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1 Introduction

The Augmented Lagrangian (AL) and correspondent multipliers method for equality constraints optimiza-
tion were introduced in the late sixties by M.R. Hestenes [8] and M.J.D. Powell [13]. Over the last almost
forty years the AL theory and multipliers method have been extensively studied and currently made up a
considerable part of optimization theory (see [1]– [3] and references therein).

The multipliers method at each step alternates the unconstrained minimization of the AL in primal
space with Lagrange multipliers update while the penalty parameter can be fixed or updated from step
to step. A fixed penalty parameter allows to avoid the ill-conditioning phenomenon typical for penalty
methods (see [6]).

Under the standard second-order optimality condition the multipliers method converges with linear rate
for any fixed, but large enough penalty parameter. The ratio is inversely proportional to the penalty param-
eter. Therefore, the superlinear rate of convergence can be achieved by increasing the penalty parameter
from step to step. Unfortunately, it leads to ill-conditioning of the AL Hessian, which reduces the size of
the area where Newton’s method is well-defined (see [9]). It increases the number of damped Newton steps
per update and reduces the overall efficiency of the Newton AL method.

In this paper we consider the PDAL, which eliminates the basic drawbacks of the Newton AL method.
The PDAL reduces drastically the computational effort per step and at the same time improves substan-
tially the rate of convergence as compared with the Newton AL method.

A step of the Augmented Lagrangian multipliers method is equivalent to solving the Primal-Dual AL
nonlinear system of equations, which consists of the optimality criteria for the primal AL minimizer and
formulas for the Lagrange multipliers update.

Application of Newton’s method to the Primal–Dual AL nonlinear system leads to solving the Primal–
Dual linear system of equations for finding the Primal–Dual direction. This linear system happened to be



2

identical to the Primal-Dual system introduced in (see [1] p 240) as a variation of Newton’s method for
Lagrange system of equations.

It has been pointed out in [1] that if the penalty parameter infinitely grows then a local super linear
rate of convergence can be expected, however the way the penalty parameter should be update was not
specified in [1].

We specify the penalty parameter update and prove that PDAL method converges with quadratic rate.
Each step of the PDAL method consists of finding the Primal–Dual direction, updating the Primal–Dual

approximation following by the penalty parameter update.
The key element of the PDAL method is the merit function, It turned out that by taking the penalty

parameter as an inverse of the merit function, we make the primal-dual direction very close to the corre-
spondent direction of the Newton method for the Lagrange system of equations. It allows us proving local
quadratic rate of convergence of the PDAL method under the standard second-order optimality conditions.

For other super–linear and quadratically convergent Primal–Dual methods for both equality and in-
equality constraints (see [4], [5], [10], [12] and references therein).

The paper is organized as follows. In the next section, we state the problem and introduce the basic
assumptions. In section 3 we briefly recall the basic AL results. In section 4 we describe the PDAL method
and prove its local quadratic rate of convergence. In section 5 we made few comments concerning future
research

2 Statement of the problem and basic assumptions

We consider q + 1 twice continuously differentiable functions f , ci : Rn → R, i = 1, . . . , q and the feasible
set

Ω = {x : ci(x) = 0, i = 1, . . . , q}.

The problem consists of finding

(P) f(x∗) = min{f(x)|x ∈ Ω} .

The Lagrangian L : Rn × Rq → R for the problem (P) is given by formula

L(x, λ) = f(x)−
q∑
i=1

λici(x) .

We consider the vector–function cT (x) = (c1(x), . . . , cq(x)), the Jacobian

J(c(x)) = ∇c(x) = (∇c1(x), . . . ,∇cq(x))T

and assume that

rank ∇c(x∗) = q < n , (1)

i.e. the gradients ∇ci(x∗), i = 1, . . . , q are linearly independent. Then there exists a vector of Lagrange
multipliers λ∗ ∈ Rq, such that the necessary conditions for x∗ to be the minimizer are satisfied, i.e.

∇xL(x∗, λ∗) = ∇f(x∗)−
q∑
i=1

λ∗i∇ci(x∗) = 0 (2)

ci(x∗) = 0, i = 1, . . . , q . (3)
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Let us consider the Hessian of the Lagrangian L(x, λ).

∇2
xxL(x, λ) = ∇2f(x)−

q∑
i=1

λi∇2ci(x) .

The condition (1) together with sufficient condition for the minimizer x∗ to be isolated

(∇2L(x∗, λ∗)y, y) ≥ m(y, y), ∀y : ∇c(x∗)y = 0,m > 0 (4)

comprise the standard second-order optimality conditions for the problem (P).
We consider the vector norm ||x|| = max1≤i≤n |xi| and for a given matrix A ∈ Rn,n the corresponding

matrix norm

||A|| = max
i≤i≤n

 n∑
j=1

|aij |

 .

For a small enough ε0 > 0, we consider the neighbourhood Ωε0(x∗) = {x : ‖x − x∗‖ ≤ ε0} of the primal
solution x∗.

We assume that the Lipschitz condition for the Hessians ∇2f and ∇2ci, i = 1, . . . , q is satisfied, i.e. there
are L0 > 0, Li > 0, i = 1, . . . , q such that

||∇2f(x1)−∇2f(x2)|| ≤ L0||x1 − x2|| (5)

||∇2ci(x1)−∇2ci(x2)|| ≤ Li||x1 − x2|| (6)

for all (x1, x2) ∈ Ωε0(x∗)× Ωε0(x∗).
We conclude the section by recalling the Debreu lemma [1], which will be used later.

Lemma 2.1 Let A : Rn → Rn be a symmetric matrix, B : Rn → Rr, m > 0 and (Ay, y) ≥ m(y, y), ∀y ∈
Rn : By = 0, then there exists κ0 > 0 large enough that the inequality((

A+ κBTB
)
y, y
)
≥ µ(y, y) , ∀y ∈ Rn

holds for 0 < µ < m and any κ ≥ κ0.

3 Augmented Lagrangian and multipliers method

The Augmented Lagrangian L : Rn × Rq × R++ → R is defined by formula (see [8, 13])

L(x, λ, k) = f(x)−
q∑
i=1

λici(x) +
k

2

q∑
i=1

c2i (x) . (7)

For the primal-dual solution (x∗, λ∗) and any k > 0 from (7) follows

a) L(x∗, λ∗, k) = f(x∗), b) ∇xL(x∗, λ∗, k) = ∇xL(x∗, λ∗) = 0 (8)

and

∇2
xxL(x∗, λ∗, k) = ∇xxL(x∗, λ∗) + k∇c(x∗)T∇c(x∗) . (9)
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From (9), standard second-order optimality condition (1), (4) and Debreu Lemma 2.1 follows that for
∀ k ≥ k0 the AL Hessian ∇2

xxL(x∗, λ∗, k) is positive definite, i.e. there is µ > 0:(
∇2Lxx(x∗, λ∗, k)v, v

)
≥ µ(v, v) , ∀ v ∈ Rn . (10)

Under (5)–(6) there exists a small enough 0 < δ < ε0 that the type (10) inequality holds for any y ∈
Ωδ(y∗) = {y = (x, λ) : ||y − y∗|| ≤ δ}.

Without restricting the generality we can assume that

inf
x∈Rn

f(x) ≥ 0 . (11)

Otherwise it is sufficient to replace f(x) by

f(x) := ln
(

1 + ef(x)
)
.

It follows from (8) and (10) that x∗ is a local minimizer of L(x, λ∗, k) in the neighborhood Ωε0(x∗), i.e.

L(x∗, λ∗, k) ≤ L(x, λ∗, k) , ∀x ∈ Ωε0(x∗) . (12)

Let us rewrite L(x, λ∗, k) as follows:

L(x, λ∗, k) = f(x) +
k

2

q∑
i=1

(
ci(x)− λ∗i

k

)2

− 1
2k

q∑
i=1

λ∗2i .

Outside of Ωε0(x∗), the second term can be made as large as one wants by increasing k > 0. Therefore,
keeping in mind (11), we can find a large enough k0 > 0 that the inequality (12) can be extended on the
entire Rn, i.e.

x∗ = arg min{L(x, λ∗, k)|x ∈ Rn} (13)

for any k ≥ k0.
Due to (5)–(6) the AL L(x, λ∗, k) is strongly convex in the neighbourhood Ωε0(x∗).
Moreover, it remains true for any pair (λ, k) from the extended dual set

Dα(λ∗, k0) = {(λ, k) : |λi − λ∗i | ≤ αk, k ≥ k0}

where α > 0 is small enough and k0 > 0 is large enough. In other words, for any (λ, k) ∈ Dα(λ∗, k0), there
exists a unique minimizer

x̂ ≡ x̂(λ, k) = arg min{L(x, λ, k)|x ∈ Rn} (14)

and the AL L(x, λ, k) is strongly convex in x in the neighborhood of x̂.
Each step of the AL method maps (λ, k) ∈ Dα(λ∗, k0) into a pair ŷ = (x̂, λ̂) given by the following

formulas

x̂ ≡ x̂(λ, k) = arg min{L(x, λ, k)|x ∈ Rn} (15)

λ̂ = λ̂(λ, k) = λ− kc(x̂) . (16)
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It follows from (15)–(16) that for any (λ, k) ∈ Dα(λ∗, k0) we have

∇xL(x̂, λ, k) = ∇f(x̂)−
∑

(λi − kci(x̂))∇ci(x̂) = ∇xL
(
x̂, λ̂

)
= 0 (17)

The AL method (15)–(16) is equivalent to the dual quadratic prox method (see [14]).

λ̂ = arg max
{
d(u)− 1

2k
||u− λ||2|u ∈ Rq

}
. (18)

We would like to emphasize however that neither the primal sequence generated by (15) nor the dual
sequence generated by (18) provide sufficient information for the analysis of the AL multipliers method.

Only the Primal-Dual system (16)–(17) provides such information for proving the basic AL results,
which are stated in the following Theorem [1].

Theorem 3.1 If f, ci ∈ C2, i = 1, . . . , q and the standard second-order optimality conditions (1), (4) are
satisfied, then for any fixed pair (λ, k) ∈ Dα(λ∗, k0)

(i) there exist x̂ and λ̂ given by formulas (15)–(16);
(ii) the following bound holds

max
{
||x̂− x∗||, ||λ̂− λ∗||

}
≤ σ

k
||λ− λ∗|| (19)

and σ > 0 is independent of k ≥ k0;
(iii) the AL L(x, λ, k) is strongly convex in x in the neighborhood of x̂ = x̂(λ, k).

The PD system (16)–(17) plays also a critical role in the PDAL method, which we consider in the
following section.

Meanwhile using the arguments similar to those which we used for proving

x∗ = arg min{L(x, λ∗, k) | x ∈ Rn} ,

0ne can show that for k0 > 0 large enough and any k ≥ k0 the local minimizer x̂ ≡ x̂(λ, k) is, in fact, a
unique global minimizer of L(x, λ, k) in x, i.e.

x̂ ≡ x̂(λ, k) = arg min{L(x, λ, k) | x ∈ Rn}.

We conclude this section by pointing out that a vector ȳ = (x̄, λ̄) which satisfies the Lagrange system of
equations

∇xL(x, λ) = 0 , c(x) = 0 (20)

is not necessarily a primal-dual solution. In particular, x̄ can be a local or global maximum of f on Ω.
However, the following remark holds true.

Remark 1 If the standard optimality conditions are satisfied and k0 > 0 is large enough, then any pair
ŷ = (x̂, λ̂) :

ŷ ∈ Ŷ = {ŷ = (x̂, λ̂) = (x̂(λ, k), λ̂(λ, k) : (λ, k) ∈ Dα(λ∗, k0)},

which satisfies the Lagrange system (20), is the primal-dual solution, i.e. if x̂(λ, k) = x̂ and λ̂(λ, k) = λ̂

satisfy (20) then λ̂ = λ∗ and

x̂(λ∗, k) = x∗, λ̂(λ∗, k) = λ∗, ∀ k > k0.
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4 Primal-Dual Augmented Lagrangian method

In this section we describe a PDAL method and show its local convergence with quadratic rate. The PDAL
method requires at each step solving one primal-dual linear system of the equation following the penalty
parameter update. The key element of the PDAL method is the penalty parameter, which is taken as an
inverse to the merit function.From this point on we assume Ωδ(y∗) := Ωδ(y∗) ∩ Ŷ .

The merit function ν : Ωδ(y∗)→ R+, we define by the following formula

ν(y) = max{||∇xL(x, λ)||, ||c(x)||} . (21)

It follows from (21) that ν(y) ≥ 0. Assuming that the standard second order optimality conditions (1), (4)
are satisfied and keeping in mind Remark 1, we obtain

ν(y) = 0⇔ y = y∗. (22)

On the one hand ν(y) is measuring the distance from y ∈ Ωδ(y∗) to the primal-dual solution y∗.
On the other hand the merit function ν(y) will be used for controlling the penalty parameter k > 0.
Let us consider the Primal–Dual AL system

∇xL(x̂, λ̂) = ∇f(x̂)−
q∑
i=1

λ̂i∇ci(x̂) = 0, (23)

λ̂ = λ− kc(x̂) . (24)

Solving the PD system (23)–(24) for (x̂, λ̂) under fixed λ ∈ Rq and k ≥ k0 > 0 is equivalent to one step of
the AL method (15)–(16).

Application of the Newton method for solving the PD system (23)–(24) for (x̂, λ̂) using y = (x, λ) ∈
Ωδ(y∗) as a starting point leads to finding Primal–Dual direction.

By linearizing (23)–(24) at y = (x, λ) we obtain

∇f(x) +∇2f(x)∇x−
∑

(λi +4λi)
(
∇ci(x) +∇2ci(x)4x

)
= 0, (25)

λ+4λ = λ− k (c(x) +∇c(x)4x) . (26)

Ignoring terms of the second and higher orders we can rewrite the system (25)–(26) as follows

Mk(x, λ)4y =
(
∇2
xxL(x, λ) −∇c(x)T

∇c(x) k−1Iq

)(
4x
4λ

)
=
(
−∇xL(x, λ)
−c(x)

)
= a(y) (27)

which is exactly the system (35)–(36)( [1] p 240).
Let 0 < δ < ε0 be small enough and a pair (y, k) : y ∈ Ωδ(y∗), y 6= y∗ and k = (υ(y))−1 ≥ k0 be a

starting point.
The PDAL method consists of the following operations.

1. Find the primal-dual direction 4y = (4x,4λ) from the system (27) if 4y = O then stop.
2. Find the new primal-dual vector ŷ = (x̂, λ̂):

x̂ = x+4x, λ̂ = λ+4λ (28)

3. Update the scaling parameter

k̂ := (ν(ŷ))−1. (29)
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4. Set

y := ŷ, k := k̂ and go to (1) . (30)

The PDAL method generates a primal–dual sequence {ys = (xs, λs)}∞s=1.
The following technical lemmas(see [7]) will be used for proving the local convergence of the primal–dual

sequence {ys}∞s=1 to the primal–dual solution y∗ = (x∗, λ∗) with quadratic rate.

Lemma 4.1 If the standard second-order optimality conditions (1), (4) and Lipschitz conditions (5)–(6)
are satisfied, then there exists small enough 0 < δ < ε0 and 0 < l < L < ∞ such that for any y ∈ Ωδ(y∗)
the following bounds hold

l‖y − y∗‖ ≤ ν(y) ≤ L‖y − y∗‖ . (31)

Proof. The right inequality follows from ν(y∗) = 0, boundedness of Ωδ(y∗), and Lipschitz condition for
the gradients ∇f,∇ci, i = 1, . . . , q.

On the other hand

‖∇xL(x, λ)‖ ≤ ν(y), ‖c(x)‖ ≤ ν(y) . (32)

By linearizing the Lagrange system (20) at x = x∗, λ = λ∗ and keeping in mind (2)–(3) we obtain the
following system (

∇2
xxL(x∗, λ∗) −∇c(x∗)T
∇c(x∗) O

)(
x− x∗
λ− λ∗

)
= M∞(x∗, λ∗)(y − y∗)

=
(
∇xL(x, λ) + o(‖x− x∗‖)en

c(x) + o(‖x− x∗‖)eq

)
(33)

where er = (1, . . . , 1) ∈ Rr. �

It follows from (1) and (4) that the matrix M∞(x∗, λ∗) is nonsingular and there is M0 > 0 that

‖M−1
∞ (x∗, λ∗)‖ ≤M0 . (34)

From (33) we obtain (
x− x∗
λ− λ∗

)
= M−1

∞ (x∗, λ∗)
(
∇xL(x, λ) + o(||x− x∗||)en

c(x) + o(‖x− x∗‖)eq

)
Keeping in mind (34) we have

||y − y∗|| ≤M0ν(y) + o(‖x− x∗‖) .

Therefore ν(y) ≥ l||y − y∗||, where l = (2M0)−1.
It follows from (31) that the merit function ν(y) in the neighbourhood Ωδ(y∗) behaves similar to the

norm of a gradient of a strongly convex and smooth enough function in the neighbourhood of the minimum.

Lemma 4.2 Let A ∈ Rn,n be a nonsingular matrix and ||A−1|| ≤ N ; then there exists small enough β > 0
that any matrix B ∈ Rn,n : ||A−B|| ≤ β is nonsingular and the following bound holds

a) ||B−1|| ≤ 2N, b) ||A−1 −B−1|| ≤ 2N2β . (35)

The proof can be found in [7].
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Lemma 4.3 If the standard second order optimality condition (1),(4) are satisfied, then the matrices

M∞(x, λ) =
(
∇2L(x, λ) −∇c(x)T

∇c(x) O

)
and Mk(x, λ) =

(
∇2L(x, λ) −∇c(x)T

∇c(x) k−1I

)
are nonsingular and the following bound holds

max{||M−1
∞ (y)||, ||M−1

k (y)||} ≤ 2N (36)

for any pair (y, k) : y ∈ Ωδ(y∗) and k ≥ k0.

Proof. The nonsingularity of

M∞(x∗, λ∗) =
[
∇2
xxL(x∗, λ∗) −∇c(x∗)T
∇c(x∗) 0

]
follows from the standard second-order optimality condition (1), (4). Therefore, there exists N > 0 that
‖M−1
∞ (y∗)‖ ≤ N .

Using Lemma 4.2 and Lipschitz condition (5)–(6) we can find a small enough 0 < δ < ε0 such that the
following bound holds

max
{∥∥M−1

∞ (x, λ)
∥∥ , ∥∥M−1

k (x, λ)
∥∥} ≤ 2N , ∀ y ∈ Ωδ(y∗) and ∀k ≥ k0 .

Now we are ready to prove convergence of the PDAL sequence {ys}∞s=1 to the primal–dual solutions
y∗ = (x∗, λ∗) and establish the quadratic convergence rate.

Theorem 4.4 If the standard second-order optimality condition (1), (4) and the Lipschitz conditions (5),
(6) are satisfied, then

(i) there exist a small enough 0 < δ < ε0 such that for any starting pair (y, k) : y ∈ Ωδ(y∗) and k =
(υ(y))−1 ≥ k0 the PDAL step (27)–(30) generates an approximation ŷ = (x̂, λ̂) that the following
bound holds

||ŷ − y∗|| ≤ ρ||y − y∗||2 . (37)

and ρ > 0 is independent on y ∈ Ωδ(y∗) and k = (υ(y))−1.
(ii) for a given 0 < q0 < 1 there exists a small enough 0 < δ0 < min{δ, ρ−1 min{q0, l−1L}} such that for

any y ∈ Ωδ0(y∗) and k = (υ(y))−1 > k0 we have ŷ ∈ Ωδ0(y∗), k̂ = (υ(ŷ))−1 > k and the following
bound hold

||ŷ − y∗|| ≤ q0||y − y∗|| . (38)

(iii) for a given 0 < q < 1 there is small enough 0 < γ < δ0 such that for any starting point y ∈ Ωγ(y∗) and
k = υ(y))−1

the primal-dual sequence {ys}∞s=1 converges to y∗ and the following bond holds

||ys − y∗|| ≤ ρ−1q2
s

, s ≥ 1 (39)

Proof.
(i) The primal-dual system (27) has a unique solution, for any y ∈ Ωδ(y∗) and k = υ(y))−1 ≥ k0 as soon
as δ > 0 is small enough and k0 is large enough. We will show later that there exist 0 < δ0 < δ that for any
starting point y ∈ Ωδ0(y∗), the entire primal-dual sequence {ys}∞s=1 belongs to Ωδ0(y∗), therefore the PDAL
method is well defined. The key ingredient of the convergence proof is that PD direction ∆y = (∆x,∆x) is
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close to the Newton direction for Lagrange system (20) at any starting point y ∈ Ωδ(y∗) and k = (υ(y))−1

as soon as 0 < δ < ε0 is small enough.
We consider the Lagrange system (20) at the same starting point y = (x, λ) ∈ Ωδ(y∗). Let4y = (4x,4λ)

be the Newton direction obtained by solving the following system of linear equations

M∞(y)4y = a(y) .

The new approximation ȳ = (x̄, λ̄) for the Lagrange system (20) is

x̄ = x+4x, λ̄ = λ+4λ, or

ȳ = y +4y .

Under the standard second-order optimality condition (1), (4) and Lipschitz conditions (5)–(6) there
exists ρ1 > 0 independent of y ∈ Ωδ(y∗) such that the following bound holds (see [10, Theorem 9, Ch 8])

||ȳ − y∗|| ≤ ρ1||y − y∗||2 . (40)

Let us prove a similar bound for the PDAL approximation ŷ. We have

||ŷ − y∗|| = ||y +4y − y∗|| = ||y +4y +4y −4y − y∗||

≤ ||ȳ − y∗||+ ||4y −4y|| .

For ||4y −4y|| we obtain

||4y −4y|| = ||(M−1
k (y)−M−1

∞ (y))a(y)||

≤ ||(M−1
k (y)−M−1

∞ (y))||||a(y)|| . (41)

Using (35b) and keeping in mind

||(Mk(y)−M∞(y))|| = k−1

from (41) we obtain

||4y −4y|| ≤ 2k−1N2||a(y)|| . (42)

In view of ∇xL(x∗, λ∗) = 0, c(x∗) = 0, Lipschitz condition (5), (6) and 0 < δ < ε0 there exists L0 > 0
such that

||a(y)|| ≤ L0||y − y∗||, ∀y ∈ Ωδ(y∗) . (43)

Using the right inequality (31) and (28), (42), (43) we obtain

||4y −4y|| ≤ 2N2L0ν(y)||y − y∗||

≤ 2N2LL0||y − y∗||2

= ρ2||y − y∗||2 . (44)

From (40) and (44) we have

||ŷ − y∗|| ≤ ||ȳ − y∗||+ ||4y −4ȳ|| ≤ ρ||y − y∗||2, (45)
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where ρ = 2 max{ρ1, ρ2} is independent on y ∈ Ωδ(y∗) and k ≥ k0.
(ii) For a given 0 < q0 < 1 we can find δ0 < min{δ, q0ρ−1} such that from (45)we obtain

||ŷ − y∗|| ≤ ρ||y − y∗||2 ≤ ρδ0||y − y∗|| ≤ q0||y − y∗||,∀y ∈ Ωδ0(y∗)

Also from the right inequality (31) and (45) follows

ν(ŷ) ≤ L||ŷ − y∗|| ≤ Lρ||y − y∗||2 ≤ Lρδ0||y − y∗||, ∀y ∈ Ωδ0(y∗).

Using the left inequality (31) we obtain ν(ŷ) ≤ Ll−1ρδ0ν(y), therefore for δ0 < ρ−1lL−1 we obtain

k̂ = (ν(ŷ))−1 > (ν(y))−1 = k.

In other words, there is small enough 0 < δ0 < min{δ, ρ−1 min{γ, `L−1}} and large enough k0 that for
any y ∈ Ωδ0(y∗) and k = (υ(y))−1 ≥ k0 we have ŷ ∈ Ωδ0(y∗), k̂ = (υ(ŷ))−1 > k and bound (38) holds.

Therefore for any y ∈ Ωδ0(y∗) and k = (ν(y))−1 ≥ k0 as a starting pair, the primal-dual sequence
{ys}∞s=1 ⊂ Ωδ0(y∗) and converges to y∗.
(iii) It follows from (37) that for y ∈ Ωδ0(y∗) and k = (υ(y))−1 as a starting point we have

||ys+1 − y∗|| ≤ ρ||ys − y∗||2 ≤ ρ−1 (ρ||ys − y∗||)2 , s ≥ 1. (46)

For a given 0 < q < 1 we can find 0 < γ < min{δ0, ρ−1q} such that for any y ∈ Ωγ(y∗) we have
ρ||y − y∗|| < q. By iterating (46) we obtain

||ys+1 − y∗|| ≤ ρ−1q2
s

.

2

5 Concluding remarks

The basic operation at each step of the PDAL method consists of solving one linear system of equations
(27), whereas the basic operation of the AL method step requires solving an unconstrained optimization
problem (15). On the other hand, the PDAL sequence locally converges to the primal-dual solution with
quadratic rate (see Theorem 4.4), while the AL sequence converges with Q-linear rate (seeTheorem 3.1).

The local PDAL method can be extended into a globally convergent primal-dual AL method for convex
optimization in the framework of the nonlinear rescaling theory with dynamic scaling parameters update
(see [11,12]). We are going to cover these results in the upcoming paper.
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