)
λ̄s (3.10)

for some initial vector λ0 ∈ IRm++ of Lagrange multipliers and positive monotone increas-
ing sequence {ks} with k0 > 0 large enough.

By using considerations similar to those in [27] we can prove the following propo-
sition.

Proposition 1. If the standard second order optimality conditions hold and the Hessians
∇2f (x) and ∇2ci(x), i = 1, . . . , m satisfy the Lipschitz conditions

‖∇2f (x)− ∇2f (y)‖ ≤ L0‖x − y‖,
‖∇2ci(x)− ∇2ci(y)‖ ≤ Li‖x − y‖, i = 1, . . . , m, (3.11)

then there is k0 > 0 large enough, that for the primal-dual sequence {x̄s , λ̄s} generated
by formulas (3.9)–(3.10) the following estimations hold true and c > 0 is independent
from ks for all ks ≥ k0.

‖x̄s+1 − x∗‖ ≤ c(1 + σ)k−1
s ‖λ̄s − λ∗‖, ‖λ̄s+1 − λ∗‖ ≤ c(1 + σ)k−1

s ‖λ̄s − λ∗‖.
(3.12)



242 Igor Griva, Roman A. Polyak

To find an approximation x̄s+1 we use Newton’s method for solving the primal-dual
system that we consider in the next section. Generally speaking it requires several New-
ton steps to find x̄s+1. Then we update the Lagrange multipliers using x̄s+1 instead of
xs+1 in (3.7). The PDNRD method follows NR trajectory (x̄s , λ̄s) until the primal-dual
approximation reaches the neighborhood of the primal-dual solution. Then the PDNRD
method turns into Newton’s method for the Lagrange system of equations corresponding
to the active constraints. From this point on it requires only one Newton step to obtain
1.5-Q-superlinear rate of convergence.

4. Primal-dual NR method with dynamic scaling parameter update

In this section we describe and analyze the PDNR method with dynamic scaling param-
eter update (PDNRD).

In the following we use the vector norm ‖x‖ = max1≤i≤n |xi |, the matrix norm

‖Q‖ = max
1≤i≤n

(
n∑

j=1
|qij |

)

.

To measure the distance between the current approximation (x, λ) and the solution
we introduce the merit function:

ν(x, λ) = max

{

‖∇xL(x, λ)‖, − min
1≤i≤m

ci(x),

m∑

i=1

|λi ||ci(x)|, − min
1≤i≤m

λi,

}

. (4.1)

For a given x ∈ IRn, Lagrange multipliers vector λ ∈ IRm+ and the scaling parameter
k > 0 one step of the NR method is equivalent to solving the following primal-dual
systems

∇xL(x̂, λ, k) = ∇f (x̂)−
m∑

i=1

ψ ′ (kci(x̂)
)
λi∇ci(x̂) = ∇xL(x̂, λ̂) = 0, (4.2)

λ̂ = � ′ (kc(x̂)
)
λ, (4.3)

for x̂ and λ̂, where � ′(kc(x̂)) = diag(ψ(kci(x̂)))
m
i=1.

We are going to update the scaling parameter k > 0 at each step according to the
following formula

k̂ = ν(x̂, λ̂)−0.5. (4.4)

Let us first consider the Primal-Dual system

∇xL(x̂, λ̂) = ∇f (x̂)−
m∑

i=1

λ̂i∇ci(x̂) = 0, (4.5)

λ̂ = � ′ (kc(x̂)
)
λ. (4.6)
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We apply Newton’s method for solving system (4.5)–(4.6) for x̂ and λ̂ using (x, λ) as a
starting point.

Assuming that x̂ = x +�x, λ̂ = λ+�λ, and by linearizing (4.5)–(4.6) we obtain
the following system for finding the Primal-Dual Newton direction (�x,�λ)

∇f (x)+ ∇2f (x)�x −
m∑

i=1

(λi +�λi)(∇ci(x)+ ∇2ci(x)�x) = 0, (4.7)

λi +�λi = ψ ′
(
k(ci(x)+ ∇cTi (x)�x)

)
λi

= ψ ′ (kci(x)) λi + kψ ′′ (kci(x)) λi∇cTi (x)�x, i = 1, . . . , m. (4.8)

Ignoring terms of the second and higher orders and assuming that λ̄ = � ′ (kc(x)) λ we
can rewrite (4.7)–(4.8) as follows

∇2
xxL(x, λ)�x − ∇c(x)T �λ = −∇xL(x, λ) = −∇xL(·),

−k�� ′′ (kc(x))∇c(x)�x +�λ = λ̄− λ,

or
[∇2

xxL(·) −∇cT (·)
−k�� ′′ (·)∇c(·) Im

] [
�x

�λ

]

=
[−∇xL(·)
λ̄− λ

]

, (4.9)

where ∇c(·) = ∇c(x), � ′′(·) = � ′′ (kc(x)) = diag
(
ψ ′′ (kci(x))

)m
i=1 ,�= diag (λi)

m
i=1 and Im is an identity matrix in IRm,m. By introducing

N(·) =
[∇2

xxL(·) −∇cT (·)
−k�� ′′(·)∇c(·) Im

]

,

we can rewrite system (4.9) as

N(·)
[
�x

�λ

]

=
[−∇xL(·)
λ̄− λ

]

.

To make the matrixN(·) nonsingular for any (x, λ) we regularize the Hessian of the
Lagrangian

Nk(·) =
[∇2

xxL(·)+ 1
k2 In −∇cT (·)

−k�� ′′(·)∇c(·) Im

]

, (4.10)

where In is an identity matrix in IRn,n. The reason for choosing such a regularization
parameter will become clear later from the convergence proof. The choice guarantees
global convergence and does not compromise the rate of convergence.

For a given x ∈ IRn, Lagrange multipliers vector λ ∈ IRm+ and scaling parameter
k > 0 one step of the PDNRD method consists of the following operations:

1. Find the primal-dual Newton direction from the system

Nk(·)
[
�x

�λ

]

=
[−∇xL(·)
λ̄− λ

]

. (4.11)
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2. Find the new primal-dual vector

x̂ := x +�x, λ̂ := λ+�λ. (4.12)

3. Update the scaling parameters

k̂ = ν(x̂, λ̂)−0.5. (4.13)

The matrixNk(·) is often sparse, therefore the sparse numerical linear algebra technique
can be very efficient (see i.e. [21], [31]).

The following lemma guarantees that the method (4.11)–(4.13) is well defined.

Lemma 1. MatrixNk(x, λ) is nonsingular for any primal-dual vector (x, λ) ∈ IRn×IRm+
and positive scaling parameter k > 0.

Proof. We are going to show that equation Nk(·)w = 0, where w = (u, v) implies
w = 0 for any pair (x, λ) and scaling parameter k > 0.We can rewrite the system

[∇2
xxL(·)+ 1

k2 In −∇cT (·)
−k�� ′′ (·)∇c(·) Im

] [
u

v

]

=
[

0
0

]

as follows
(

∇2
xxL(x, λ)+ 1

k2 In

)

u− ∇c(x)T v = 0, (4.14)

−k�� ′′ (kc(x))∇c(x)u+ v = 0. (4.15)

By substituting the value of v from (4.15) into (4.14) we obtain the system

(

∇2
xxL(x, λ)+ 1

k2 In − k∇cT (x)� ′′ (kc(x))�∇c(x)
)

u = 0. (4.16)

Due to the convexity of the original problem P and property 40 the matrix

M(·) = ∇2
xxL(x, λ)+ 1

k2 In − k∇cT (x)� ′′ (kc(x))�∇c(x)

is positive definite for any k > 0. Therefore from (4.16) we have u = 0 and, conse-
quently, due to (4.15) v = 0. Lemma 1 is proven.

Let �ε = {y = (x, λ) | ‖y − y∗‖ ≤ ε}. We remind that I ∗ = {1, . . . , r} and
I 0 = {r + 1, . . . , m} are active and inactive sets of constraints respectively. Let us also
consider vector-functions c(r)(x), c(m−r)(x), their Jacobians ∇c(r)(x), ∇c(m−r)(x) and
the Lagrange multipliers vectors λ(r), λ(m−r), corresponding to the active and inactive
sets respectively. Also L(r)(x, λ(r)) = f (x)−λT(r)c(r)(x) is the Lagrangian correspond-
ing to the active set.

The following lemmas take place.
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Lemma 2. Let matrix A ∈ IRn,n be nonsingular and ‖A−1‖ ≤ M. Then there exists
ε > 0 small enough such that any matrixB ∈ IRn,n satisfying ‖A−B‖ ≤ ε is nonsingular
and the following bound holds

‖B−1‖ ≤ 2M.

Proof. Since the matrix A is nonsingular, we have

B = A− (A− B) = A(I − A−1(A− B)) = A(I − C).

Since ‖A−1‖ ≤ M, we can choose such ε > 0 small enough that

‖C‖2 ≤ 1

2
√
n
.

Therefore there exists matrix (I − C)−1 and we have

‖(I − C)−1‖ ≤ ‖I‖ + ‖C‖ + ‖C‖2 + · · · ≤ 1 +
(

1

2

)

+
(

1

2

)2

+ · · · ≤ 2.

Thus we have the following estimate

‖B−1‖ = ‖(I − C)−1A−1‖ ≤ ‖(I − C)−1‖‖A−1‖ ≤ 2M.

Lemma is proven.
It follows from (2.3) and (2.4) (see [23]) that the matrix

A =
[∇2

xxL(r)(x
∗, λ∗

(r)) −∇cT(r)(x∗)
∇c(r)(x∗) 0

]

has an inverse and there is M > 0 such that

‖A−1‖ ≤ M. (4.17)

Lemma 3. If the standard second order optimality conditions (2.3)–(2.4) and the Lips-
chitz conditions (3.11) for Hessians ∇2f (x), ∇2ci(x), i = 1, . . . , m are satisfied then
there exists such ε0 > 0 small enough that for any primal-dual pair y = (x, λ) ∈ �ε0

the following hold true

1. There exist 0 < L1 < L2 such that the merit function ν(y) yields

L1‖y − y∗‖ ≤ ν(y) ≤ L2‖y − y∗‖. (4.18)

2. Let D = diag(di)
r
i=1 be a diagonal matrix with nonnegative bounded from above

elements, i.e. max{di}ri=1 = d̄ < ∞. Then there exists k0 > 0 such that for any
k ≥ k0 and any y ∈ �ε0 the matrices

A(x, λ(r)) =
[∇2

xxL(r)(x, λ(r)) −∇cT(r)(x)
∇c(r)(x) 0

]

and

Bk(x, λ) =
[∇2

xxL(x, λ)+ 1
k2 In −∇cT(r)(x)

∇c(r)(x) 1
k
D

]

are nonsingular and the following bound holds

max
{
‖A−1(x, λ(r))‖, ‖B−1

k (x, λ)‖
}

≤ 2M. (4.19)
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Proof. 1. Keeping in mind that ν(y∗) = 0 the right inequality (4.18) follows from Lips-
chitz conditions (3.11) and the boundedness of �ε0 . Therefore there exists L2 > 0
such that

ν(y) ≤ L2‖y − y∗‖.
From a definition of a merit function (4.1) we have

‖∇xL(x, λ)‖ ≤ ν(y), (4.20)

− min
1≤i≤m

ci(x) ≤ ν(y), (4.21)

|λi ||ci(x)| ≤ ν(y), i = 1, . . . , m. (4.22)

Due to the standard second order optimality conditions there exists τ1 > 0 such that
ci(x) ≥ τ1, i ∈ I 0, if y ∈ �ε0 . Therefore from (4.22) we get

|λi | ≤ 1

τ1
ν(y) = C1ν(y), i ∈ I 0, (4.23)

where C1 = 1
τ1
. Due to the boundedness �ε0 there exists also τ2 > 0 such that

‖∇c(m−r)(x)‖ ≤ τ2 if y ∈ �ε0 . Thus taking into account (4.20) we have

‖∇xL(r)(x, λ(r))‖ ≤ ‖∇xL(x, λ)‖ + ‖∇cT(m−r)(x)λ(m−r)‖ ≤ C2ν(y), (4.24)

where C2 = 1 + (m − r)C1τ2. Also due to the standard second order optimality
conditions there exists τ3 > 0 such that λi ≥ τ3 for i ∈ I ∗ if y ∈ �ε0 . Combining
(4.21) and (4.22) we obtain

‖c(r)(x)‖ ≤ C3ν(y), (4.25)

where C3 = min{1, 1
τ3

}.
Let us linearize ∇xL(r)(x, λ(r)) and c(r)(x) at the solution (x∗, λ∗

(r)).

∇xL(r)(x, λ(r)) = ∇xL(r)(x∗, λ∗
(r))+ ∇2

xxL(r)(x
∗, λ∗

(r))(x − x∗)

−∇cT(r)(x∗)(λ(r) − λ∗
(r))+ O(n)‖x − x∗‖2, (4.26)

c(r)(x) = c(r)(x
∗)+ ∇c(r)(x∗)(x − x∗)+ O(r)‖x − x∗‖2. (4.27)

Keeping in mind K-K-T conditions we can rewrite (4.26)–(4.27) in a matrix form
[∇2

xxL(r)(x
∗, λ∗) −∇cT(r)(x∗)

∇c(r)(x∗) 0

] [
x − x∗
λ(r) − λ∗

(r)

]

=
[∇xL(r)(x, λ(r))+ O(n)‖x − x∗‖2

c(r)(x)+ O(r)‖x − x∗‖2

]

(4.28)
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Due to the standard second order optimality conditions the matrix

A(x∗, λ∗
(r)) =

[∇2
xxL(r)(x

∗, λ∗
(r)) −∇cT(r)(x∗)

∇c(r)(x∗) 0

]

is nonsingular (see e.g. [23]) and there existsM > 0 such that ‖A−1(x∗, λ∗
(r))‖ ≤ M.

Hence from (4.28) we have
∥
∥
∥
∥
x − x∗
λ(r) − λ∗

(r)

∥
∥
∥
∥ ≤ M max{C2, C3}ν(y)+ O‖y − y∗‖2.

Using (4.23) and assuming 1/L1 = max {C1, 2M max{C2, C3}} we obtain left in-
equality (4.18), i.e.

L1‖y − y∗‖ ≤ ν(y).

2. The bound (4.19) is a direct consequence of (4.17), Lemma 2 and the Lipschitz
conditions (3.11). Lemma 3 is proven.
We are ready to prove the main result. For the method (4.11)–(4.13) the following

theorem holds.

Theorem 1. If the standard second order optimality conditions (2.3)–(2.4) and the Lip-
schitz conditions (3.11) are satisfied then there exists ε0 > 0 small enough such that
for any primal-dual pair y = (x, λ) ∈ �ε0 only one step of PDNRD method (4.11)–
(4.13) is required to obtain the new primal-dual approximation (x̂, λ̂) that the following
estimation

‖ŷ − y∗‖ ≤ C‖y − y∗‖ 3
2 (4.29)

holds and C > 0 is a constant depending only on the problem data.

Proof. Let ε0 > 0 be small enough and y = (x, λ) ∈ �ε0 such that ‖y− y∗‖ = ε ≤ ε0.

Due to formulas (4.4) for the scaling parameter update and (4.18) from Lemma 3
we have

1√
L2
ε−

1
2 ≤ k ≤ 1√

L1
ε−

1
2 . (4.30)

We consider separately the active and the inactive constraints sets: I ∗ and I 0. We
can rewrite system (4.10) as follows






∇2
xxL(·)+ 1

k2 In −∇cT(r)(·) −∇cT(m−r)(·)
−k�(r)� ′′

(r) (·)∇c(r)(·) Ir 0
−k�(m−r)� ′′

(m−r) (·)∇c(m−r)(·) 0 Im−r









�x

�λ(r)
�λ(m−r)





=



−∇xL(·)
λ̄(r) − λ(r)
λ̄(m−r) − λ(m−r)



 , (4.31)
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where the second and the third systems of equations correspond to the active and the
inactive sets respectively. First we consider the third system separately.After rearranging
the terms we obtain

λ̂(m−r) := λ(m−r) +�λ(m−r) = λ̄(m−r) + k�(m−r)� ′′
(m−r) (·)∇c(m−r)(·)�x.

Therefore for any i ∈ I 0 we have

λ̂i = λi +�λi = ψ ′(kci(x))λi + kψ ′′(kci(x))λi∇ci(x)T �x.
We remind that ψ ′(t) ≤ b1t

−1,−ψ ′′(t) ≤ b2t
−2, t ≥ 0, b1 ≥ 0, b2 ≥ 0. Also due to

the standard second order optimality conditions and the boundedness �ε0 there exists
η1 > 0, η2 > 0, η3 > 0 such that ci(x) ≥ η1, ‖∇ci(x)‖ ≤ η2, ‖�x‖ ≤ η3, i ∈ I 0 if
(x, λ) ∈ �ε0 . Using formula (4.4) for the scaling parameters update, keeping in mind
that |λi | ≤ ε for i ∈ I 0 and formula (4.30) we get

|λ̂i | ≤ b1

kη1
λi + b2η2η3

kη2
1

λi ≤ C4ε
3
2 , i ∈ I 0, (4.32)

where C4 =
√
L2b1
η1

+
√
L2b2η2η3

η2
1

.

Now we concentrate on the analysis of the primal-dual system, which corresponds to
the active constraints. The first and the second equations of system (4.31) are equivalent
to
[

∇2
xxL(·)+ 1

k2 In −∇cT(r)(·)
−k�(r)� ′′

(r) (·)∇c(r)(·) Ir

][
�x

�λ(r)

]

=
[−∇xL(·)+ ∇cT(m−r)(·)�λ(m−r)
λ̄(r) − λ(r)

]

.

By multiplying the second equation of the system by
[−k�(r)� ′′(·)]−1 we obtain




∇2
xxL(·)+ 1

k2 In −∇cT(r)(·)
∇c(r)(·)

[
−k�(r)� ′′

(r)(·)
]−1




[
�x

�λ(r)

]

=



−∇xL(·)+ ∇cT(m−r)(·)�λ(m−r)
[
−k�(r)� ′′

(r)(·)
]−1

(λ̄(r) − λ(r))



 . (4.33)

Keeping in mind that ci(x∗) = 0 for i ∈ I ∗ and using the Lagrange formula we have

(λ̄i − λi)(−kλiψ ′′(·))−1 = (
λiψ

′(kci(·))− λiψ
′(kci(x∗))

)
(−kλiψ ′′(·))−1

= λikψ
′′(ξi)(ci(·)− ci(x

∗))(−kλiψ ′′(·))−1 = −ψ ′′(ξi)(ψ ′′(·))−1ci(·),
where ξi = kθici(·) + k(1 − θi)ci(x

∗) = kθici(·), 0 < θi < 1. Therefore the system
(4.33) is equivalent to



∇2
xxL(·)+ 1

k2 In −∇cT(r)(·)
∇c(r)(·)

[
−k�(r)� ′′

(r)(·)
]−1




[
�x

�λ(r)

]

=



−∇xL(·)+ ∇cT(m−r)(·)�λ(m−r)

−� ′′
(r)(ξ)

[
� ′′
(r)(·)

]−1
c(r)(·)



 ,
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where � ′′
(r)(ξ) = diag(ψ ′′(ξi))ri=1, or

B(·)�yb = b(·),
where

B(·) =



∇2
xxL(·)+ 1

k2 In −∇cT(r)(·)
∇c(r)(·)

[
−k�(r)� ′′

(r)(·)
]−1



 ,

b(·) =



−∇xL(·)+ ∇cT(m−r)(·)�λ(m−r)

−� ′′
(r)(ξ)

[
� ′′
(r)(·)

]−1
c(r)(·)





and �yb = (�x,�λ(r)).

We are going to show that sequence generated by (4.11)–(4.12) is close to the one that
generated bi Newton’s method for the Lagrange system of equations that corresponds
to the active constraints

∇L(r)(x, λ(r)) = ∇f (x)− ∇cT(r)(x)λ(r) = 0, (4.34)

c(r)(x) = 0. (4.35)

By linearizing the equations (4.34)–(4.35) we obtain the following linear system for
finding the Newton direction

[∇2
xxL(r)(·) −∇cT(r)(·)

∇c(r)(·) 0

] [
�x′
�λ′

(r)

]

=
[−∇xL(r)(·)

−c(r)(·)
]

,

or

A(·)�y′
a = a(·),

where

A(·) =
[∇2

xxL(·) −∇cT(r)(·)
∇c(r)(·) 0

]

, a(·) =
[−∇xL(r)(·)

−c(r)(·)
]

and �y′
a = (�x′,�λ′

(r)). The new primal-dual approximation is obtained by formulas

x̂′ = x +�x′, λ̂′
(r) = λ(r) +�λ′

(r), (4.36)

or

ŷ′ = y +�y′
a.

Let us estimate ‖ŷ(r) − y∗
(r)‖, where ŷ(r) = (x̂, λ̂(r)) is generated by (4.11)–(4.13).

ŷ(r) − y∗
(r) = y(r) +�yb − y∗

(r)

= y(r) +�y′
a +�yb −�y′

a − y∗
(r) = ŷ′

(r) − y∗
(r) −�y′

a +�yb.
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Therefore

‖ŷ(r) − y∗
(r)‖ ≤ ‖y′

(r) − y∗
(r)‖ + ‖�y′

a −�yb‖ (4.37)

First let us estimate ‖�y′
a − �yb‖. Due to Lemma 3 there exist inverse matrices

A−1 = A−1(·) and B−1 = B−1(·) and for a = a(·), b = b(·) we have

‖�y′
a −�yb‖ = ‖A−1a − B−1b‖ = ‖A−1a − B−1a + B−1a − B−1b‖

= ‖
(
A−1 − B−1

)
a + B−1(a − b)‖ ≤ ‖A−1 − B−1‖‖a‖ + ‖B−1‖‖a − b‖

≤ ‖A−1‖‖A− B‖‖B−1‖‖a‖ + ‖B−1‖‖a − b‖. (4.38)

We consider the following matrix

A− B =




∑m
i=r+1 λi∇2ci(x)− 1

k2 In 0

0 − 1
k

[
�(r)�

′′
(r)(·)

]−1





Due to formulas (4.4), (4.18), (4.25) and (4.30) we obtain

|kci(·)| ≤ C3L2√
L1
ε

1
2 , i ∈ I ∗. (4.39)

and hence there is η4 > 0 such that

|ψ ′′(kci(·))| ≥ 1

η4
. (4.40)

Due to boundedness of �ε0 there exists τ4 > 0 such that for y ∈ �ε0 we have

‖∇2ci(x)‖ < τ4, i ∈ I0. (4.41)

Therefore keeping in mind formulas (4.4), (4.30), (4.40) and (4.41) we have

‖A− B‖ ≤ max
{
(τ4(m− r)+ L2)ε,

√
L2η4ε

1
2

}
=

√
L2η4ε

1
2 (4.42)

for 0 < ε ≤ ε0 small enough.
Let us now estimate

‖a − b‖ =
∥
∥
∥
∥
∥

−∇xL(r)(·)+ ∇xL(·)− ∇cT(m−r)(·)�λ(m−r)
−c(r)(·)+ (

� ′′(ξ)
) [
� ′′(kc(r)(·)

]−1
c(r)(·)

∥
∥
∥
∥
∥
. (4.43)

For the first component we have

‖ − ∇xL(r)(·)+ ∇xL(·)− ∇cT(m−r)(·)�λ(m−r)‖
= ‖ − ∇xL(r)(·)+ ∇xL(r)(·)− ∇cT(m−r)(·)λ(m−r) − ∇cT(m−r)(·)�λ(m−r)‖
= ‖∇cT(m−r)(·)(λ(m−r) +�λ(m−r))‖ = ‖∇cT(m−r)(·)λ̂(m−r)‖ ≤ η2C4ε

3
2
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For the second component of (4.43), using the Lagrange formula 1 for i ∈ I ∗ we obtain
∣
∣
∣
∣

(
ψ ′′(ξi)

ψ ′′(kci(·)) − 1

)

ci(·)
∣
∣
∣
∣ ≤

∣
∣
∣
∣
ψ ′′(ξi)− ψ ′′(kci(·))

ψ ′′(kci(·))
∣
∣
∣
∣ |ci(·)|

≤ |ψ ′′′(ξ̄i )||ξi − kci(·)|
|ψ ′′(kci(·))| |ci(·)| ≤ |ψ ′′′(ξ̄i )||kci(·)(θi − 1)|

|ψ ′′(kci(·))| |ci(·)|,

where ξ̄i = θ̄iξi+k(1− θ̄i )ci(·) = kci(·)(θ̄iθi+1− θ̄i ).Due to (4.39) there exist η5 > 0
such that for i ∈ I ∗

|ψ ′′′(ξ̄i )| ≤ η5.

Thus taking into consideration formulas (4.4), (4.18), (4.25), (4.30), (4.39) and (4.40)
we obtain for i ∈ I ∗

|ψ ′′′(ξ̄i )||kci(·)(1 − θi)|
|ψ ′′(kci(·))| |ci(·)| ≤ η4η5(1 − θ)C2

3L
2
2L

− 1
2

1 ε
3
2 = C5ε

3
2 ,

where θ = min1≤i≤r θi .
Finally combining formulas (4.4), (4.19), (4.24), (4.25), (4.30), (4.38) and (4.42) we

have

‖�y′
a −�yb‖ ≤ ‖A−1‖‖A− B‖‖B−1‖‖a‖ + ‖B−1‖‖a − b‖

≤ 4M2
√
L2η4 max{C2, C3}L2ε

3
2 + 2M max{η2C4, C5}ε 3

2 = C6ε
3
2 . (4.44)

Due to quadratic convergence of Newton’s method for solving Lagrange system of
equations that corresponds to the active constraints (see [23]) from (4.36) we obtain

‖ŷ′
(r) − y∗

(r)‖ ≤ C0ε
2, (4.45)

where ŷ′
(r) = (x̂′, λ̂′

(r)) and y∗
(r) = (x∗, λ∗

(r)).

Therefore combining (4.37), (4.44) and (4.45) we obtain

‖ŷ(r) − y∗
(r)‖ ≤ ‖ŷ′

(r) − y∗
(r)‖ + ‖�y′

a −�yb‖ ≤ C0ε
2 + C6ε

3
2 ≤ C7ε

3
2 . (4.46)

Finally combining (4.32) and (4.46) for ŷ = (x̂, λ̂) we have

‖ŷ − y∗‖ ≤ max{C4, C7}ε 3
2 = Cε

3
2 = C‖y − y∗‖ 3

2 .

The proof of Theorem 1 is complete.

Remark 1. It is well known (see [23]) that under the standard second order optimality
conditions Newton’s method for Lagrange system of equations associated with equal-
ity constraints locally generates primal-dual system, that converges to the primal-dual
solution quadratically. This fact played an important role in our convergence proof. A
number of penalty and augmented Lagrangian type methods that asymptotically produce
primal-dual direction close to the Newton direction were considered in [8, 9, 12–14, 34],
where asymptotic linear and superlinear rates of convergence were observed under the
standard second order optimality conditions.

1 Due to (4.39) we obtain kci (x) > −0.5 for i ∈ I ∗. Therefore all the transformations described in section
3 infinitely times differentiable in �ε0 .
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Remark 2. It follows from the proof that the regularization term 1
k2 In does not compro-

mise the rate of convergence. On the other hand, we will see in the next section that this
term also insures the global convergence of the algorithm.

Remark 3. The proof of Theorem 1does not require convexity assumptions. The con-
vexity of function f (x) and concavity of function ci(x) are used in the next section to
prove the global convergence of the PDNRD method.

5. Globally convergent PDNRD method

In this section we describe a globally convergent primal-dual NR algorithm with dy-
namic scaling parameter update that has the asymptotic 1.5-Q-superlinear rate of conver-
gence. At each iteration the algorithm solves system (4.11). If the primal-dual direction
(�x,�λ) does not produce the superlinear reduction of the merit function, then the
primal direction�x is used for minimization L(x, λ, k) in x. Therefore convergence to
the neighborhood of the primal-dual solution is guaranteed by NR method (3.9)–(3.10).
Eventually in the neighborhood of the primal-dual solution due to Theorem 1 one step
of the PDNRD method (4.11) –(4.13) will be enough to obtain the desired 1.5-Q-super-
linear reduction of the merit function and the bound (4.29) will take place. Figures 1
and 2 describe the PDNRD algorithm. It has some similarities to the globally convergent
Newton’s method for unconstrained optimization when the Newton direction with step-
length is used at each step to guarantee convergence. From some point on the steplength
becomes equal one and “pure” Newton’s method converges with quadratic rate.

The following lemma guarantees global convergence of the PDNRD method. Let us
consider the iterative method

Nk(x
s, λ)

[
�x

�λ

]

=
[−∇xL(xs, λ)

λ̄− λ

]

, (5.1)

αs : L(x + αs�x, λ, k)− L(x, λ, k) ≤ ηαs(∇L(x, λ, k),�x), (5.2)

Step 1: Initialization:
An initial primal approximation x0 ∈ IRn is given.
An accuracy parameter ε > 0 and the initial scaling paramter k > 0 are given.
Parameters α > 1, 0 < γ < 1, 0 < η < 0.5 σ > 0, θ > 0 are given.
Set x := x0, λ0 := (1, . . . , 1) ∈ IRm, r := ν(x, λ), λg := λ0.

Step 2: If r ≤ ε, Stop, Output: x, λ.
Step 3: Find direction: (�x,�λ) := PrimalDualDirection(x, λ).

Set x̂ := x +�x, λ̂ := λ+�λ.

Step 4: If ν(x̂, λ̂) ≤ min{r 3
2 −θ , 1 − θ}, Set x := x̂, λ := λ̂, r := ν(x, λ), k := max{ 1√

r
, k}, Goto Step 2.

Step 5: Decrease t ≤ 1 until L(x + t�x, λg, k)− L(x, λg, k) ≤ ηt (∇L(x, λg, k),�x)
Step 6: Set x := x + t�x, λ̂ := λgψ

′(kc(x + t�x)).

Step 7: If ‖∇xL(x, λg, k)‖ ≤ σ
k
‖λ̂− λg‖, Goto Step 9.

Step 8: Find direction: (�x,�λ) := PrimalDualDirection(x, λg), Goto Step 5.
Step 9: If ν(x, λ̂) ≤ γ r, Set λ := λ̂, λg := λ̂, r := ν(x, λ), k := max{ 1√

r
, k}, Goto Step 2.

Step 10: Set k := kα, Goto Step 8.

Fig. 1. PDNRD algorithm
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function (�x,�λ) := PrimalDualDirection(x, λ)

begin

λ̄ := ψ ′(kc(x))λ
Solve PDNR system:

[∇2
xxL(x, λ)+ 1

k2 I −∇cT (x)
−k� ′′ (kc(x))�∇c(x) I

] [
�x

�λ

]

=
[−∇xL(x, λ)

λ̄− λ

]

,

where � ′′ (kc(x)) = diag
(
ψ ′′ (kci (x))

)m
i=1 ,� = diag (λi)

m
i=1

end

Fig. 2. Newton PDNRD direction

where 0 < η < 1.

xs+1 := xs + αs�x
s. (5.3)

We find the steplength αs from P. Wolfe’s condition [22].

Lemma 4. For any primal-dual pair (x, λ) /∈ �ε0 and fixed λ ∈ IRm++ and k > 0 method
(5.1)–(5.3) generates the primal-dual sequence that converges to the unconstrained min-
imizer of L(x, λ, k) in x.

Proof. We can rewrite system (4.11) as follows.
(

∇2
xxL(x

s, λ)+ 1

k2 In)

)

�xs − ∇c(xs)T �λ = −∇xL(xs, λ) = −∇xL(·), (5.4)

−k�� ′′ (kc(xs)
)∇c(xs)�xs +�λ = λ̄− λ, (5.5)

where λ̄ = λ� ′(kc(xs)).
By substituting the value of �λ from (5.5) into (5.4) the primal Newton direction

one can find from the following system

M(xs, λ, k)�xs = −∇xL(xs, λ̄) = −∇xL(xs, λ, k),
where

M(·) = M(xs, λ, k) = ∇2
xxL(x

s, λ)+ 1

k2 In − k∇cT (xs)� ′′ (kc(xs)
)
�∇c(xs).

Due to formula (4.4) the scaling parameter k > 0 increases unboundedly only when
(x, λ) approaches the solution. It means there is a bound k̄ > 0 such that for any
(x, λ) /∈ �ε0 the scaling parameter k ≤ k̄.

Due to the convexity of f (x), concavity of ci(x), transformation properties 40, and
the regularization term 1

k2 In the matrixM(·) is positive definite with uniformly bounded

condition number for all s, and k ≤ k̄,, i.e.

m1(x, x) ≤ (M(·)x, x) ≤ m2(x, x) ,∀x ∈ IRn
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and 0 < m1 < m2. It implies that �xs is a descent direction for minimization of
L(x, λ, k) inx.. In addition if the steplength satisfiesWolfe’s condition we have lims→∞ ‖
∇xL(xs, λ, k)‖ = 0 (see e.g.[22]). Therefore for any given (λ, k) ∈ IRm+1

++ the sequence
generated by method (5.1)–(5.3) converges to the unconstrained minimizer of L(x, λ, k)
in x. Lemma 4 is proven.

Combining the results of Proposition 1, Theorem 1 and Lemma 4 together we obtain
the following.

Theorem 2. Under the assumptions of Theorem 1 the PDNRD method generates the
primal-dual sequence that converges to the primal-dual solution with asymptotic 1.5-
Q-superlinear rate of convergence.

The PDNRD algorithm uses the primal Newton direction with steplength and fol-
lowing the NR path until the primal-dual approximation reaches the neighborhood�ε0 .

Then due to Theorem 1 it requires at most O(log log ε−1) steps to find the primal-dual
solution with accuracy ε > 0. The neighborhood �ε0 is unknown a priori. Therefore
the PDNRD may switch to Newton’s method for primal-dual system (4.5)-(4.6) prema-
turely, before (x, λ) reaches�ε0 .Then PDNRD algorithm will recognize this in less than
O(log log ε−1) steps and will continue following the NR trajectory with much bigger
value of scaling parameter k > 0.

The algorithm has been implemented in MATLAB and tested on a variety of prob-
lems. The following section presents some numerical results from the testing.

6. Numerical results

Tables 1–12 present the performance of the PDNRD method on some problems from
COPS [5] and CUTE [6] sets. In our calculations we use transformation ψq2 introduced
in section 3. We show the number of variables n and constraints m. Then we show the

Table 1. CUTE, aircrfta: n = 5, m = 5, linear objective, quadratic constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 4.031e+02 6.5281e+03 0.0000e+00 2.8370e+00 0
1 2.709e−07 6.1602e−02 1.8062e−07 3.7308e−05 4
2 3.974e−08 1.3987e−06 7.6025e−14 1.4923e−05 1
3 9.523e−16 1.7577e−10 2.6191e−20 9.2782e−11 1
Total number of Newton steps 6

Table 2. CUTE, airport: n = 84, m = 210, linear objective, quadratic constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 1.345e+07 1.6597e+06 3.4666e+02 1.0360e+02 0
1 4.801e+04 1.0268e+03 7.2841e+01 2.9730e−03 12
2 4.795e+04 2.2093e+00 1.3615e+00 3.0112e−07 13
3 4.795e+04 1.0899e−03 4.9758e−02 7.0738e−08 3
4 4.795e+04 3.9039e−05 1.0174e−03 2.6057e−09 2
5 4.795e+04 3.2575e−08 2.9585e−10 3.9753e−11 1
6 4.795e+04 7.1054e−12 5.5471e−14 1.7153e−14 1
Total number of Newton steps 32
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Table 3. CUTE, avgasa: n = 6, m = 18, quadratic objective, linear constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 −4.071e+00 4.4312e+00 9.0000e+00 −0.0000e+00 0
1 −4.175e+00 1.8651e−03 1.5612e−01 3.9168e−03 17
2 −4.169e+00 5.0646e−03 3.7190e−03 2.8939e−04 10
1 −4.169e+00 1.5713e−09 3.4780e−05 3.5657e−05 2
2 −4.169e+00 1.4853e−08 3.0974e−06 1.3140e−05 1
3 −4.169e+00 2.5863e−09 3.4712e−07 3.9769e−06 1
4 −4.169e+00 1.4468e−10 2.5983e−08 4.7697e−07 1
5 −4.169e+00 1.7776e−12 7.9031e−10 1.8035e−08 1
6 −4.169e+00 2.5008e−15 5.1032e−12 1.2809e−10 1
7 −4.169e+00 4.2327e−16 2.9326e−15 7.5273e−14 1
Total number of Newton steps 35

Table 4. COPS: Journal bearing: n = 5000, m = 5000, nonlinear objective, bounds

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 −4.504e+02 5.1364e+01 1.6229e+03 0.0000e+00 0
1 −8.002e−02 9.1922e−08 9.2602e−03 7.0564e−03 20
2 −1.550e−01 9.3995e−13 1.6896e−05 3.4093e−05 7
3 −1.550e−01 1.4592e−15 9.1966e−09 6.0043e−07 4
4 −1.550e−01 7.7398e−17 1.1702e−10 1.3002e−08 2
5 −1.550e−01 6.2450e−17 1.5082e−11 2.7984e−09 1
6 −1.550e−01 6.5919e−17 1.1229e−12 4.4897e−10 1
7 −1.550e−01 6.5919e−17 6.5135e−14 5.9776e−11 1
8 −1.550e−01 6.2450e−17 3.9621e−15 6.6580e−12 1
Total number of Newton steps 37

Table 5. CUTE: biggsb2: n = 1000, m = 1998, quadratic objective, bounds

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 −4.797e+00 3.1761e+01 8.9910e+02 −0.0000e+00 0
1 2.566e−02 9.8864e−02 1.7369e−05 7.6468e−04 12
2 1.500e−02 1.5879e−13 2.0104e−06 1.2438e−05 4
3 1.500e−02 3.3544e−14 3.1460e−07 2.6468e−06 1
4 1.500e−02 3.9262e−15 1.8169e−08 1.8039e−07 1
5 1.500e−02 4.4409e−16 1.2791e−10 1.3011e−09 1
6 1.500e−02 4.1517e−16 3.1744e−14 4.2613e−12 1
Total number of Newton steps 20

objective function value, the norm of the gradient of the Lagrangian, the complemen-
tarity violation, the primal-dual infeasibility, and the number of Newton steps required
to reduce the merit function by an order of magnitude.

One of the most important observations following from the obtained numerical re-
sults is significant acceleration of convergence of the PDNRD method when the primal-
dual sequence approaches the solution. It is in full correspondence with Theorem 1. For
all problems we observed the “hot” start phenomenon: from some point on only one
Newton step is required to reduce the value of the merit function at least by the order of
magnitude.
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Table 6. CUTE: congigmz: n = 3, m = 5, minimax: linear objective, nonlinear constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 1.112e+04 8.5085e+03 3.6000e+01 1.4000e+01 0
1 3.321e+01 1.5855e+00 6.8324e+00 0.0000e+00 20
2 3.412e+01 6.5803e−03 7.5631e−01 1.4072e−01 7
3 2.800e+01 1.2877e−02 1.0537e−03 1.2996e−04 4
4 2.800e+01 3.9900e−07 2.8043e−05 1.5627e−06 2
5 2.800e+01 7.8753e−10 1.3920e−09 4.7149e−08 1
6 2.800e+01 1.9984e−15 3.9972e−13 1.0409e−11 1
7 2.800e+01 1.7764e−15 8.2580e−16 0.0000e+00 1
Total number of Newton steps 36

Table 7. CUTE: dtoc5: n = 998, m = 499, minimax: quadratic objective, quadratic constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 5.020e+02 1.0020e+03 0.0000e+00 1.0020e+00 0
1 1.536e+00 6.5637e−07 2.3048e−03 1.1068e−04 5
2 1.535e+00 2.1110e−09 3.3520e−06 1.6171e−07 2
3 1.535e+00 4.7321e−13 3.3241e−07 1.6556e−09 1
4 1.535e+00 4.6872e−15 2.0525e−08 1.0679e−10 1
5 1.535e+00 1.1015e−15 8.4896e−10 4.7902e−12 1
6 1.535e+00 1.7208e−15 1.7808e−11 1.0170e−13 1
7 1.535e+00 1.2546e−15 5.4923e−14 4.2414e−16 1
Total number of Newton steps 12

Table 8. CUTE: gilbert: n = 1000, m = 1, quadratic objective, quadratic constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 1.250e+10 1.5811e+08 0.0000e+00 5.0000e+04 0
1 4.821e+02 1.3971e−07 1.5065e+00 9.3099e−02 25
2 4.820e+02 9.2648e−07 1.3036e−01 7.4314e−03 5
3 4.820e+02 2.1307e−04 2.5920e−02 1.4683e−03 1
4 4.820e+02 1.5072e−05 3.0774e−03 1.7412e−04 1
5 4.820e+02 3.4087e−07 2.7104e−04 1.5334e−05 1
6 4.820e+02 1.8024e−10 3.6471e−08 9.9661e−07 1
7 4.820e+02 8.6531e−13 6.5325e−10 1.7851e−08 1
8 4.820e+02 5.5511e−16 1.5904e−12 4.3460e−11 1
9 4.820e+02 3.3307e−16 1.7876e−16 4.8850e−15 1
Total number of Newton steps 37

Table 9. Hock & Schittkowski 117: n = 15, m = 20, quadratic objective, quadratic constraints and bounds

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 5.436e+04 4.9754e+04 1.0800e+02 3.6000e+01 0
1 4.212e+02 7.6243e+00 9.6041e+00 5.5393e+00 62
2 3.235e+01 1.3047e−03 3.4444e−03 6.6456e−05 27
3 3.235e+01 3.2383e−07 1.5505e−04 8.0089e−06 2
4 3.235e+01 2.9211e−08 1.7757e−07 6.4741e−07 1
5 3.235e+01 2.2220e−11 8.2702e−10 5.5118e−09 1
6 3.235e+01 7.1054e−15 4.9593e−13 3.9804e−12 1
Total number of Newton steps 94
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Table 10. CUTE: optctrl6 n = 118, m = 80, quadratic objective, quadratic constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 1.610e+06 2.4981e+06 1.5601e+06 9.8000e+00 0
1 1.937e+03 2.3443e−02 5.1348e+02 1.3507e−02 13
2 2.048e+03 9.4961e−09 8.8005e+01 1.5054e−03 12
3 2.048e+03 3.2521e−06 2.7358e+00 4.4311e−05 7
4 2.048e+03 2.4424e−08 4.6971e−01 7.5977e−06 2
5 2.048e+03 3.3227e−09 5.7014e−02 9.2203e−07 2
6 2.048e+03 3.6 343e−09 4.8080e−03 7.7753e−08 2
7 2.048e+03 2.6724e−07 2.7814e−04 4.4978e−09 1
8 2.048e+03 2.5466e−11 5.3345e−09 1.7679e−10 1
9 2.048e+03 2.5580e−11 2.0977e−10 6.9508e−12 1
10 2.048e+03 2.7057e−11 8.2480e−12 2.7331e−13 1
Total number of Newton steps 42

Table 11. CUTE: optmass n = 126, m = 105, quadratic objective, linear and quadratic constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 −9.642e−01 1.0025e+00 2.1000e+01 1.0000e−02 0
1 3.233e−02 2.8648e−06 2.7441e−01 8.1574e−03 91
2 −1.511e−01 1.3159e−04 6.6208e−03 9.0302e−04 25
3 −1.517e−01 2.8382e−05 4.6813e−04 5.9219e−05 7
4 −1.517e−01 7.2289e−09 1.0644e−05 2.7303e−05 1
5 −1.517e−01 3.0537e−11 3.5932e−07 1.5766e−06 1
6 −1.517e−01 1.1965e−12 7.8788e−09 8.6149e−09 1
7 −1.517e−01 2.0487e−15 5.0968e−11 2.6272e−12 1
8 −1.517e−01 5.5511e−17 2.5146e−14 1.3461e−15 1
Total number of Newton steps 128

Table 12. COPS: Isometrization of α -pinene n = 4000, m = 4000, nonlinear objective, nonlinear constraints

it f ‖∇L(x, λ)‖ gap constr violat # of steps

0 1.096e+10 9.6378e+10 0.0000e+00 2.3600e+01 0
1 2.095e+01 6.1850e−04 2.6426e+00 4.1064e−05 17
2 1.989e+01 1.0998e−01 2.5621e−01 2.8963e−06 4
3 1.987e+01 2.9277e+00 1.6708e−02 2.4864e−07 2
4 1.987e+01 3.0175e−04 9.4867e−04 2.1777e−08 2
1 1.987e+01 1.2649e−03 2.1393e−06 1.3047e−09 1
2 1.987e+01 4.4104e−06 1.1108e−07 7.1941e−11 1
3 1.987e+01 1.4076e−08 5.5255e−09 3.6255e−12 1
4 1.987e+01 1.5019e−09 2.5360e−10 1.6685e−13 1
Total number of Newton steps 29

7. Concluding remarks

Theoretical and numerical results obtained for the PDNRD method emphasize the fun-
damental difference between the primal-dual NR approach and Newton NR methods
[19], [26], which are based on sequential unconstrained minimization L(x, λ, k) fol-
lowed by the Lagrange multipliers update. The Newton NR method converges globally
with a fixed scaling parameter, keeps stable the Newton area for the unconstrained min-
imization and allows the observation of the “hot start" phenomenon [19], [24]. It leads
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to asymptotic linear convergence with a given factor 0 < γ < 1 in one Newton step.
However, the unbounded increase of the scaling parameter compromises convergence,
since the Newton area for unconstrained minimization shrinks to a point. Moreover, in
the framework of the NR method, any drastic increase of the scaling parameter after the
Lagrange multipliers update leads to a substantial increase of the computational work per
update because several Newton steps are required to get back to the NR trajectory. The
situation is fundamentally different with Newton’s method for the primal-dual system
(4.5)–(4.6) in the neighborhood of �ε0 . The drastic increase of the scaling parameter
does not increase the computational work per step. Just the opposite: by using (4.13) for
the scaling parameter update we obtain the Newton direction for the primal-dual sys-
tem (4.5)–(4.6) close to the Newton direction for the Lagrange system of equations that
corresponds to the active set. The latter direction guarantees the quadratic convergence
of the corresponding primal-dual sequences ([23]). Therefore the PDNRD uses the best
properties of both Newton’s NR method far from the solution and Newton’s method for
the primal-dual system (4.5)–(4.6) in the neighborhood of the solution. At the same time
PDNRD is free from their fundamental drawbacks.

The PDNRD method recalls the situation in unconstrained smooth optimization,
in which Newton’s method with steplength is used to guarantee global convergence.
Locally the steplength automatically becomes equal one and Newton’s method gains the
asymptotic quadratic convergence.

A few important issues remain for future research. The NR multipliers method with
inverse proportional scaling parameter update [28] generates such a primal-dual se-
quence that the Lagrange multipliers corresponding to the inactive constraints converge
quadratically to zero.This fact can be used to eliminate the inactive constraints in the early
stage of the computational process. Then the PDNRD method evolves into Newton’s
method for the Lagrange system of equations that corresponds to the active constraints.
Therefore under the standard second order optimality conditions, the PDNRD method
has a potential to be augmented to a globally convergent method with an asymptotic
quadratic rate.

Another important issue is the generalization of the PDNRD method for nonconvex
problems.

Also, more work should be done to find an efficient way of solving the PD system
(4.11) that accounts for the system’s special structure.
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