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Abstract The Legendre transform (LET) is a product of a general duality principle:
any smooth curve is, on the one hand, a locus of pairs, which satisfy the given
equation and, on the other hand, an envelope of a family of its tangent lines.
An application of the LET to a strictly convex and smooth function leads to the
Legendre identity (LEID). For strictly convex and three times differentiable function
the LET leads to the Legendre invariant (LEINV).
Although the LET has been known for more then 200 years both the LEID and the
LEINV are critical in modern optimization theory and methods.
The purpose of the paper is to show the role of the LEID and the LEINV play in
both constrained and unconstrained optimization.

1 Introduction

Application of the duality principle to a strictly convex f : R→ R, leads to the
Legendre transform

f ∗(s) = sup
x∈R
{sx− f (x)},

which is often called the Legendre-Fenchel transform (see [21],[29],[30]).
The LET, in turn, leads to two important notions: the Legendre identity

f ∗
′
(s)≡ f

′−1(s)

and the Legendre invariant

Dedicated to Professor Boris T. Polyak on the occasion of his 80th birthday
Department of Mathematics
The Technion - Israel Institute of Technology
32000 Haifa, Israel, e-mail: rpolyak@techunix.technion.ac.il

rpolyak@gmu.edu

1



2 Roman A. Polyak

LEINV( f ) =

∣∣∣∣∣∣d
3 f

dx3

(
d2 f
dx2

)− 3
2

∣∣∣∣∣∣=
∣∣∣∣∣∣−d3 f ∗

ds3

(
d2 f ∗

ds2

)− 3
2

∣∣∣∣∣∣ .
Our first goal is to show a number of duality results for optimization problems

with equality and inequality constraints obtained in a unified manner by using LEID.
A number of methods for constrained optimization, which have been introduced

in the past several decades and for a long time seemed to be unconnected, turned
out to be equivalent. We start with two classical methods for equality constrained
optimization.

First, the primal penalty method by Courant [16] and its dual equivalent - the
regularization method by Tichonov [60].

Second, the primal multipliers method by Hestenes [28] and Powell [52], and
its dual equivalent - the quadratic proximal point method by Moreau [38], Martinet
[35], [36] Rockafellar [56]-[57] (see also [2], [7], [24], [27], [45] and references
therein).

Classes of primal SUMT and dual interior regularization, primal nonlinear rescal-
ing (NR) and dual proximal points with ϕ- divergence distance functions, primal
Lagrangian transformation (LT) and dual interior ellipsoids methods turned out to
be equivalent.

We show that LEID is a universal tool for establishing the equivalence results,
which are critical, for both understanding the nature of the methods and establishing
their convergence properties.

Our second goal is to show how the equivalence results can be used for conver-
gence analysis of both primal and dual methods.

In particular, the primal NR method with modified barrier (MBF) transforma-
tion leads to the dual proximal point method with Kullback-Leibler entropy diver-
gence distance (see [50]). The corresponding dual multiplicative algorithm, which is
closely related to the EM method for maximum likelihood reconstruction in position
emission tomography as well as to image space reconstruction algorithm (see [17],
[20], [62]), is the key instrument for establishing convergence of the MBF method
(see [31], [46], [50], [53]).

In the framework of LT the MBF transformation leads to the dual interior proxi-
mal point method with Bregman distance (see [39], [49]).

The kernel ϕ(s)=− lns+s−1 of the Bregman distance is a self-concordant (SC)
function. Therefore the corresponding interior ellipsoids are Dikin’s ellipsoids.

Application LT for linear programming (LP) calculations leads to Dikin’s type
method for the dual LP (see [18]).

The SC functions have been introduced by Yuri Nesterov and Arkadi Nemirovski
in the late 80s (See [42],[43]).

Their remarkable SC theory is the centerpiece of the interior point methods
(IPMs), which for a long time was the main stream in modern optimization. The
SC theory establishes the IPMs complexity for large classes of convex optimization
problem from a general and unique point of view.
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It turns out that a strictly convex f ∈ C3 is self-concordant if LEINV( f ) is
bounded. The boundedness of LEINV( f ) leads to the basic differential inequality,
four sequential integrations of which produced the main SC properties.

The properties, in particular, lead to the upper and lower bounds for f at each step
of a special damped Newton method for unconstrained minimization SC functions.
The bounds allow establishing global convergence and show the efficiency of the
damped Newton method for minimization SC function.

The critical ingredients in these developments are two special SC function:
w(t) = t− ln(t +1) and its LET w∗(s) =−s− ln(1− s).

Usually two stages of the damped Newton method is considered (see [43]). At
the first stage at each step the error bound ∆ f (x) = f (x)− f (x∗) is reduced by w(λ ),
where 0 < λ < 1 is the Newton decrement. At the second stage ∆ f (x) converges to
zero with quadratic rate. We considered a middle stage where ∆ f (x) converges to
zero with superlinear rate, which is explicitly characterized by w(λ ) and w∗(λ ).

To show the role of LET and LEINV( f ) in unconstrained optimization of SC
functions was our third goal.

The paper is organized as follows.
In the next section along with LET we consider LEID and LEINV.
In section 3 penalty and multipliers methods and their dual equivalents applied

for optimization problems with equality constraints.
In section 4 the classical SUMT methods and their dual equivalents - the interior

regularization methods - are applied to convex optimization problem.
In section 5 we consider the Nonlinear Rescaling theory and methods, in par-

ticular, the MBF and its dual equivalent - the prox with Kullback-Leibler entropy
divergence distance.

In section 6 the Lagrangian transform (LT) and its dual equivalent - the interior
ellipsoids method - are considered. In particular, the LT with MBF transformation,
which leads to the dual prox with Bregman distance.

In section 7 we consider LEINV, which leads to the basic differential inequal-
ity, the main properties of the SC functions and eventually to the damped Newton
method.

We conclude the paper (survey) with some remarks, which emphasize the role of
LET, LEID and LEINV in modern optimization.

2 Legendre Transformation

We consider LET for a smooth and strictly convex scalar function of a scalar argu-
ment f : R→ R.

For a given s = tanϕ let us consider line l = {(x,y) ∈ R2 : y = sx}. The corre-
sponding tangent to the curve L f with the same slope is defined as follows:

T (x,y) = {(X ,Y ) ∈ R2 : Y − f (x) = f
′
(x)(X− x) = s(X− x)}.
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In other words T (x,y) is a tangent to the curve L f = {(x,y) : y = f (x)} at the point
(x,y): f

′
(x) = s. For X = 0, we have Y = f (x)− sx. The conjugate function f ∗ :

(a,b)→ R, −∞ < a < b < ∞ at the point s is defined as f ∗(s) =−Y =− f (x)+ sx.
Therefore (see Fig. 1)

f ∗(s)+ f (x) = sx. (1)

More often f ∗ is defined as follows

f ∗(s) = max
x∈R
{sx− f (x)}. (2)

Keeping in mind that T (x,y) is the supporting hyperplane to the epi f = {(y,x) : y≥
f (x)} the maximum in (2) is reached at x: f

′
(x) = s, therefore the primal represen-

tation of (1) is

Fig. 1 Legendre transformation
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f ∗( f
′
(x))+ f (x)≡ f

′
(x)x. (3)

For a strictly convex f we have f
′′
(x) > 0, therefore due to the Inverse Function

Theorem the equation f
′
(x) = s can be solved for x, that is

x(s) = f
′−1(s). (4)

Using (4) from (3) we obtain the dual representation of (1)

f ∗(s)+ f (x(s))≡ sx(s). (5)

Also, it follows from f
′′
(x)> 0 that x(s) in (2) is unique, so f ∗ is as smooth as f . The

variables x and s are not independent, they are linked through equation s = f
′
(x).

By differentiating (5) we obtain

f ∗
′
(s)+ f

′
(x(s))x

′
(s)≡ x(s)+ sx

′
(s). (6)

In view of f
′
(x(s)) = s, from (4) and (6) we obtain the following identity,

f ∗
′
(s)≡ f

′−1(s), (7)

which is called the Legendre identity (LEID).
From (4) and (7) we obtain

d f ∗(s)
ds

= x. (8)

On the other hand, we have
d f (x)

dx
= s. (9)

From (8) and (9) it follows

a)
d2 f ∗(s)

ds2 =
dx
ds

and b)
d2 f (x)

dx2 =
ds
dx

. (10)

From
dx
ds
· ds

dx
= 1

and (10) we get
d2 f ∗

ds2 ·
d2 f
dx2 = 1, (11)

so the local curvatures of f and f ∗ are inverses to each other.
The following Theorem established the relations of the third derivatives of f and

f ∗, which leads to the notion of Legendre invariant.

Theorem 1. If f ∈C3 is strictly convex then

d3 f ∗

ds3 ·
(

d2 f ∗

ds2

)−3/2

+
d3 f
dx3 ·

(
d2 f
dx2

)−3/2

= 0. (12)
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Proof. By differentiating (11) in x we obtain

d3 f ∗

ds3 ·
ds
dx
· d

2 f
dx2 +

d2 f ∗

ds2 ·
d3 f
dx3 = 0.

In view of (10b) we have

d3 f ∗

ds3 ·
(

d2 f
dx2

)2

+
d2 f ∗

ds2 ·
d3 f
dx3 = 0. (13)

By differentiating (11) in s and keeping in mind (10a) we obtain

d3 f ∗

ds3
d2 f
dx2 +

(
d2 f ∗

ds2

)2 d3 f
dx3 = 0. (14)

Using (11), from (13) and (14) we have

d3 f ∗

ds3 ·
d2 f
dx2 +

1(
d2 f
dx2

)2
d3 f
dx3 = 0

or
d3 f ∗

ds3

(
d2 f
dx2

)3

+
d3 f
dx3 = 0.

Keeping in mind d2 f
dx > 0 from the last equation follows

d3 f ∗

ds3

(
d2 f
dx2

) 3
2

+
d3 f
dx3

(
d2 f
dx2

)− 3
2

= 0.

Using(11) again we obtain (12).

Corollary 1. From (12) we have

−d3 f ∗

ds3

(
d2 f ∗

ds2

)−3/2

=
d3 f
dx3

(
d2 f
dx2

)−3/2

.

The Legendre Invariant is defined as follows

LEINV( f ) =

∣∣∣∣∣−d3 f ∗

ds3

(
d2 f ∗

ds2

)−3/2
∣∣∣∣∣=
∣∣∣∣∣d3 f

dx3

(
d2 f
dx2

)−3/2
∣∣∣∣∣ . (15)

For a strictly convex f ∈C3 boundedness of LEINV( f ) defines the class of self-
concordant (SC) functions introduced by Yuri Nesterov and A. Nemirovski in the
late 80s .
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3 Equality Constrained Optimization

Let f and all ci: Rn → R, i = 1, ...,m be continuously differentiable. We consider
the following optimization problem with equality constrains

min f (x)

s. t. ci(x) = 0, i = 1, ...,m.
(16)

We assume that (16) has a regular solution x∗ that is

rank ∇c(x∗) = m < n,

where ∇c(x) is the Jacobian of the vector - function c(x) = (c1(x), ...,cm(x))T . Then
(see, for example [45]) there exists λ ∗ ∈ Rm:

∇xL(x∗,λ ∗) = 0, ∇λ L(x∗,λ ∗) = c(x∗) = 0,

where

L(x,λ ) = f (x)+
m

∑
i=1

λici(x)

is the classical Lagrangian, which corresponds to (16).
It is well known that the dual function

d(λ ) = inf{L(x,λ )|x ∈ Rn} (17)

is closed and concave. Its subdifferential

∂d(λ ) = {g : d(u)−d(λ )≤ (g,u−λ ),∀u ∈ Rm} (18)

at each λ ∈ Rn is a non - empty, bounded and convex set. If for a given λ ∈ Rm the
minimizer

x(λ ) = argmin{L(x,λ )|x ∈ Rn}

exists then
∇xL(x(λ ),λ ) = 0. (19)

If the minimizer x(λ ) is unique, then the dual function

d(λ ) = L(x(λ ),λ )

is differentiable and the dual gradient

∇d(λ ) = ∇xL(x(λ ),λ )∇λ x(λ )+∇λ L(x(λ ),λ ),

where ∇λ x(λ ) is the Jacobian of vector - function x(λ ) = (x1(λ ), ...,xn(λ ))
T . In

view of (19) we have
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∇d(λ ) = ∇λ L(x(λ ),λ ) = c(x(λ )). (20)

In other words, the gradient of the dual function coincides with the residual vector
computed at the primal minimizer x(λ ).

If x(λ ) is not unique, then for any x̂ = x(λ ) ∈ Argmin{L(x,λ )|x ∈ Rn} we have

c(x̂) ∈ ∂d(λ ).

In fact, let
u : d(u) = L(x(u),u) = min

x∈Rn
L(x,u), (21)

then for any λ ∈ Rm we have

d(u) = min{ f (x)+
m

∑
i=1

uici(x)|x ∈ Rn} ≤ f (x̂)+
m

∑
i=1

uici(x̂) = f (x̂)+∑λici(x̂)

+(c(x̂),u−λ ) = d(λ )+(c(x̂),u−λ )

or
d(u)−d(λ )≤ (c(x̂),u−λ ),∀u ∈ Rm,

so (18) holds for g = c(x̂), therefore

c(x̂) ∈ ∂d(λ̂ ). (22)

The dual to (16) problem is

maxd(λ )

s. t. λ ∈ Rm,
(23)

which is a convex optimization problem independent from convexity properties of
f and ci, i = 1, ...,m in (16).

The following inclusion
0 ∈ ∂d(λ ∗) (24)

is the optimality condition for the dual maximizer λ ∗ in (23).

3.1 Penalty Method and its Dual Equivalent

In this subsection we consider two methods for solving optimization problems with
equality constraints and their dual equivalents.

In 1943 Courant introduced the following penalty function and correspondent
method for solving (16) (see [16]).

Let π(t) = 1
2 t2 and k > 0 be the penalty (scaling) parameter, then Courant’s

penalty function P : Rn×R++→ R is defined by the following formula
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P(x,k) = f (x)+ k−1
m

∑
i=1

π(kci(x)) = f (x)+
k
2
‖c(x)‖2, (25)

where ‖ · ‖ is Euclidian norm. At each step the penalty method finds unconstrained
minimizer

x(k) : P(x(k),k) = min
x∈Rn

P(x,k). (26)

We assume that for a given k > 0 minimizer x(k) exists and can be found from the
system ∇xP(x,k) = 0. Then

∇xP(x(k),k) =

∇ f (x(k))+
m

∑
i=1

π
′
(kci(x(k)))∇ci(x(k)) = 0. (27)

Let
λi(k) = π

′
(kci(x(k)), i = 1, ..,m. (28)

From (27) and (28) follows

∇xP(x(k),k) = ∇ f (x(k))+
m

∑
i=1

λi(k)∇ci(x(k)) = ∇xL(x(k),λ (k)) = 0, (29)

which means that x(k) satisfies the necessary condition to be a minimizer of
L(x,λ (k)). If L(x(k),λ (k)) = minx∈Rn L(x,λ (k)), then d(λ (k)) = L(x(k),λ (k)) and

c(x(k)) ∈ ∂d(λ (k)). (30)

Due to π
′′
(t) = 1 the inverse function π

′−1 exists. From (28) follows

ci(x(k)) = k−1
π
′−1(λi(k)), i = 1, ...,m. (31)

From (30), (31) and the LEID π
′−1 = π∗

′
we obtain

0 ∈ ∂d(λ (k))− k−1
m

∑
i=1

π
∗′(λi(k))ei, (32)

where ei = (0, ...,1, ..,0).
The inclusion (32) is the optimality condition for λ (k) to be the unconstrained

maximizer of the following unconstrained maximization problem

d(λ (k))− k−1
m

∑
i=1

π
∗(λi(k)) = max{d(u)− k−1

m

∑
i=1

π
∗(ui) : u ∈ Rm}. (33)

Due to π∗(s) = maxt{st− 1
2 t2}= 1

2 s2 the problem (33) one can rewrite as follows

d(λ (k))− 1
2k

m

∑
i=1

λ
2
i (k) = max{d(u)− 1

2k
‖u‖2 : u ∈ Rm}. (34)



10 Roman A. Polyak

Thus, Courant’s penalty method (26) is equivalent to Tikhonov’s (see [60]) regular-
ization method (34) for the dual problem (23).

The convergence analysis of (34) is simple because the dual d(u) is concave and
D(u,k) = d(u)− 1

2k‖u‖
2 is strongly concave.

Let {ks}∞
s=0 be a positive monotone increasing sequence and lims→∞ ks = ∞. We

call it a regularization sequence. The correspondent sequence {λs}∞
s=0:

λs = argmax{d(u)− 1
2ks
‖u‖2 : u ∈ Rm} (35)

is unique due to the strong concavity of D(u,k) in u.

Theorem 2. If L∗ = Argmax{d(λ )|λ ∈Rm} is bounded and f , ci ∈C1, i = 1, ...,m,
then for any regularization sequence {ks}∞

s=0 the following statements hold

1) ‖λs+1‖> ‖λs‖;
2) d(λs+1)> d(λs);
3) lims→∞ λs = λ ∗ = argminλ∈L∗ ‖λ‖.

Proof. It follows from (35) and strong concavity of D(u,k) in u ∈ Rm that

d(λs)− (2ks)
−1‖λs‖2 > d(λs+1)− (2ks)

−1‖λs+1‖2

and
d(λs+1)− (2ks+1)

−1‖λs+1‖2 > d(λs)− (2ks+1)
−1‖λs‖2. (36)

By adding the inequalities we obtain

0.5(k−1
s − k−1

s+1)[‖λs+1‖2−‖λs‖2]> 0. (37)

Keeping in mind ks+1 > ks from (37) we obtain 1).
From (36) we have

d(λs+1)−d(λs)> (2ks+1)
−1[‖λs+1‖2−‖λs‖2]> 0, (38)

therefore from 1) follows 2).
Due to concavity d from boundedness of L∗ follows boundedness of any level

set Λ(λ0) = {λ ∈ Rm : d(λ ) ≥ d(λ0)} (see Theorem 24 [22]). From 2) fol-
lows {λs}∞

s=0 ⊂Λ(λ0), therefore for any converging subsequence {λsi} ⊂ {λs}∞
s=0:

limsi→∞ λsi = λ̂ we have

d(λsi)− (2ksi)
−1‖λsi‖

2 > d(λ ∗)− (2ksi)
−1‖λ ∗‖2. (39)

Taking the limit in (39) when ksi → ∞ we obtain d(λ̂ )≥ d(λ ∗), therefore λ̂ = λ ∗ ∈
L. In view of 2) we have lims→∞ d(λs) = d(λ ∗).

It follows from 1) that lims→∞ ‖λs‖= ‖λ ∗‖. Also from

d(λs)− (2ks)
−1‖λs‖2 > d(λ ∗)− (2ks)

−1‖λ ∗‖2
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follows
‖λ ∗‖2−‖λs‖2 > 2ks(d(λ ∗)−d(λs))≥ 0, ∀λ ∗ ∈ L∗,

therefore lims→∞ ‖λs‖= minλ∈L∗ ‖λ‖.
Convergence of the regularization method (34) is due to unbounded increase of

the penalty parameter k > 0, therefore one can hardly expect solving the problem
(23) with high accuracy.

3.2 Augmented Lagrangian and Quadratic Proximal Point Method

In this subsection we consider Augmented Lagrangian method (see [28], [52]),
which allows eliminate difficulties associated with unbounded increase of the penalty
parameter.

The problem (16) is equivalent to the following problem

f (x)+ k−1
m

∑
i=1

π(kci(x))→min (40)

s.t. ci(x) = 0, i = 1, ...,m. (41)

The correspondent classical Lagrangian L :Rn×Rm×R++→R for the equivalent
problem (40)-(41) is given by

L (x,λ ,k) = f (x)−
m

∑
i=1

λici(x)+ k−1
m

∑
i=1

π(kci(x)) =

f (x)−
m

∑
i=1

λici(x)+
k
2

m

∑
i=1

c2
i (x).

L is called Augmented Lagrangian (AL) for the original problem (16).
We assume that for a given (λ ,k) ∈ Rm×R1

++ the unconstrained minimizer x̂
exists, that is

x̂ = x̂(λ ,k) : ∇xL (x̂,λ ,k) = ∇ f (x̂)−
m

∑
i=1

(λi−π
′
(kci(x̂)))∇ci(x̂) = 0. (42)

Let
λ̂i = λ̂i(λ ,k) = λi−π

′
(kci(x̂)), i = 1, ...,m. (43)

Then from (42) follows ∇xL(x̂, λ̂ ) = 0, which means that x̂ satisfies the neces-
sary condition for x̂ to be a minimizer of L(x, λ̂ ). If L(x̂, λ̂ ) = minx∈Rn L(x, λ̂ ) then
d(λ̂ ) = L(x̂, λ̂ ) and

c(x̂) ∈ ∂d(λ̂ ). (44)

From (43) follows
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c(x̂) =
1
k

π
′−1(λ̂ −λ ). (45)

Using LEID and (45) we obtain

0 ∈ ∂d(λ̂ )− k−1
m

∑
i=1

π
∗′(λ̂i−λ )ei,

which is the optimality condition for λ̂ to be the maximizer in the following uncon-
strained maximization problem

d(λ̂ )− k−1
m

∑
i=1

π
∗(λ̂i−λi) = max{d(u)− k−1

m

∑
i=1

π
∗(ui−λi) : u ∈ Rn}. (46)

In view of π∗(s) = 1
2 s2 we can rewrite (46) as follows

λ̂ = argmax{d(u)− 1
2k
‖u−λ‖2 : u ∈ Rn} (47)

Thus the multipliers method (42)-(43) is equivalent to the quadratic proximal
point (prox) method (47) for the dual problem (23) (see [27],[35], [38], [56]-[58]
and references therein)

If x̂ is a unique solution to the system ∇xL(x, λ̂ ) = 0, then ∇d(λ̂ ) = c(x̂) and
from (45) follows

λ̂ = λ + k∇d(λ̂ ),

which is an implicit Euler method for solving the following system of ordinary
differential equations

dλ

dt
= k∇d(λ ), λ (0) = λ0. (48)

Let us consider the prox-function p : Rm→ R defined as follows

p(λ ) = d(u(λ ))− 1
2k
‖u(λ )−λ‖2 = D(u(λ ),λ ) =

max{d(u)− 1
2k
‖u−λ‖2 : u ∈ Rn}.

The function D(u,λ ) is strongly concave in u∈Rm, therefore u(λ )= argmax{D(u,λ ) :
u ∈ Rn} is unique. The prox-function p is concave and differentiable. For its gradi-
ent we have

∇p(λ ) = ∇uD(u(λ ),λ ) ·∇λ u(λ )+∇λ D(u,λ ),

where ∇λ u(λ ) is the Jacobian of u(λ ) = (u1(λ ), ...,um(λ ))
T . Keeping in mind

∇uD(u(λ ),λ ) = 0 we obtain

∇p(λ ) = ∇λ D(u,λ ) =
1
k
(u(λ )−λ ) =

1
k
(λ̂ −λ )

or
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λ̂ = λ + k∇p(λ ). (49)

In other words, the prox-method (47) is an explicit Euler method for the following
system

dλ

dt
= k∇p(λ ), λ (0) = λ0.

By reiterating (49) we obtain the dual sequence {λs}∞
s=0:

λs+1 = λs + k∇p(λs), (50)

generated by the gradient method for maximization the prox function p. The gradi-
ent ∇p satisfies Lipschitz condition with constant L = k−1. Therefore we have the
following bound ∆ p(λs) = p(λ ∗)− p(λs)≤ O(sk)−1 (see, for example, [45]).

We saw that the dual aspects of the penalty and the multipliers methods are criti-
cal for understanding their convergence properties and LEID is the main instrument
for obtaining the duality results.

It is even more so for constrained optimization problems with inequality con-
straints.

4 SUMT as Interior Regularization Methods for the Dual
Problem

The sequential unconstrained minimization technique (SUMT) (see [22]) goes back
to the 50s, when R.Frisch introduced log-barrier function to replace a convex opti-
mization with inequality constraints by a sequence of unconstrained convex mini-
mization problems.

Let f and all-ci, i = 1, ...,m be convex and smooth. We consider the following
convex optimization problem

min f (x)

s. t. x ∈Ω ,
(51)

where Ω = {x ∈ Rn : ci(x)≥ 0, i = 1, ...,m}.
From this point on we assume

A. The solution set X∗ = Argmin{ f (x) : x ∈Ω} is not empty and bounded.
B. Slater condition holds, i.e. there exists x0 ∈Ω : ci(x0)> 0, i = 1, ...,m.

By adding one constraint c0(x) = M− f (x)≥ 0 with M large enough to the original
set of constraints ci(x) ≥ 0, i = 1, ...,m we obtain a new feasible set, which due to
the assumption A convexity f and concavity ci, i= 1, ...,m is bounded (see Theorem
24 [22]) and the extra constraint c0(x)≥ 0 for large M does not effect X∗.

So we assume from now on that Ω is bounded. It follows from KKT’s Theorem
that under Slater condition the existence of the primal solution
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f (x∗) = min{ f (x)|x ∈Ω}

leads to the existence of λ ∗ ∈ Rm
+ that for ∀x ∈ Rn and λ ∈ Rm

+ we have

L(x∗,λ )≤ L(x∗,λ ∗)≤ L(x,λ ∗) (52)

and λ ∗ is the solution of the dual problem

d(λ ∗) = max{d(λ )|λ ∈ Rm
+}. (53)

Also from B follows boundedness of the dual optimal set

L∗ = Argmax{d(λ ) : λ ∈ Rm
+}.

From concavity d and boundedness L∗ follows boundedness of the dual level set
Λ(λ̄ ) = {λ ∈ Rm

+ : d(λ )≥ d(λ̄ )} for any given λ̄ ∈ Rm
+: d(λ̄ )< d(λ ∗).

4.1 Logarithmic Barrier

To replace the constrained optimization problem (51) by a sequence of uncon-
strained minimization problems R. Frisch in 1955 introduced (see [23]) the log-
barrier penalty function P : Rn×R++→ R defined as follows

P(x,k) = f (x)− k−1
m

∑
i=1

π(kci(x)),

where π(t) = ln t, (π(t) =−∞ for t ≤ 0) and k > 0. Due to convexity f and concavity
ci i = 1, ...,m the function P is convex in x. Due to Slater condition, convexity f ,
concavity ci and boundedness Ω the recession cone of Ω is empty that is for any
x ∈Ω , k > 0 and 0 6= d ∈ Rn we have

lim
t→∞

P(x+ td,k) = ∞. (54)

Therefore for any k > 0 there exists

x(k) : ∇xP(x(k),k) = 0. (55)

Theorem 3. If A and B hold and f , ci ∈ C1, i = 1, ...,m, then interior log-barrier
method (55) is equivalent to the interior regularization method

λ (k) = argmax{d(u)+ k−1
m

∑
i=1

lnui : u ∈ Rm
+} (56)

and the following error bound holds
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max{∆ f (x(k)) = f (x(k))− f (x∗),∆d(λ (k)) = d(λ ∗)−d(λ (k))}= mk−1. (57)

Proof. From (54) follows existence x(k) : P(x(k),k) =min{P(x,k) : x∈Rn} for any
k > 0.

Therefore

∇xP(x(k),k) = ∇ f (x(k))−
m

∑
i=1

π
′
(ki(x(k))∇ci(x(k)) = 0. (58)

Let
λi(k) = π

′
(kci(x(k)) = (kci(x(k)))−1, i = 1, ..,m. (59)

Then from (58) and (59) follows ∇xP(x(k),k) = ∇xL(x(k),λ (k)) = 0, therefore
d(λ (k)) = L(x(k),λ (k)). From π

′′
(t) =−t2 < 0 follows existence of π

′−1 and from
(59) we have kc(x(k)) = π

′−1(λi(k)). Using LEID we obtain

ci(x(k)) = k−1
π
∗′(λi(k)), (60)

where π∗(s) = inft>0{st − ln t} = 1+ lns. The subdifferential ∂d(λ (k)) contains
−c(x(k)), that is

0 ∈ ∂d(λ (k))+ c(x(k)). (61)

From (60) and (61) follows

0 ∈ ∂d(λ (k))+ k−1
m

∑
i=1

π
∗′(λi(k))ei. (62)

The last inclusion is the optimality criteria for λ (k) to be the maximizer in (56).
The maximizer λ (k) is unique due to the strict concavity of the objective function

in (56).
Thus, SUMT with log-barrier function P(x,k) is equivalent to the interior regu-

larization method (56).
For primal interior trajectory {x(k)}∞

k=k0>0 and dual interior trajectory {λ (k)}∞
k=k0>0

we have

f (x(k))≥ f (x∗) = d(λ ∗)≥ d(λ (k)) = L(x(k),λ (k)) = f (x(k))− (c(x(k)),λ (k)).

From (59) follows λi(k)ci(x(k)) = k−1, i = 1, ...,m, hence for the primal-dual gap
we obtain

f (x(k))−d(λ (k)) = (c(x(k)),λ (k)) = mk−1.

Therefore for the primal and the dual error bounds we obtain (57). ut
The main idea of the interior point methods (IPMs) is to stay ”close” to the primal

{x(k)}∞
k=0 or to the primal-dual {x(k),λ (k)}∞

k=0 trajectory and increase k > 0 at
each step by a factor (1− α√

n )
−1, where α > 0 is independent of n. In case of LP at

each step we solve a system of linear equations, which requires O(n2.5) operations.
Therefore accuracy ε > 0 IPM are able to achieve in O(n3 lnε−1) operations.
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In case of log-barrier transformation the situation is symmetric, that is both the
primal interior penalty method (55) and the dual interior regularization method (56)
are using the same log-barrier function.

It is not the case for other constraints transformations used in SUMT.

4.2 Hyperbolic Barrier

The hyperbolic barrier

π(t) =

{
−t−1, t > 0
−∞, t ≤ 0,

has been introduced by C. Carroll in the 60s, (see [12]). It leads to the following
hyperbolic penalty function

P(x,k) = f (x)− k−1
m

∑
i=1

π(kci(x)) = f (x)+ k−1
m

∑
i=1

(kci(x))−1,

which is convex in x ∈ Rn for any k > 0. For the primal minimizer we obtain

x(k) : ∇xP(x(k),k) = ∇ f (x(k))−
m

∑
i=1

π
′
(kci(x(k)))∇ci(x(k)) = 0. (63)

For the vector of Lagrange multipliers we have

λ (k) = (λi(k) = π
′
(kci(x(k)) = (kci(x(k)))−2, i = 1, ...,m). (64)

We will show later that vectors λ (k), k ≥ 1 are bounded. Let L = maxi,k λi(k).

Theorem 4. If A and B hold and f , ci ∈ C1, i = 1, ..,m, then hyperbolic barrier
method (63) is equivalent to the parabolic regularization method

d(λ (k))+2k−1
m

∑
i=1

√
λi(k) = max{d(u)+2k−1

m

∑
i=1

√
ui : u ∈ Rm

+} (65)

and the following bounds holds

max{∆ f (x(k)) = f (x(k))− f (x∗),

∆d(λ (k)) = d(λ ∗)−d(λ (k))} ≤ m
√

Lk−1. (66)

Proof. From (63) and (64) follows

∇xP(x(k),k) = ∇xL(x(k),λ (k)) = 0,

therefore d(λ (k)) = L(x(k),λ (k)).



The Legendre Transform in Modern Optimization 17

From π
′′
(t) =−2t−3 < 0, ∀t > 0 follows existence of π

′−1.
Using LEID from (64) we obtain

ci(x(k)) = k−1
π
′−1(λi(k)) = k−1

π
∗′(λi(k)), i = 1, ...,m,

where π∗(s) = inft{st−π(t)}= 2
√

s.
The subgradient −c(x(k)) ∈ ∂d(λ (k)) that is

0 ∈ ∂d(λ (k))+ c(x(k)) = ∂d(λ (k))+ k−1
m

∑
i=1

π
∗′(λi(k))ei. (67)

The last inclusion is the optimality condition for the interior regularization method
(65) for the dual problem.

Thus, the hyperbolic barrier method (63) is equivalent to the parabolic regular-
ization method (65) and D(u,k) = d(u)+2k−1

∑
m
i=1
√

ui is strictly concave.
Using considerations similar to those in Theorem 2 and keeping in mind strict

concavity of D(u,k) in u from (65) we obtain

m

∑
i=1

√
λi(1)> ...

m

∑
i=1

√
λi(k)>

m

∑
k=1

√
λi(k+1)> ...

Therefore the sequence {λ (k)}∞
k=1 is bounded, so there exists L = maxi,k λi(k)> 0.

From (64) for any k ≥ 1 and i = 1, ...,m we have

λi(k)c2
i (x(k)) = k−2

or
(λi(k)ci(x(k)))2 = k−2

λi(k)≤ k−2L.

Therefore
(λ (k),c(x(k)))≤ m

√
Lk−1.

For the primal interior sequence {x(k)}∞
k=1 and dual interior sequence {λ (k)}∞

k=1
we have

f (x(k))≥ f (x∗) = d(λ ∗)≥ L(x(k),λ (k)) = d(λ (k)),

therefore
f (x(k))−d(λ (k)) = (c(x(k)),λ (k)))≤ m

√
Lk−1,

which leads to (66). ut
In spite of similarity bounds (57) and (65) are fundamentally different because L

can be very large for problems where Slater condition is ”barely” satisfied, that is
the primal feasible set is not ”well defined”.

This is one of the reasons why log-barrier function is so important.
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4.3 Exponential Penalty

Exponential penalty π(t) = −e−t has been used by Motzkin in 1952 (see [40]) to
transform a systems of linear inequalities into an unconstrained convex optimization
problem in order to use unconstrained minimization technique for solving linear
inequalities.

The exponential transformation π(t) = −e−t leads to the exponential penalty
function

P(x,k) = f (x)− k−1
m

∑
i=1

π(kci(x)) = f (x)+ k−1
m

∑
i=1

e−kci(x),

which is for any k > 0 convex in x ∈ Rn.
For the primal minimizer we have

x(k) : ∇xP(x(k),k) = ∇ f (x(k))−
m

∑
i=1

e−kci(x(k))∇ci(x(k)) = 0. (68)

Let us introduce the Lagrange multipliers vector

λ (k) = (λi(k) = π
′
(ci(x(k)) = e−kci(x(k)), i = 1, ...,m) (69)

From (68) and (69) we have

∇xP(x(k),k) = ∇xL(x(k),λ (k)) = 0.

Therefore from convexity L(x,λ (k)) in x∈Rn follows d(λ (k))=min{L(x,λ (k))|x∈
Rn}= L(x(k),λ (k)) and −c(x(k)) ∈ ∂d(λ (k)), therefore

0 ∈ c(x(k))+∂d(λ (k)). (70)

From π
′′
(t) =−e−t 6= 0 follows the existence π

′−1, therefore using LEID from (69)
we obtain

ci(x(k)) = k−1
π
′−1(λi(k)) = k−1

π
∗′(λi(k)), i = 1, ...,m.

Inclusion (70) we can rewrite as follows

∂d(λ (k))+ k−1
∑π

∗′(λ (k))ei = 0.

Keeping in mind π∗(s) = inft{st−π(t)} = inf{st + e−t} = −s lns+ s from the
last inclusion we obtain

d(λ (k))− k−1
m

∑
i=1

λi(k)(ln(λi(k)−1)) =
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max{d(u)− k−1
m

∑
i=1

ui(lnui−1) : u ∈ Rm
+}. (71)

It means that the exponential penalty method (68) is equivalent to the interior reg-
ularization method (71) with strictly concave Shannon entropy regularization func-
tion r(u) =−∑

m
i=1 ui(lnui−1).

The convergence of the dual sequence {λ (k)}∞
k=0 can be proven using arguments

similar to those used in Theorem 2.
We conclude the section by considering smoothing technique for convex opti-

mization.

4.4 Log-Sigmoid (LS) Method

It follows from Karush-Kuhn-Tucker’s Theorem that under Slater condition for x∗

to be a solution of (51) it is necessary and sufficient existence λ ∗ ∈Rm, that the pair
(x∗;λ ∗) is the saddle point of the Lagrangian, that is (52) hold.

From the right inequality of (52) and complementarity condition we obtain

f (x∗)≤ f (x)−
m

∑
i=1

λ
∗
i min{ci(x),0} ≤

f (x)− max
1≤i≤m

λ
∗
i

m

∑
i=1

min{ci(x),0}

for any x ∈ Rn. Therefore for any r > max1≤i≤m λ ∗i we have

f (x∗)≤ f (x)− r
m

∑
i=1

min{ci(x),0},∀x ∈ Rn. (72)

The function

Q(x,r) = f (x)− r
m

∑
i=1

min{ci(x),0}

is called exact penalty function.
Due to concavity ci, i = 1, ...,m functions qi(x) = min{ci(x),0} are concave.

From convexity f and concavity qi, i = 1, ...,m follows convexity Q(x,r) in x ∈ Rn.
From (72) follows that solving (51) is equivalent to solving the following uncon-
strained minimization problem

f (x∗) = Q(x∗,r) = min{Q(x,r) : x ∈ Rn}. (73)

The function Q(x,r) is non-smooth at x∗. The smoothing techniques replace Q by a
sequence of smooth functions, which approximate Q(x,r). (see [14], [47], [48] and
references therein)

Log-sigmoid (LS) function π : R→ R is defined by
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π(t) = lnS(t,1) = ln(1+ e−t)−1,

is one of such functions. We collect the log-sigmoid properties in the following
assertion

Assertion 1 The following statements are holds

1. π(t) = t− ln(1+ et)< 0, π(0) =− ln2
2. π

′
(t) = (1+ et)−1 > 0, π

′
(0) = 2−1

3. π
′′
(t) =−et(1+ et)−2 < 0, π

′′
(0) =−2−2.

The smooth penalty method employs the scaled LS function

k−1
π(kt) = t− k−1 ln(1+ ekt), (74)

which is a smooth approximation of q(t) = min{t,0}.
In particular, from (74) follows

0 < q(t)− k−1
π(kt)< k−1 ln2. (75)

It means that by increasing k > 0 the approximation can be made as accurate as one
wants.

The smooth penalty function P : Rn×R++→ R defined by

P(x,k) = f (x)− k−1
m

∑
i=1

π(kci(x)) (76)

is the main instrument in the smoothing technique.
From Assertion 1 follows that P is as smooth as f and ci, i = 1, ..,m.
The LS method at each step finds

x(k) : P(x(k),k) = min{P(x,k) : x ∈ Rn} (77)

and increases k > 0 if the accuracy obtained is not satisfactory.
Without loss of generality we assume that f is bounded from below. Such as-

sumption does not restrict the generality, because the original objective function f
can be replaced by an equivalent f (x) := ln(1+ e f (x))≥ 0.

Boundedness of Ω together with Slater condition, convexity f and concavity ci,
i = 1, ...,m make the recession cone of Ω empty, that is (54) holds for P(x,k) given
by (76), any k > 0, d ∈ Rn and any x ∈Ω .

Therefore minimizer x(k) in (77) exists for any k > 0 that is

∇xP(x(k),k) = ∇ f (x(k))−
m

∑
i=1

π
′
(kci(x(k)))∇ci(x(k)) =

= ∇ f (x(k))−
m

∑
i=1

(1+ ekci(x(k)))−1
∇ci(x(k)) = 0.



The Legendre Transform in Modern Optimization 21

Let
λi(k) = (1+ ekci(x(k)))−1, i = 1, ...,m, (78)

then

∇xP(x(k);k) = ∇ f (x(k))−
m

∑
i=1

λi(k)∇ci(x(k)) = 0.

From (78) follows λi(k) ≤ 1 for any k > 0. Therefore, generally speaking, one
can’t expect finding a good approximation for optimal Lagrange multipliers, no mat-
ter how large the penalty parameter k > 0 is.

If the dual sequence {λ (k)}∞
k=k0

does not converges to λ ∗ ∈ L∗, then in view of
the last equation one can’t expect convergence of the primal sequence {x(k)}∞

k=k0
to

x∗ ∈ X∗.
To guarantee convergence of the LS method we have to modify P(x,k). Let 0 <

α < 0.5 and

P(x,k) := Pα(x,k) = f (x)− k−1+α
m

∑
i=1

π(kci(x)). (79)

It is easy to see that the modification does not effect the existence of x(k). Therefore
for any k > 0 there exists

x(k) : ∇xP(x(k),k) = ∇ f (x(k))− kα
∑π

′
(kc(x(k)))∇ci(x(k)) = 0. (80)

Theorem 5. If A and B hold and f , ci ∈C1, i = 1, ...,m, then the LS method (80) is
equivalent to an interior regularization method

d(λ (k))+ k−1
m

∑
i=1

π
∗(k−α

λi(k)) =

max{d(u)+ k−1
m

∑
i=1

π
∗(k−α ui) : 0≤ ui ≤ kα , i = 1, ...,m}.

Proof. Let

λi(k) = kα
π
′
(kci(x(k))) = kα(1+ ekci(x(k)))−1, i = 1, ...,m. (81)

From (80) and (81) follows

∇xP(x(k),k) =∇ f (x(k))−
m

∑
i=1

λi(k)∇ci(x(k)) =

∇xL(x(k),λ (k)) = 0.
(82)

From (81) we have
π
′
(kci(x(k)) = k−α

λi(k). (83)

Due to π
′′
(t)< 0 there exists π

′−1, therefore

ci(x(k)) = k−1
π
′−1(k−α

λi(k)).
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Using LEID we obtain

ci(x(k)) = k−1
π
∗′(k−α

λi(k)), (84)

where
π
∗(s) = inf

t
{st−π(t)}=−[(1− s) ln(1− s)+ s lns]

is Fermi-Dirac (FD) entropy function (see, for example, [54]).
From (82) follows d(λ (k)) = L(x(k),λ (k)) , also the subdifferential ∂d(λ (k))

contains −c(x(k)), that is

0 ∈ c(x(k))+∂d(λ (k)). (85)

Combining (84) and (85) we obtain

0 ∈ ∂d(λ (k))+ k−1
m

∑
i=1

π
∗′(k−α

λi(k))ei. (86)

The inclusion (86) is the optimality criteria for the following problem

d(λ (k))+ k−1
m

∑
i=1

π
∗(k−α

λi(k)) =

max{d(u)+ k−1r(u) : 0≤ ui ≤ kα , i = 1, ..,m}, (87)

where r(u) = ∑
m
i=1 π∗(k−α ui).

In other words the LS method (80)-(81) is equivalent to the interior regularization
method (87) with FD entropy function used for dual regularization. The FD function
is strongly concave inside the cube {u ∈ Rm : 0≤ ui ≤ kα , i = 1, ...,m}.

It follows from (87) that for any regularization sequence {ks}∞
s=0 the Lagrange

multipliers 0 < λi(ks) < kα
s , i = 1, ...,m can be any positive number, which under-

lines the importance of modification (79).

Theorem 6. Under conditions of Theorem 5 for any regularization sequence {ks}∞
s=0,

the primal sequence

{xs}∞
s=0 : ∇xP(xs,ks) = ∇ f (xs)−

m

∑
i=1

λi,s∇ci(xs) = 0 (88)

and the dual sequence

{λs}∞
s=0 : d(λs)+ k−1

s r(λs) =

max{d(u)+ k−1
s r(u) : 0≤ ui ≤ kα , i = 1, ...,m} (89)

the following statements hold

1) a) d(λs+1)> d(λs); b) r(λs+1)< r(λs);
2) lims→∞ d(λs) = d(λ ∗) and λ ∗ = argmin{r(λ ) : λ ∈ L∗};
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3) the primal-dual sequence {xs,λs}∞
s=0 is bounded and any limit point is the

primal-dual solution.

Proof. 1) From (89) and strong concavity r(u) follows

d(λs+1)+ k−1
s+1r(λs+1)> d(λs)+ k−1

s+1r(λs) (90)

and
d(λs)+ k−1

s r(λs)> d(λs+1)+ k−1
s r(λs+1). (91)

Therefore
(k−1

s+1− k−1
s )(r(λs+1)− r(λs))> 0.

From ks+1 > ks and last inequality follows r(λs+1) < r(λs), therefore from (90)
follows

d(λs+1)> d(λs)+ k−1
s+1(r(λs)− r(λs+1))> d(λs). (92)

2) The monotone increasing sequence {d(λs)}∞
s=0 is bounded from above by f (x∗).

Therefore there is lims→∞ d(λs) = d̄ ≤ f (x∗) = d(λ ∗).
From (89) follows

d(λs)+ k−1
s r(λs)≥ d(λ ∗)+ k−1

s r(λ ∗). (93)

From (92) follows {λs}∞
s=0 ⊂Λ(λ0) = {λ ∈Rm

+ : d(λ )≥ d(λ0)}. The set Λ(λ0)
is bounded due to the boundedness of L∗ and concavity d. Therefore there exists
{λsi}∞

i=1 ⊂ {λs}∞
s=0 that limsi→0 λsi = λ̄ . By taking the limit in the correspondent

subsequence in (93) we obtain d(λ̄ )≥ d(λ ∗), that is d(λ̄ ) = d(λ ∗).
From lims→∞ d(λsi) = d(λ ∗) and 1a) follows lims→∞ d(λs) = d(λ ∗).
From (93) follows

d(λ ∗)−d(λs)≤ k−1
s (r(λ ∗)− r(λs)), ∀λ ∗ ∈ L∗, (94)

therefore (94) is true for λ ∗ = argmin{r(λ )|λ ∈ L∗}.
3) We saw already the dual sequence {λs}∞

s=0 is bounded. Let us show that the
primal is bounded too. For a given approximation xs let consider two sets of
indices I+(xs) = {i : ci(xs)≥ 0} and I−(xs) = {i : ci(xs)< 0}.
Then keeping in mind f (xs)≥ 0 we obtain

P(xs,ks) = f (xs)+ k−1+α
s ∑

i∈I−(xs)

ln(1+ e−ksci(xs))

+k−1+α
s ∑

i∈I+(xs)

ln(1+ e−ksci(xs))

≥ f (xs)− kα
s ∑

i∈I−(xs)

ci(xs)+ k−1+α
s ∑

i∈I−(xs)

ln(1+ eksci(xs))

≥ f (xs)− kα
s ∑

i∈I−(xs)

ci(xs)≥−kα
s ∑

i∈I−(xs)

ci(xs).

(95)

On the other hand,
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P(xs,ks)≤ P(x∗,ks) = f (x∗)− k−1+α
s

m

∑
i=1

π(ksci(x∗))

= f (x∗)+ k−1+α
s

m

∑
i=1

ln(1+ e−ksci(x∗))≤ f (x∗)+ k−1+α
s m ln2. (96)

From (95) and (96) follows

kα
s ∑

i∈I−(xs)

|ci(xs)| ≤ f (x∗)+ k−1+α
s m ln2. (97)

Therefore for any s≥ 1 we have

max
i∈I−(xs)

|ci(xs)| ≤ k−α
s f (x∗)+ k−1

s m ln2. (98)

It means that the primal sequence {xs}∞
s=0 is bounded due to the boundedness of

Ω . In other words, the primal-dual sequence {xs,λs}∞
s=0 is bounded.

Let consider a converging subsequence {xsi ,λsi}∞
i=0: x̄= limi→∞ xsi ; λ̄ = limi→∞ λsi .

From (81) follows λ̄i = 0 for i : ci(x̄)> 0 and λ̄i ≥ 0 for i : ci(x̄) = 0. From (82) fol-
lows ∇xL(x̄, λ̄ ) = 0, therefore (x̄, λ̄ ) is KKT’s pair, that is x̄ = x∗, λ̄ = λ ∗. ut

The equivalence primal SUMT and dual interior regularization methods not only
allows to prove convergence in a unified and simple manner, but also provide impor-
tant information about dual feasible solution, which can be used to improve numer-
ical performance. One can’t, however, expect finding solution with high accuracy
because finding the primal minimizer for large k > 0 is a difficult task for the well
known reasons.

The difficulties, to a large extend, one can overcome by using the Nonlinear
Rescaling theory and methods (see [31], [46], [47], [50], [53], [59] and references).
One can view NR as an alternative to SUMT.

5 Nonlinear Rescaling and Interior Prox with Entropy like
Distance

The NR scheme employs smooth, strictly concave and monotone increasing func-
tions ψ ∈Ψ to transform the original set of constraints into an equivalent set. The
transformation is scaled by a positive scaling (penalty) parameter. The Lagrangian
for the equivalent problem is our main instrument.

At each step NR finds the primal minimizer of the Lagrangian for the equivalent
problem and uses the minimizer to update the Lagrange multipliers (LM). The pos-
itive scaling parameter can be fixed or updated from step to step. The fundamental
difference between NR ans SUMT lies in the role of the LM vector.

In case of SUMT the LM vector is just a by product of the primal minimization. It
provides valuable information about the dual vector but it does not effect the com-
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putational process. Therefore without unbound increase of the scaling parameter,
which is the only tool to control the process, one can not guarantee convergence.

In the NR scheme on the top of the scaling parameter the LM vector is a critical
extra tool, which controls computations.

The NR methods converges under any fixed scaling parameter, just due to the
LM update (see [31], [46], [50], [53]). If one increases the scaling parameter from
step to step, as SUMT does, then instead of sublinear the superlinear convergence
rate can be achieved.

The interplay between Lagrangians for the original and the equivalent prob-
lems allows to show the equivalence of the primal NR method and dual proximal
point method with ϕ-divergence entropy type distance. The kernel of the distance
ϕ = −ψ∗, where ψ∗ is the LET of ψ . The equivalence is the key ingredient of the
convergence analysis.

We consider a class Ψ of smooth functions ψ : (a,∞)→R, −∞ < a < 0 with the
following properties

1) ψ(0) = 0; 2) ψ
′
(t) > 0, ψ(0) = 1; 3) ψ

′′
(t) < 0; 4)limt→∞ ψ

′
(t) = 0; 5)

limt→a+ ψ
′
(t) = ∞.

From 1)-3) follows

Ω = {x ∈ Rn : ci(x)≥ 0, i = 1, ...,m}= {x ∈ Rn : k−1
ψ(kci(x))≥ 0, i = 1, ...,m}

for any k > 0.
Therefore (51) is equivalent to

min f (x)

s.t. k−1
ψ(kci(x))≥ 0, i = 1, ...,m.

(99)

The Lagrangian L : Rn×Rm
+×R++→ R for (99) is defined as follows

L (x,λ ,k) = f (x)− k−1
m

∑
i=1

λiψ(kci(x)).

The properties of L (x,λ ,k) at the KKT pair (x∗,λ ∗) we collect in the following
Assertion.

Assertion 2 For any k > 0 and any KKT pair (x∗,λ ∗) the following holds

1◦ L (x∗,λ ∗,k) = f (x∗)
2◦ ∇xL (x∗,λ ∗,k) = ∇ f (x∗)−∑

m
i=1 λ ∗i ∇ci(x∗) = ∇xL(x∗,λ ∗) = 0

3◦ ∇2
xxL (x∗,λ ∗,k) = ∇2

xxL(x∗,λ ∗)+ k∇cT (x∗)Λ ∗∇c(x∗),

where ∇c(x∗) = J(c(x∗)) is the Jacobian of c(x) = (c1(x), ...,cm(x))T and Λ ∗ =
I ·λ ∗.

Remark 1. The properties 10−30 show the fundamental difference between NR and
SUMT. In particular, for log-barrier penalty
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P(x,k) = f (x)− k−1
m

∑
i=1

lnci(x)

neither P nor its gradient or Hessian exist at the solution x∗. Moreover, for any given
k > 0 we have

lim
x→x∗

P(x,k) = ∞.

On the other hand, L (x,λ ∗,k) is an exact smooth approximation for the non-
smooth

F(x,x∗) = max{ f (x)− f (x∗),−ci(x), i = 1, ..,m},

that is, for any given k > 0 we have

min
x∈Rn

F(x,x∗) = F(x∗,x∗) = min
x∈Rn

(L (x,λ ∗,k)− f (x∗)) = 0.

5.1 NR and Dual Prox with ϕ-divergence Distance

In this subsection we consider the NR method and its dual equivalent - the prox
method with ϕ- divergence distance for the dual problem.

Let ψ ∈Ψ , λ0 = e = (1, ...,1) ∈ Rm
++ and k > 0 are given. The NR step consists

of finding the primal minimizer

x̂ :≡ x̂(λ ,k) : ∇xL (x̂,λ ,k) = 0 (100)

following by the Lagrange multipliers update

λ̂ ≡ λ̂ (λ ,k) = (λ̂1, ..., λ̂m) : λ̂i = λiψ
′
(kci(x̂)), i = 1, ...,m. (101)

Theorem 7. If condition A and B hold and f , ci ∈ C1, i = 1, ...,m, then the NR
method (100)-(101) is:

1) well defined;
2) equivalent to the following prox method

d(λ̂ )− k−1D(λ̂ ,λ ) = max{d(u)− k−1D(u,λ )|u ∈ Rm
++}, (102)

where D(u,λ )=∑
m
i=1 λiϕ(ui/λi) is ϕ-divergence distance function based on ker-

nel ϕ =−ψ∗.

Proof. 1) Due to the properties 1)-3) of ψ , convexity f and concavity of all ci, the
Lagrangian L is convex in x. From boundedness of Ω , Slater condition and
properties 3) and 5) of ψ follows emptiness of the Ω recession cone. It means
that for any nontrivial direction d ∈ Rn and any (λ ,k) ∈ Rm+1

++ we have

lim
t→∞

L (x+ td,λ ,k) = ∞
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for any x ∈ Ω . Hence for a given (λ ,k) ∈ Rm+1
++ there exists x̂ ≡ x̂(λ ,k) defined

by (100) and λ̂ ≡ λ̂ (λ ,k) defined by (101). Due to 2) of ψ we have λ ∈ Rm
++⇒

λ̂ ∈ Rm
++, therefore NR method (100)-(101) is well defined.

2) From (100) and (101) follows

∇xL (x̂, λ̂ ,k) = ∇ f (x̂)−
m

∑
i=1

λiψ
′
(kci(x̂))∇ci(x̂) = ∇xL(x̂, λ̂ ) = 0,

therefore
min
x∈R

L(x, λ̂ ) = L(x̂, λ̂ ) = d(λ̂ ).

The subdifferential ∂d(λ̂ ) contains −c(x̂), that is

0 ∈ c(x̂)+∂d(λ̂ ). (103)

From (101) follows ψ
′
(kci(x̂)) = λ̂i/λi, i = 1, ...,m.

Due to 3) of ψ there exists an inverse ψ
′−1. Using LEID we obtain

ci(x̂) = k−1
ψ
′−1(λ̂i/λi) = k−1

ψ
∗′(λ̂i/λi) (104)

combining (103) and (104) we have

0 ∈ ∂d(λ̂ )+ k−1
m

∑
i=1

ψ
∗′
(

λ̂i/λi

)
ei. (105)

The inclusion (105) is the optimality criteria for λ̂ to be a solution of problem
(102). ut

Remark 2. It follows from 1◦ and 2◦ of Assertion 2, that for any k > 0 we have
x∗ = x(λ ∗,k) and λ ∗ = λ (λ ∗,k), that is λ ∗ ∈ Rm

+ is a fixed point of the mapping
λ → λ̂ (λ ,k).

Along with the class Ψ of transformations ψ we consider a class Φ of kernels ϕ =
−ψ∗, with properties induced by properties of ψ . We collect them in the following
Assertion.

Assertion 3 The kernel ϕ ∈Φ are strictly convex on R+ and possess the following
properties on ]0,∞[.

1) ϕ(s)≥ 0, mins≥0 ϕ(s) = ϕ(1) = 0,
2) ϕ

′
(1) = 0;

3) ϕ
′′
(s)> 0.

Assertion 3 follows from properties 1)-3) of ψ and (11).
The general NR scheme and corresponding methods were introduced in the early

80s (see [46] and references therein). Independently the prox methods with ϕ- di-
vergence distance has been studied by M. Teboulle (see [59]). The equivalence of
NR and prox methods with ϕ- divergence distance was established in [50].
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In the following subsection we consider an important particular case of NR - the
MBF method.

5.2 Convergence of the MBF Method and its Dual Equivalent

For reasons, which will be clear later, we would like to concentrate on the NR
method with transformation ψ(t) = ln(t + 1), which leads to the MBF theory
and methods developed in [46] (see also [10], [25], [31], [34], [37], [41], [53]
and references therein). The correspondent Lagrangian for the equivalent problem
L : Rn×Rm

+×R++→ R is defined by formula

L (x,λ ,k) = f (x)− k−1
m

∑
i=1

λi ln(kci(x)+1).

For a given k > 0 and λ0 = e = (1, ...,1) ∈ Rm
++ the MBF method generates the

following primal-dual sequence {xs,λs}∞
s=0:

xs+1 : ∇xL (xs+1,λs,k) =

∇ f (xs+1)−
m

∑
i=1

λi,s(kci(xs+1)+1)−1
∇ci(xs+1) = 0 (106)

λs+1 : λi,s+1 = λi,s(kc(xs+1)+1)−1, i = 1, ...,m. (107)

The Hausdorff distance between two compact sets in Rm
+ will be used later.

Let X and Y be two bounded and closed sets in Rn and d(x,y) = ‖x− y‖ is the
Euclidean distance between x ∈ X ,y ∈ Y . Then the Hausdorff distance between X
and Y is defined as follows

dH(X ,Y ) := max{max
x∈X

min
y∈Y

d(x,y),max
y∈Y

min
x∈X

d(x,y)}=

max{max
x∈X

d(x,Y ),max
y∈Y

d(y,X)}.

For any pair of compact sets X and Y ⊂ Rn

dH(X ,Y ) = 0⇔ X = Y.

Let Q⊂ Rm
++ be a compact set, Q̂ = Rm

++ \Q, S(u,ε) = {v ∈ Rm
+ : ‖u− v‖ ≤ ε}

and
∂Q = {u ∈ Q|∃v ∈ Q : v ∈ S(u,ε),∃v̂ ∈ Q̂ : v̂ ∈ S(u,ε)},∀ε > 0

be the boundary of Q.
Let A ⊂ B ⊂ C be convex and compact sets in Rm

+. The following inequality
follows from the definition of Hausdorff distance.
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dH(A,∂B)< dH(A,∂C) (108)

Along with the dual sequence {λs}∞
s=0 we consider the corresponding convex and

bounded level sets Λs = {λ ∈Rm
+ : d(λ )≥ d(λs)} and their boundaries ∂Λs = {λ ∈

Λs : d(λ ) = d(λs)}.

Theorem 8. Under condition of Theorem 7 for any given k > 0 and any λ0 ∈ Rm
++

the MBF method (106)-(107) generates such primal-dual sequence {xs,λs}∞
s=0 that:

1) d(λs+1)> d(λs), s≥ 0
2) lims→∞ d(λs) = d(λ ∗), lims→∞ f (xs) = f (x∗)
3) lims→∞ dH(∂Λs,L∗) = 0
4) there exists a subsequence {sl}∞

l=1 such that for x̄l =∑
sl+1
s=sl (sl+1−sl)

−1xs we have
liml→∞ x̄l = x̄ ∈ X∗, i.e. the primal sequence converges to the primal solution in
the ergodic sense.

Proof. 1) It follows from Theorem 7 that method (106)-(107) is well defined and it
is equivalent to following proximal point method

d(λs+1)− k−1
m

∑
i=1

λi,sϕ(λi,s+1/λi,s) =

max{d(u)− k−1
m

∑
i=1

λi,sϕ(ui/λi,s) : u ∈ Rm
++}, (109)

where ϕ =−ψ∗ =− inft>−1{st− ln(t +1)}=− lns+ s−1 is the MBF kernel.
The ϕ-divergence distance function

D(λ ,u) =
m

∑
i=1

λiϕ(ui/λi) =
m

∑
i=1

[−λi lnui/λi +ui−λi],

which measures the divergence between two vectors λ and u from Rm
++ is, in

fact, the Kullback-Leibler (KL) distance (see [20], [50], [59]). The MBF ker-
nel ϕ(s) = − lns + s− 1 is strictly convex on R++ and ϕ

′
(1) = 0, therefore

mins>0 ϕ(s) = ϕ(1) = 0, also

a) D(λ ,u)> 0, ∀λ 6= u ∈ Rm
++

b) D(λ ,u) = 0⇔ λ = u.

From (109) for u = λs follows

d(λs+1)≥ d(λs)+ k−1
m

∑
i=1

λi,sϕ(λi,s+1/λi,s). (110)

Therefore the sequence {d(λs)}∞
s=0 is monotone increasing, unless ϕ(λi,s+1/λi,s)=

0 for all i = 1, ...,m, but in such case λs+1 = λs = λ ∗. The monotone increas-
ing sequence {d(λs)}∞

s=0 is bounded from above by f (x∗), therefore there exists
lims→∞ d(λs) = d̄ ≤ f (x∗).
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2) Our next step is to show that d̄ = f (x∗).
From −c(xs+1) ∈ ∂d(λs+1) and concavity of the dual function d follows

d(λ )−d(λs+1)≤ (−c(xs+1),λ −λs+1), ∀λ ∈ Rm
++.

So for λ = λs we have

d(λs+1)−d(λs)≥ (c(xs+1),λs−λs+1). (111)

From the update formula (107) follows

(λi,s−λi,s+1) = kci(xs+1)λi,s+1, i = 1, ...,m, (112)

therefore from (111) and (112) we have

d(λs+1)−d(λs)≥ k
m

∑
i=1

c2
i (xs+1)λi,s+1. (113)

From Slater condition follows boundedness of L∗. Therefore from concavity d
follows boundedness of the dual level set

Λ(λ0) = {λ ∈ Rm
+ : d(λ )≥ d(λ0)}.

It follows from the dual monotonicity (110) that the dual sequence {λs}∞
s=0 ∈

Λ(λ0) is bounded.
Therefore there exists L > 0 : maxi,s λi,s = L. From (113) follows

d(λs+1)−d(λs)≥ kL−1(c(xs+1),λs+1)
2. (114)

By summing up (114) from s = 1 to s = N we obtain

d(λ ∗)−d(λ0)≥ d(λN+1)−d(λ0)> kL−1
N

∑
s=1

(λs,c(xs))
2,

which leads to asymptotic complementarity condition

lim
s→∞

(λs,c(xs)) = 0. (115)

On the other hand, from (110) follows

d(λ ∗)−d(λ0)≥ d(λN)−d(λ0)≥ k−1
N

∑
s=1

D(λs,λs+1). (116)

Therefore lims→∞ D(λs,λs+1)= 0, which means that divergence (entropy)between
two sequential LM vectors asymptotically disappears, that is the dual sequence
converges to the fixed point of the map λ → λ̂ (λ ,k), which due to Remark 2, is
λ ∗.
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We need few more steps to prove it. Let us show first that

D(λ ∗,λs)> D(λ ∗,λs+1), ∀s≥ 0 (117)

unless λs = λs+1 = λ ∗.
We assume x lnx = 0 for x = 0, then

D(λ ∗,λs)−D(λ ∗,λs+1) =
m

∑
i=1

(
λ
∗
i ln

λi,s+1

λi,s
+λi,s−λi,s+1

)
.

Invoking the update formula (107) we obtain

D(λ ∗,λs)−D(λ ∗,λs+1) =
m

∑
i=1

λ
∗
i ln(kci(xs+1)+1)−1 + k

m

∑
i=1

λi,s+1ci(xs+1).

Keeping in mind ln(1+ t)−1 =− ln(1+ t)≥−t we have

D(λ ∗,λs)−D(λ ∗,λs+1)≥ k
m

∑
i=1

(λi,s+1−λ
∗
i )ci(xs+1) =

k(−c(xs+1),λ
∗−λs+1). (118)

From concavity d and −c(xs+1) ∈ ∂d(λs+1) follows

0≤ d(λ ∗)−d(λs+1)≤ (−c(xs+1),λ
∗−λs+1). (119)

Combining (118) and (119) we obtain

D(λ ∗,λs)−D(λ ∗,λs+1)≥ k(d(λ ∗)−d(λs+1))> 0. (120)

Assuming that d(λ ∗)− d̄ = ρ > 0 and summing up the last inequality from s = 0
to s=N we obtain D(λ ∗,λ0)≥ kNρ , which is impossible for N > 0 large enough.
Therefore lims→∞ d(λs) = d̄ = d(λ ∗), which together with asymptotic comple-
mentarity (115) leads to

d(λ ∗) = lim
s→∞

d(λs) = lim
s→∞

[ f (xs)− (λs,c(xs))] =

lim
s→∞

f (xs) = f (x∗). (121)

3) The dual sequence {λs}∞
s=0 is bounded, so it has a converging subsequence

{λsi}∞
i=0: limi→∞ λsi = λ̄ . It follows from the dual convergence in value that

λ̄ = λ ∗ ∈ L∗, therefore {λ ∈ Rm
+ : d(λ ) = d(λ̄ )}= L∗.

From (110) follows L∗ ⊂ ... ⊂ Λs+1 ⊂ Λs ⊂ ... ⊂ Λ0, therefore from (108) we
obtain a monotone decreasing sequence {dH(∂Λs,L∗)}∞

s=0, which has a limit,
that is

lim
s→∞

dH(∂Λs,L∗) = ρ ≥ 0,
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but ρ > 0 is impossible due to the continuity of the dual function and the conver-
gence of the dual sequence in value.

4) Let us consider the indices subset I+ = {i : λ̄i > 0}, then from (115) we have
lims→∞ ci(xs) = ci(x̄) = 0, i ∈ I+. Now we consider the indices subset I0 = {i :
λ̄i = 0}.
There exists a subsequence {λsl}∞

l=1 that λi,sl+1 ≤ 0.5λi,sl , i ∈ I0.
Using again the update formula (107) we obtain

λsl+1

sl+1

∏
s=sl

(kci(xs)+1) = λi,sl ≥ 2λsl+1 , i ∈ I0.

Invoking the arithmetic-geometric means inequality we have

1
sl+1− sl

sl+1

∑
s=sl

(kci(xs)+1)≥

(
sl+1

∏
s=sl+1

(kci(xs)+1)

)1/(sl+1−sl)

≥ 2(1/sl+1−sl) > 1.

Therefore
k

(sl+1− sl)

sl+1

∑
s=sl

ci(xs)> 0 i ∈ I0.

From concavity ci we obtain

ci(x̄l+1) = ci

(
sl+1

∑
s=sl+1

1
sl+1− sl

xs

)
≥ 1

sl+1− sl

sl+1

∑
s=sl+1

ci(xs)> 0, i ∈ I0. (122)

On the other hand, from convexity of f we have

f (x̄l+1)≤
1

sl+1− sl

sl+1

∑
s=sl+1

f (xs). (123)

Without loosing generality we can assume that liml→∞ x̄l = x̄ ∈ Ω . It follows
from (121) that

f (x̄) = lim
l→∞

f (x̄l)≤ lim
s→∞

f (xs) = lim
s→∞

d(λs) = d(λ ∗) = f (x∗).

Thus f (x̄) = f (x∗) = d(λ ∗) = d(λ̄ ) and x̄ = x∗, λ̄ = λ ∗. The proof of Theorem
8 is completed. ut
We conclude the section with few remarks.

Remark 3. Each ψ ∈Ψ leads to a particular NR method for solving (51) as well
as to an interior prox method for solving the dual problem (53). In this regard NR
approach is source of methods for solving (53), which arises in a number of ap-
plication such as non-negative least square, statistical learning theory, image space
reconstruction, maximum likelihood estimation in emission tomography (see [17],
[20], [62] and references therein).
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Remark 4. The MBF method leads to the multiplicative method (107) for the dual
problem. If the dual function d has a gradient, then ∇d(λs+1) =−c(xs+1). Formulas
(107) can be rewritten as follows

λi,s+1−λi,s = kλi,s+1[∇d(λs+1)], i = 1, ...,m, (124)

which is, in fact, implicit Euler method for the following system of ordinary differ-
ential equations

dλ

dt
= kλ∇d(λ ), λ (0) = λ0. (125)

Therefore the dual MBF method (124) is called (see (1.7) in [20]) implicit multi-
plicative algorithm.

The explicit multiplicative algorithm (see (1.8) in [20]) is given by the following
formula

λi,s+1 = λi,s(1− k[∇d(λs)]i)
−1, i = 1, ...,m. (126)

It has been used by Eggermond [20] for solving non-negative least square, by
Daube-Witherspoon and Muchlehner [17] for image space reconstruction (ISRA)
and by Shepp and Vardi in their EM method for finding maximum likelihood esti-
mation in emission tomography [62].

Remark 5. Under the standard second order sufficient optimality condition there ex-
ists k0 > 0 that for k ≥ k0 the MBF method (106)-(107) converges with linear rate

‖xs+1− x∗‖ ≤ c
k
‖λs−λ

∗‖; ‖λs+1−λ
∗‖ ≤ c

k
‖λs−λ

∗‖

and c > 0 is independent on k ≥ k0. By increasing k from step to step one obtains
superlinear convergence rate (see [46]).

6 Lagrangian Transformation and Interior ellipsoid methods

The Lagrangian transformation (LT) scheme employs a class ψ ∈Ψ of smooth
strictly concave, monotone increasing functions to transform terms of the Classical
Lagrangian associated with constraints. The transformation is scaled by a positive
scaling parameter.

Finding a primal minimizer of the transformed Lagrangian following by the La-
grange multipliers update leads to a new class of multipliers methods.

The LT methods are equivalent to proximal point methods with Bregman or Breg-
man type distance function for the dual problem. The kernel of the correspondent
distance is ϕ =−ψ∗.

Each dual prox, in turn, is equivalent to an interior ellipsoid methods. In case of
the MBF transformation ψ(t)= ln(t+1) the dual prox is based on Bregman distance
B(u,v) = ∑

m
i=1(− ln(ui/vi)+ui/vi−1) with MBF kernel ϕ =−ψ∗ =− lns+ s−1,
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which is SC function. Therefore the interior ellipsoids are Dikin’s ellipsoids (see
[18], [39], [42], [43], [49] ).

Application of LT with MBF transformation for LP leads to Dikin’s affine scaling
type method for the dual LP.

6.1 Lagrangian Transformation

We consider a class Ψ of twice continuous differentiable functions ψ : R→ R with
the following properties

1) ψ(0) = 0
2) a) ψ ′(t)> 0, b) ψ ′(0) = 1, ψ ′(t)≤ at−1,a > 0, t > 0
3) −m−1

0 ≤ ψ ′′(t)< 0, ∀t ∈]−∞,∞[
4) ψ ′′(t)≤−M−1, ∀t ∈]−∞,0[, 0 < m0 < M < ∞.

For a given ψ ∈Ψ and k > 0, the LT L : Rn×Rm
+×R++ → R is defined by the

following formula

L (x,λ ,k) := f (x)− k−1
m

∑
i=1

ψ(kλici(x)). (127)

It follows from 2a) and 3), convexity f , concavity ci, i = 1, ...,m that for any given
λ ∈ Rm

++ and any k > 0 the LT is convex in x.

6.2 Primal Transformations and Dual Kernels

The well known transformations

• exponential [7], [40], [61] ψ̂1(t) = 1− e−t ;
• logarithmic MBF [46] ψ̂2(t) = ln(t +1);
• hyperbolic MBF [46] ψ̂3(t) = t/(t +1);
• log-sigmoid [48] ψ̂4(t) = 2(ln2+ t− ln(1+ et));
• Chen-Harker-Kanzow-Smale [48] (CHKS) ψ̂5(t) = t−

√
t2 +4η+2

√
η , η > 0,

unfortunately, do not belong to Ψ .

The transformations ψ̂1, ψ̂2, ψ̂3 do not satisfy 3) (m0 = 0), while transformations ψ̂4
and ψ̂5 do not satisfy 4) (M = ∞). A slight modification of ψ̂i, i = 1, . . . ,5, however,
leads to ψi ∈Ψ (see [6]).

Let −1 < τ < 0, we will use later the following truncated transformations ψi :
R→ R are defined as follows

ψi(t) :=

{
ψ̂i(t),∞ > t ≥ τ

qi(t),−∞ < t ≤ τ,
(128)
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where qi(t) = ait2 +bit + ci and ai = 0.5ψ̂ ′′i (τ), bi = ψ̂ ′i (τ)− τψ̂ ′′(τ),

ci = ψ̂ ′i (τ)− τψ̂ ′i (τ)+0.5τ2ψ̂ ′′i (τ).
It is easy to check that for truncated transformations ψi, i = 1, ...,5 the properties

1)-4) hold, that is ψi ∈Ψ .
In the future along with transformations ψi ∈Ψ their conjugate

ψ
∗
i (s) :=

{
ψ̂∗i (s), s≤ ψ̂ ′i (τ)

q∗i (s) = (4ai)
−1(s−bi)

2− ci, s≥ ψ̂ ′i (τ), i = 1, . . . ,5,
(129)

will play an important role, where ψ̂∗i(s) = inft{st− ψ̂i(t)} is the LET of ψ̂i.
With the class of primal transformations Ψ we associate the class of dual kernels

ϕ ∈Φ = {ϕ =−ψ
∗ : ψ ∈Ψ}.

Using properties 2) and 4) one can find 0 < θi < 1 that

ψ̂ ′i (τ)− ψ̂ ′i (0) =−ψ̂ ′′i (τθi)(−τ)≥−τM−1, i = 1, . . . ,5

or
ψ̂ ′i (τ)≥ 1− τM−1 = 1+ |τ|M−1.

Therefore from (129) for any 0 < s≤ 1+ |τ|M−1 we have

ϕi(s) = ϕ̂i(s) =−ψ̂∗i (s) = inf
t
{st− ψ̂i(t)}, (130)

where kernels

• exponential ϕ̂1(s) = s lns− s+1, ϕ̂1(0) = 1;
• logarithmic MBF ϕ̂2(s) =− lns+ s−1;
• hyperbolic MBF ϕ̂3(s) =−2

√
s+ s+1, ϕ̂3(0) = 1;

• Fermi-Dirac ϕ̂4(s) = (2− s) ln(2− s)+ s lns, ϕ̂4(0) = 2ln2;
• CMKS ϕ̂5(s) =−2

√
η(
√
(2− s)s−1), ϕ̂5(0) = 2

√
η

are infinitely differentiable on ]0,1+ |τ|M−1[.

To simplify the notations we omit indices of ψ and ϕ .
The properties of kernels ϕ ∈ Φ induced by 1)–4) can be established by using

(11).
We collect them in the following Assertion

Assertion 4 The kernels ϕ ∈ Φ are strictly convex on Rm
+, twice continuously dif-

ferentiable and possess the following properties

1) ϕ(s)≥ 0, ∀s ∈]0,∞[ and min
s≥0

ϕ(s) = ϕ(1) = 0;

2) a) lim
s→0+

ϕ
′(s) =−∞, b) ϕ ′(s) is monotone increasing and

c) ϕ ′(1) = 0;
3) a) ϕ ′′(s)≥ m0 > 0, ∀s ∈]0,∞[, b) ϕ ′′(s)≤M < ∞, ∀s ∈ [1,∞[.



36 Roman A. Polyak

Let Q ⊂ Rm be an open convex set, Q̂ is the closure of Q and ϕ : Q̂→ R be a
strictly convex closed function on Q̂ and continuously differentiable on Q, then the
Bregman distance Bϕ : Q̂×Q→ R+ induced by ϕ is defined as follows(see [8]),

Bϕ(x,y) = ϕ(x)−ϕ(y)− (∇ϕ(y),x− y). (131)

Let ϕ ∈Φ , then Bϕ : Rm
+×Rm

++→ R+, defined by

Bϕ(u,v) :=
m

∑
i=1

ϕ(ui/vi),

we call Bregman type distance induced by kernel ϕ . Due to
ϕ(1) = ϕ ′(1) = 0 for any ϕ ∈Φ , we have

ϕ(t) = ϕ(t)−ϕ(1)−ϕ
′(1)(t−1), (132)

which means that ϕ(t) : R++→ R++ is Bregman distance between t > 0 and 1.
By taking ti =

ui
vi

from (132) we obtain

Bϕ(u,v) = Bϕ(u,v)−Bϕ(v,v)− (∇uBϕ(v,v),u− v), (133)

which justifies the definition of the Bregman type distance.
For the MBF kernel ϕ2(s) =− lns+ s−1 we obtain the Bregman distance,

B2(u,v) =
m

∑
i=1

ϕ2(ui/vi) =
m

∑
i=1

(− lnui/vi +ui/vi−1) =

m

∑
i=1

[− lnui+ lnvi +(ui− vi)/vi],

(134)

which is induced by the standard log-barrier function F(t) =−∑
m
i=1 ln ti.

After Bregman’s introduction his function in the 60s (see [8]) the prox method
with Bregman distance has been widely studied (see [9], [11], [13], [15], [19], [39],
[48]-[50] and reference therein).

From the definition of B2(u,v) follows

∇uB2(u,v) = ∇F(u)−∇F(v).

For u ∈ Q̂, v ∈ Q and w ∈ Q the following three point identity established by Chen
and Teboulle in [15] is an important element in the analysis of prox methods with
Bregman distance

B2(u,v)−B2(u,w)−B2(w,v) = (∇F(v)−∇F(w),w−u). (135)

The properties of Bregman’s type distance functions we collect in the following
Assertion.

Assertion 5 The Bregman type distance satisfies the following properties:
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1) Bϕ(u,v)≥ 0,∀u∈Rm
+,v∈Rm

++, Bϕ(u,v) = 0⇔ u= v, ∀v,u∈Rm
++; Bϕ(u,v)> 0

for any u 6= v
2) Bϕ(u,v)≥ 1

2 m0 ∑
m
i=1(

ui
vi
−1)2,∀ui ∈ Rm

+,vi ∈ Rm
++;

3) Bϕ(u,v)≤ 1
2 M ∑

m
i=1(

ui
vi
−1)2,∀u ∈ Rm

+,u≥ v > 0;
4) for any fixed v ∈ Rm

++ the gradient ∇uBϕ(u,v) is a barrier function of u ∈ Rm
++,

i.e.

lim
ui→0+

∂

∂ui
Bϕ(u,v) =−∞, i = 1, . . . ,m.

The properties 1)–4) directly following from the properties of kernels ϕ ∈ Φ given
in Assertion 4.

6.3 Primal LT and Dual Prox Methods

Let ψ ∈Ψ , λ0 ∈ Rm
++ and k > 0 are given. The LT method generates a primal–dual

sequence {xs,λs}∞
s=1 by formulas

xs+1 : ∇xL (xs+1,λs,k) = 0 (136)

λi,s+1 = λi,sψ
′(kλi,sci(xs+1)), i = 1, . . . ,m. (137)

Theorem 9. If conditions A and B hold and f , ci, i = 1, ...,m continuously differen-
tiable then:

1) the LT method (136)-(137) is well defined and it is equivalent to the following
interior proximal point method

λs+1 = argmax{d(λ )− k−1Bϕ(λ ,λs)|λ ∈ Rm
++}, (138)

where

Bϕ(u,v) :=
m

∑
i=1

ϕ(ui/vi)

and ϕ =−ψ∗.
2) for all i = 1, ...,m we have

lim
s→∞

(λi,s+1/λi,s) = 1. (139)

Proof. 1) From assumptions A, convexity of f , concavity of ci, i = 1, . . . ,m and
property 4) of ψ ∈Ψ for any λs ∈ Rm

++ and k > 0 follows boundedness of the
level set {x : L (x,λs,k) ≤L (xs,λs,k)}. Therefore, the minimizer xs exists for
any s≥ 1. It follows from 2 a) of ψ ∈Ψ and (137) that λs ∈Rm

++⇒ λs+1 ∈Rm
++.

Therefore the LT method (136)– (137) is well defined. From (136) follows

∇xL (xs+1,λs,k) =
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∇ f (xs+1)−
m

∑
i=1

λi,sψ
′(kλi,sci(xs+1))∇ci(xs+1)) = 0. (140)

From (136) and (137) we obtain

∇xL (xs+1,λs,k) = ∇ f (xs+1)−
m

∑
i=1

λi,s+1∇ci(xs+1) = ∇xL(xs+1,λs+1) = 0,

therefore
d(λs+1) = L(xs+1,λs+1) = min{L(x,λs+1)|x ∈ Rn}.

From (137) we get

ψ
′(kλi,sci(xs+1)) = λi,s+1/λi,s, i = 1, . . . ,m.

In view of property 3) for any ψ ∈Ψ there exists an inverse ψ ′−1, therefore

ci(xs+1) = k−1(λi,s)
−1

ψ
′−1(λi,s+1/λi,s), i = 1, . . . ,m. (141)

Using LEID ψ ′−1 = ψ∗′ we obtain

ci(xs+1) = k−1(λi,s)
−1

ψ
∗′(λi,s+1/λi,s), i = 1, . . . ,m. (142)

Keeping in mind
−c(λs+1) ∈ ∂d(λs+1)

and ϕ =−ψ∗ we have

0 ∈ ∂d(λs+1)− k−1
m

∑
i=1

(λi,s)
−1

ϕ
′(λi,s+1/λi,s)ei.

The last inclusion is the optimality criteria for λs+1 ∈ Rm
++ to be the solution of

the problem (138). Thus, the LT method (136)-(137) is equivalent to the interior
proximal point method (138).

2) From 1) of Assertion 5 and (138) follows

d(λs+1)≥ k−1Bϕ(λs+1,λs)+d(λs)> d(λs), ∀s > 0. (143)

Summing up last inequality from s = 0 to s = N, we obtain

d(λ ∗)−d(λ0)≥ d(λN+1)−d(λ0)> k−1
N

∑
s=0

Bϕ(λs+1,λs),

therefore

lim
s→∞

B(λs+1,λs) = lim
s→∞

m

∑
i=1

ϕ(λi,s+1/λi,s) = 0. (144)

From (144) and 2) of Assertion 5 follows
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lim
s→∞

λi,s+1/λi,s = 1, i = 1, ...,m. (145)

ut

Remark 6. From (130) and (145) follows that for s ≥ s0 > 0 the Bregman type dis-
tance functions Bϕi used in (138) are based on kernels ϕi, which correspond to the
original transformations ψ̂i.

The following Theorem establishes the equivalence of LT multipliers method and
interior ellipsoid methods (IEMs) for the dual problem.

Theorem 10. It conditions of Theorem 9 are satisfied then:

1) for a given ϕ ∈ Φ there exists a diagonal matrix Hϕ = diag(hi
ϕ)

m
i=1 with hi

ϕ >

0, i = 1, . . . ,m that Bϕ(u,v) = 1
2‖u− v‖2

Hϕ
, where ‖w‖2

Hϕ
= wT Hϕ w;

2) The Interior Prox method (138) is equivalent to an interior quadratic prox (IQP)
in the rescaled from step to step dual space, i.e.

λs+1 = argmax{d(λ )− 1
2k
‖λ −λs‖2

Hs
ϕ
|λ ∈ Rm

+}, (146)

where Hs
ϕ = diag(hi,s

ϕ ) = diag(2ϕ ′′(1+θ s
i (λi,s+1/λi,s−1))(λi,s)

−2)
and 0 < θ s

i < 1;
3) The IQP is equivalent to an interior ellipsoid method (IEM) for the dual problem;
4) There exists a converging to zero sequence {rs > 0}∞

s=0 and step s0 > 0 such that,
for ∀s ≥ s0, the LT method (136)– (137) with truncated MBF transformation
ψ2(t) is equivalent to the following IEM for the dual problem

λs+1 = argmax{d(λ )|λ ∈ E(λs,rs)}, (147)

where Hs = diag(λi,s)
m
i=1 and

E(λs,rs) = {λ : (λ −λs)
T H−2

s (λ −λs)≤ r2
s }

is Dikin’s ellipsoid associated with the standard log–barrier function
F(λ ) =−∑

m
i=1 lnλi for the dual feasible set Rm

+.

Proof. 1) It follows from ϕ(1) = ϕ ′(1) = 0 that

Bϕ(u,v) =
1
2

m

∑
i=1

ϕ
′′(1+θi(

ui

vi
−1))(

ui

vi
−1)2, (148)

where 0 < θi < 1, i = 1, . . . ,m.
Due to 3a) from Assertion 4, we have ϕ ′′(1+θi(

ui
vi
− 1)) ≥ m0 > 0, and due to

property 2a) of ψ ∈Ψ , we have v ∈ Rm
++, therefore

hi
ϕ = 2ϕ

′′(1+θi(
ui

vi
−1))v−2

i > 0, i = 1, . . . ,m.
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We consider the diagonal matrix Hϕ = diag(hi
ϕ)

m
i=1, then from (148) we have

Bϕ(u,v) =
1
2
‖u− v‖2

Hϕ
. (149)

2) By taking u = λ , v = λs and Hϕ = Hs
ϕ from (138) and (149) we obtain (146)

3) Let’s consider the optimality criteria for the problem (146). Keeping in mind
λs+1 ∈ Rm

++ we conclude that λs+1 is an unconstrained maximizer in (146).
Therefore one can find gs+1 ∈ ∂d(λs+1) that

gs+1− k−1Hs
ϕ(λs+1−λs) = 0. (150)

Let rs = ‖λs+1−λs‖Hs
ϕ

, we consider an ellipsoid

Eϕ(λs,rs) = {λ : (λ −λs)
T Hs

ϕ(λ −λs)≤ r2
s }

with center λs ∈Rm
++ and radius rs. It follows from 4) of Assertion 5 that E(λs,rs)

is an interior ellipsoid in Rm
++, i.e. Eϕ(λs,rs)⊂ Rm

++.
Moreover λs+1 ∈ ∂Eϕ(λs,rs) = {λ : (λ −λs)

T Hs
ϕ(λ −λs) = r2

s }, therefore (150)
is the optimality condition for the following optimization problem

d(λs+1) = max{d(λ )|λ ∈ Eϕ(λs,rs)} (151)

and (2k)−1 is the optimal Lagrange multiplier for the only constraint in (151).
Thus, the Interior Prox method (138) is equivalent to the IEM (151).

4) Let us consider the LT method (136)-(137) with truncated MBF transformation.
From (139) follows that for s≥ s0 only Bregman distance

B2(λ ,λs) =
m

∑
i=1

(−ln
λi

λ s
i
+

λi

λ s
i
−1)

is used in the LT method (136)-(137). Then

∇
2
λλ

B2(λ ,λs)|λ=λs = H−2
s = (I ·λs)

−2.

In view of B2(λs,λs) = 0 and ∇λB2(λs,λs) = 0m, we obtain

B2(λ ,λs) =
1
2
(λ −λs)

T H−2
s (λ −λs)+o(‖λ −λs‖2) =

= Q(λ ,λs)+o(‖λ −λs‖2).

It follows from (139) that for a any s ≥ s0 the term o(‖λs+1−λs‖2) can be ig-
nored. Then the optimality criteria (150) can be rewritten as follows

gs+1− k−1H−2
s (λs+1−λs) = 0.

Therefore
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d(λs+1) = max{d(λ )|λ ∈ E(λs,rs)},

where r2
s = Q(λs+1,λs) and

E(λs,rs) = {λ : (λ −λs)H−2
s (λ −λs) = r2

s }

is Dikin’s ellipsoid. The proof is completed ut

The results of Theorem 10 were used in [49] for proving convergence LT method
(136)-(137) and its dual equivalent (138) for Bregman type distance function.

Now we consider the LT method with truncated MBF transformation ψ2.
It follows from (130) and (139) that for s ≥ s0 only original transformation

ψ2(t) = ln(t + 1) is used in LT method (136)-(137), therefore only Bregman dis-
tance B2(u,v) = ∑

m
i=1(− ln(ui/vi)+ui/vi−1) is used in the prox method (138).

In other words, for a given k > 0 the primal-dual sequence {xs,λs}∞
s=s0

is gener-
ated by the following formulas

xs+1 :∇kL (xs+1,λs,k) =

∇ f (xs+1)−
m

∑
i=1

λi,s(1+ kλi,sci(xs+1))
−1

∇ci(xs+1) = 0
(152)

λs+1 : λi,s+1 = λi,s(1+ kλi,sci(xs+1))
−1, i = 1, ...,m. (153)

The method (152)-(153) Matioti and Gonzaga called M2BF (see [39]).

Theorem 11. Under condition of Theorem 9 the M2BF method generates such
primal-dual sequence that:

1) d(λs+1)> d(λs), s≥ s0
2) a) lims→∞ d(λs) = d(λ ∗); b) lims→∞ f (xs) = f (x∗) and

c) lim
s→∞

dH(∂Λs,L∗) = 0

3) there is a subsequence {sl}∞
l=1 that for λ̄i,s = λi,s

(
∑

sl+1
s=sl λi,s

)−1 the sequence
{x̄l+1 = ∑

sl+1
s=sl λ̄i,sxs}∞

l=0 converges and liml→∞ x̄l = x̄ ∈ X∗.

Proof. 1) From Theorem 10 follows that LT (152)-(153) is equivalent to the prox
method (138) with Bregman distance. From (138) with λ = λs we obtain

d(λs+1)≥ d(λs)+ k−1
m

∑
i=1

(− ln(λi,s+1/λi,s)+λi,s+1/λi,s−1). (154)

The Bregman distance is strictly convex in u, therefore from (154) follows
d(λs+1) > d(λs) unless λs+1 = λs ∈ Rm

++, then ci(xs+1) = 0, i = 1, ..,m and
(xs+1,λs+1) = (x∗,λ ∗) is a KKT pair.

2) The monotone increasing sequence {d(λs)}∞
s=s0

is bounded from above by f (x∗),
therefore there exists d̄ = lims→∞ d(λs)≤ d(λ ∗) = f (x∗).
The first step is to show that d̄ = d(λ ∗).
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Using ∇uB2(v,w) = ∇F(v)−∇F(w) for v = λs and w = λs+1 we obtain

∇λB2(λ ,λs+1)/λ=λs = ∇ϕ(λs)−∇ϕ(λs+1) =

(
−

m

∑
i=1

λ
−1
i,s ei +

m

∑
i=1

λ
−1
i,s+1ei

)
.

From the three point identity (135) with u = λ ∗, v = λs, w = λs+1 follows

B2(λ
∗,λs)−B2(λ

∗,λs+1)−B2(λs+1,λs) =

(∇ϕ(λs)−∇ϕ(λs+1),λs+1−λ
∗) =

m

∑
i=1

(−λ
−1
i,s +λ

−1
i,s+1)(λi,s+1−λ

∗
i ).

(155)

From the update formula (153) follows

kci(xs+1) =−λ
−1
i,s +λ

−1
i,s+1, i = 1, ...,m.

Therefore, keeping in mind, B2(λs,λs+1)≥ 0 we can rewrite (155) as follows

B2(λ
∗,λs)−B2(λ

∗,λs+1)≥ k(c(xs+1),λs+1−λ
∗).

From −c(xs+1) ∈ ∂d(λs+1) we obtain

d(λ )−d(λs+1)≤ (−c(xs+1),λ −λs+1),∀λ ∈ Rm
+. (156)

For λ = λ ∗ from (156) we get

(c(xs+1),λs+1−λ
∗)≥ d(λ ∗)−d(λs+1).

Hence,
B2(λ

∗,λs)−B2(λ
∗,λs+1)≥ k(d(λ ∗)−d(λs+1)). (157)

Assuming lims→∞ d(λs) = d̄ < d(λ ∗) we have d(λ ∗)− d(λs) ≥ ρ > 0,∀s ≥ s0.
Summing up (157) from s = s0 to s = N we obtain

B2(λ
∗,λs0)− k(N− s0)ρ ≥ B2(λ

∗,λN+1),

which is impossible for large N. Therefore

lim
s→∞

d(λs) = d(λ ∗). (158)

From (156) with λ = λs we obtain

d(λs)−d(λs+1)≤ (−c(xs+1),λs−λs+1).

Using the update formula (153) from last inequality we obtain

d(λs+1)−d(λs))≥ (c(xs+1),λs−λs+1) =
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k
m

∑
i=1

λi,sλi,s+1ci(xs+1) = k
m

∑
i=1

λi,s/λi,s+1(λi,s+1ci(xs+1))
2. (159)

Summing up (159) from s = s0 to s = N we have

d(λ ∗)−d(λs0)> d(λN+1)−d(λs0)≥ k
N

∑
s=s0

m

∑
i=1

λi,s/λi,s+1(λi,s+1ci(xs+1))
2.

Keeping in mind (139) we obtain asymptotic complementarity condition

lim
s→∞

(λs,c(xs)) = 0. (160)

Therefore

d(λ ∗) = lim
s→∞

d(λs) = lim
s→∞

[ f (xs)− (λs,c(xs))] = lim
s→∞

f (xs),

that is
lim
s→∞

f (xs) = d(λ ∗) = f (x∗). (161)

From Slater condition follows boundedness of L∗. Therefore from concavity of
d follows boundedness Λ(λ0) = {λ ∈ Rm

+ : d(λ ) ≥ d(λ0)}. For any monotone
increasing sequence {d(λs)}∞

s=s0
follows boundedness Λs = {λ ∈ Rm

+ : d(λ ) ≥
d(λs)} and Λ0 ⊃ ...⊃Λs ⊃Λs+1 ⊃ ...⊃ L∗. Therefore from (108) we have

dH(L∗,∂Λs)> dH(L∗,∂Λs+1), s≥ s0. (162)

From (161) and (162) and continuity of d follows

lim
s→∞

dH(L∗,∂Λs) = 0.

3) The dual sequence {λs}∞
s=0 ⊂ Λ(λ0) is bounded, therefore there is a converging

subsequence {λsl}∞
l=1: liml→∞ λsl = λ̄ .

Consider two subsets of indices I+ = {i : λ̄i > 0} and I0 = {i : λ̄i = 0}. From the
asymptotic complementarity (160) follows lims→∞ ci(xs) = 0, i ∈ I+.
There exist such subsequence {sl}∞

l=1 that for any i∈ I0 we have liml→∞ λi,sl = 0,
therefore without loosing the generality we can assume that

λi,sl+1 ≤ 0.5λi,sl , i ∈ I0.

Using the update formula (153) we obtain

λsl+1

sl+1

∏
s=sl

(kλi,sci(xs)+1) = λi,sl ≥ 2λi,sl+1 , i ∈ I0.

Invoking the arithmetic-geometric means inequality for i ∈ I0 we obtain
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1
sl+1− sl

sl+1

∑
s=sl

(kλi,sci(xs)+1)≥

(
sl+1

∏
s=sl

(kλi,sci(xs)+1)

) 1
sl+1−sl

≥ 2
1

sl+1−sl

or
sl+1

∑
s=sl

λi,sci(xs)> 0, i ∈ I0.

Using Jensen inequality and concavity ci we obtain

ci(x̄l+1) = ci

(
sl+1

∑
s=sl

λ̄i,sxs

)
≥

sl+1

∑
s=sl

λ̄i,sci(xs)> 0,

where λ̄i,s = λi,s
(
∑

sl+1
s=sl λi,s

)−1 ≥ 0, ∑
sl+1
s=sl λ̄i,s = 1, i ∈ I0. Keeping in mind

lims→∞ ci(xs) = 0, i ∈ I+ we conclude that the sequence {x̄l+1}∞
l=0 is asymptoti-

cally feasible, therefore it is bounded. Without loosing generality we can assume
that liml→∞ x̄l = x̄ ∈Ω .
From convexity f follows

f (x̄l+1)≤
sl+1

∑
s=sl

λ̄i,s f (xs).

Therefore from (161) follows

f (x̄) = lim
l→∞

f (x̄l+1)≤ lim
s→∞

f (xs) = lim
s→∞

d(λs) = d(λ ∗) = f (x∗).

Thus, f (x̄) = f (x∗), hence d(λ ∗) = d(λ̄ ) and x̄ = x∗, λ̄ = λ ∗. ut
The items 1) and 2 a) of Theorem 11 were proven by Matioli and Gonzaga (see

Theorem 3.2 in [39]).

6.4 Lagrangian Transformation and Affine Scaling method for LP

Let a ∈ Rn,b ∈ Rm and A : Rn → Rm are given. We consider the following LP
problem

x∗ ∈ X∗ = Argmin{(a,x)|c(x) = Ax−b≥ 0} (163)

and the dual LP

λ
∗ ∈ L∗ = Argmin{(b,λ )|r(λ ) = AT

λ −a = 0,λ ∈ Rm
+}. (164)

The LT L : Rn×Rm×R++→ R for LP is defined as follows

L (x,λ ,k) := (a,x)− k−1
m

∑
s=1

ψ(kλici(x)), (165)
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where ci(x) = (Ax−b)i = (ai,x)−bi, i = 1, . . . ,m.
We assume that X∗ 6= φ is bounded and so is the dual optimal set L∗.
The LT method generate primal - dual sequence {xs+1,λs+1}∞

s=0 by the following
formulas

xs+1 : ∇xL (xs+1,λs,ks) = 0 (166)

λs+1 : λi,s+1 = λi,sψ
′(ksλi,sci(xs+1)), i = 1, . . . ,m. (167)

Theorem 12. If the primal optimal X∗ is bounded, then the LT method (166)– (167)
is well defined for any transformation ψ ∈Ψ . For the dual sequence {λs}∞

s=0 gen-
erated by (167) the following statements hold true:

1) the LT method (166)– (167) is equivalent to the following Interior Prox

k(b,λs+1)−Bϕ(λs+1,λs) = max{k(b,λ )−Bϕ(λ ,λs)|AT
λ = 0},

where Bϕ(u,v) = ∑
m
i=1 ϕ( ui

vi
) is the Bregman type distance;

2) there exists s0 > 0 that for any s≥ s0 the LT method with truncated MBF trans-
formation ψ2(t) is equivalent to the affine scaling type method for the dual LP.

Proof

1) We use the vector form for formula (167) assuming that the multiplication and
division are componentwise, i.e. for vectors a,b ∈ Rn, the vector
c = ab = (ci = aibi, i = 1, . . . ,n) and the vector d = a/b= (di = ai/bi, i =
1, . . . ,n). From (167) follows

λs+1

λs
= ψ

′(kλsc(xs+1)). (168)

Using again the inverse function formula we obtain

kλsc(xs+1) = ψ
′−1(λs+1/λs). (169)

It follows from (166) and (167) that

∇xL (xs+1,λs,k) = a−AT
ψ
′(kλsc(xs+1))λs = a−AT

λs+1

= ∇xL(xs+1,λs+1) = 0,

therefore

d(λs+1) = L(xs+1,λs+1) = (a,xs+1)− (λs+1,Axs+1−b) =

(a−AT
λs+1,xs+1)+(b,λs+1) = (b,λs+1).

Using LEID ψ ′−1 = ψ∗′ and ϕ =−ψ∗ we can rewrite (169) as follows

−kc(xs+1)− (λs)
−1

ϕ
′(λs+1/λs) = 0. (170)

Keeping in mind AT λs+1 = a,−c(xs+1) ∈ ∂d(λs+1) and λs+1 ∈ Rm
++ we can

view (170) as the optimality criteria for the following problem
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k(b,λs+1)−Bϕ(λs+1,λs) = max{kd(λ )−Bϕ(λ ,λs)|AT
λ = a}, (171)

where Bϕ(λ ,λs) =
q

∑
i=1

ϕ(λi/λi,s) is Bregman type distance.

2) Let’s consider the LT method with truncated MBF transformation ψ2(t). It
follows from (139) that there exists s0 that for any s ≥ s0 only MBF kernel
ϕ2 =− lns+ s−1 and correspondent Bregman distance

B2(λ ,λs) =
q

∑
i=1

(−ln
λi

λi,s
+

λi

λi,s
−1)

will be used in (171). Using considerations similar to those in item 4) Theorem
10 we can rewrite (171) as follows

k(b,λs+1) = argmax{k(b,λ )|λ ∈ E(λs,rs), AT
λ = a}, (172)

where r2
s = Q(λs+1,λs) and E(λs,rs) =

{
λ : (λ −λs)

T H−2
s (λ −λs)≤ rs

}
is

Dikin’s ellipsoid and (172) is affine scaling type method for the dual LP (see
[18]).

In the final part of the paper we will show the role of LET and LEINV in un-
constrained minimization of SC functions. For the basic SC properties and damped
Newton method see [42] and [43].

7 Legendre Invariant and Self-Concordant Functions

We consider a closed convex function F ∈C3 defined on an open convex set domF ⊂
Rn. For a given x ∈ domF and direction u ∈ Rn \{0} we consider the restriction

f (t) = F(x+ tu)

of F , which is defined on dom f = {t : x+tu∈ domF}. Along with f , let us consider
its derivatives

f ′(t) = (∇F(x+ tu),u) ,

f ′′(t) = (∇2F(x+ tu)u,u) ,

f ′′′(t) = (∇3F(x+ tu)[u]u,u) ,

where ∇F is the gradient of F , ∇2F is the Hessian of F and

∇
3F(x)[u] = lim

τ→+0
τ
−1 [

∇
2F(x+ τu)−∇

2F(x)
]
.

Then,
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DF(x)[u] := (∇F(x),u) = f ′(0) ,
D2F(x)[u,u] := (∇2F(x)u,u) = f ′′(0) ,

D3F(x)[u,u,u] := (∇3F(x)[u]u,u) = f ′′′(0) .

Function F is self-concordant if there is M > 0 such that the inequality

D3F(x)[u,u,u]≤M(∇2F(x)u,u)
3
2

holds for any x ∈ domF and any u ∈ Rn.
If for a SC function F the domF does not contain a straight line, then the Hessian

∇2F(x) is positive definite at any x ∈ domF . We assume that such condition holds,
so for any x ∈ domF and any u ∈ Rn \{0} we have

(∇2F(x)u,u) = f
′′
(0)> 0, (173)

that is F is strictly convex on domF .
A strictly convex function F is self-concordant (SC) if the Legendre invariant of

the restriction f (t) = F(x+ tu) is bounded, i.e. for any x ∈ domF and any direction
u = y− x ∈ Rn \{0} there exist M > 0 that

LEINV( f ) = | f ′′′(t)|( f
′′
(t))−

3
2 ≤M, ∀t : x+ tu ∈ domF. (174)

Let us consider the log-barrier function F(x) =− lnx, then for any x ∈ domF =
{x : x > 0} we have F ′(x) =−x−1, F ′′(x) = x−2, F ′′′(x) =−2x−3 and

LEINV(F) =
∣∣F ′′′(x)∣∣ (F ′′(x))−3/2 ≤ 2. (175)

Therefore, F(x) =− lnx is self-concordant with M = 2.
The following function

g(t) = (∇2F(x+ tu)u,u)−1/2 =
(

f ′′(t)
)−1/2

,

is critical for the self-concordance (SC) theory.
For any t ∈ dom f , we have

g′(t) =
d
[
( f ′′(t))−1/2

]
dt

=−1
2

f ′′′(t)( f ′′(t))−3/2 .

It follows from (175) that

0.5LEINV( f ) = |g′(t)| ≤ 1 , ∀ t ∈ dom f . (176)

The differential inequality (176) is the key element for establishing basic bounds for
SC functions.

The other important component of the SC theory is two local scaled norms of
a vector u ∈ Rn. The first local scaled norm is defined at each point x ∈ domF as
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follows
‖u‖x =

(
∇

2F(x)u,u
)1/2

.

The second scaled norm is defined by formula

‖v‖∗x =
((

∇
2F(x)

)−1
v,v
)1/2

.

From (173) follows that the second scaled norm is well defined at each x ∈ domF .
The following Cauchy-Schwarz (CS) inequality for scaled norms will be often used
later.

Let matrix A ∈ Rn×n be symmetric and positive definite, then A1/2 exists and

|(u,v)| =
∣∣∣(A1/2u, A−1/2v

)∣∣∣≤ ∥∥∥A1/2u
∥∥∥ ∥∥∥A−1/2v

∥∥∥
=
(

A1/2u, A1/2u
)1/2(

A−1/2v, A−1/2v
)1/2

= (Au,u)1/2 (A−1v,v
)1/2

= ‖u‖A ‖v‖A−1 .

By taking A = ∇2F(x), for any u,v ∈ Rn one obtains the following CS inequality:

|(u,v)| ≤ ‖u‖x ‖v‖∗x .

The following Proposition will be used later.

Proposition 1. A function F is self-concordant if and only if for any x ∈ domF and
any u1,u2,u3 ∈ Rn \{0} we have

∣∣D3F(x) [u1,u2,u3]
∣∣≤ 2

3

∏
i=1
‖ui‖x , (177)

where D3F(x)[u1,u2,u3] = (∇3F(x)[u1]u2,u3).

The following theorem establishes one of the most important facts about SC
functions: any SC function is a barrier function on domF . The opposite statement
is, generally speaking, not true, that is not every barrier function is self-concordant.
For example, the hyperbolic barrier F(x) = x−1 defined on domF = {x : x > 0} is
not a SC function.

Theorem 13. Let F be a closed convex function on an open domF. Then, for any
x̄ ∈ ∂ (domF) and any sequence {xs} ⊂ domF such that xs→ x̄, we have

lim
s→∞

F(xs) = ∞ . (178)

Proof. From convexity of F follows

F(xs)≥ F(x0)+(∇F(x0), xs− x0)

for any given x0 ∈ domF .



The Legendre Transform in Modern Optimization 49

So, the sequence {F(xs)} is bounded from below. If (177) is not true, then the
sequence {F(xs)} is bounded from above. Therefore, it has a limit point F̄ . Without
loss of generality, we can assume that zs = (xs,F(xs))→ z̄ = (x̄, F̄). Since the func-
tion F is closed, we have z̄∈ epiF , but it is impossible because x̄ 6∈ domF . Therefore
for any sequence

{xs} ⊂ domF : lim
s→∞

xs = x̄ ∈ ∂ (domF)

we have (177). It means that F is a barrier function on the cl(domF). �
For any x ∈ domF , and any u ∈ Rn \{0} from (173) follows(

∇
2F(x)u,u

)
= ‖u‖2

x > 0 (179)

and for ∀t ∈ dom f we have

g(t) =
(
∇

2F(x+ tu)u,u
)−1/2

= ‖u‖−1
x+tu > 0. (180)

7.1 Basic Bounds for SC Functions

In this section the basic bounds for SC functions will be obtained by integration of
inequalities (176) and (177).

First Integration

Keeping in mind f ′′(t)> 0 from (176), for any s > 0, we obtain

−
∫ s

0
dt ≤

∫ s

0
d
(

f ′′(t)−1/2
)
≤
∫ s

0
dt .

Therefore
f ′′(0)−1/2− s≤ f ′′(s)−1/2 ≤ f ′′(0)−1/2 + s (181)

or (
f ′′(0)−1/2 + s

)−2
≤ f ′′(s)≤

(
f ′′(0)−1/2− s

)−2
. (182)

The left inequality in (182) holds for all s≥ 0, while the right inequality holds only
for 0≤ s < f ′′(0)−1/2.

Let x,y ∈ domF , y 6= x, u = y− x and y(s) = x+ s(y− x), 0≤ s≤ 1, so y(0) = x
and y(1) = y. Therefore,

f ′′(0) =
(
∇

2F(x)(y− x), y− x
)
= ‖y− x‖2

x

and
f ′′(0)1/2 = ‖y− x‖x .
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Also,
f ′′(1) =

(
∇

2F(y)(y− x), y− x
)
= ‖y− x‖2

y

and
f ′′(1)1/2 = ‖y− x‖y .

From (181), for s = 1 follows

f ′′(0)−1/2−1≤ f ′′(1)−1/2 ≤ f ′′(0)−1/2 +1,

or
1

‖y− x‖x
−1≤ 1

‖y− x‖y
≤ 1
‖y− x‖x

+1 .

From the right inequality follows

‖y− x‖y ≥
‖y− x‖x

1+‖y− x‖x
. (183)

If ‖y− x‖x < 1, then from the left inequality follows

‖y− x‖y ≤
‖y− x‖x

1−‖y− x‖x
. (184)

By integrating (176) we get

g(t)> g(0)−|t| , t ∈ dom f . (185)

For x+tu∈ domF from (180) follows g(t)> 0. From Theorem 13 follows F(x+
tu)→∞ when x+ tu→ ∂ (domF). Therefore, (∇2F(x+ tu)u,u) cannot be bounded
when x+ tu→ ∂ (domF). Therefore from (180) follows g(t)→ 0 when x+ tu→
∂ (domF). It follows from (185) that any t : |t|< g(0) belongs to dom f , i.e.

(−g(0),g(0)) =
(
−‖u‖−1

x , ‖u‖−1
x
)
⊂ dom f .

Therefore, the set
E0(x,1) =

{
y = x+ tu : t2 ‖u‖2

x < 1
}

is contained in domF . In other words, the Dikin’s ellipsoid

E(x,r) =
{

y ∈ Rn : ‖y− x‖2
x ≤ r

}
,

is contained in domF for any x ∈ domF and any r < 1.
One can expect that, for any x ∈ domF and any y ∈ E(x,r), the Hessians ∇2F(x)

and ∇2F(y) are “close” enough if 0 < r < 1 is small enough. The second integration
allows to establish the corresponding bounds.
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Second Integration

Let us fix x ∈ domF , for a given y ∈ domF (y 6= x) consider direction u = y− x ∈
Rn \{0}. Let y(t) = x+ tu = x+ t(y− x), then for t ≥ 0 and y(t) ∈ domF we have

ψ(t) = ‖u‖2
y(t) = (F

′′
(y(t))u,u).

It follows from Proposition 1 that∣∣ψ ′(t)∣∣= D3F(y(t))[y− x,u,u]≤ 2‖y− x‖y(t) ‖u‖
2
y(t) = 2‖y− x‖y(t) ψ(t) .

First of all, ‖y(t)− x‖x ≤ ‖y− x‖x for any t ∈ [0,1]. Keeping in mind that y− x =
t−1(y(t)− x) and assuming ‖y− x‖x < 1 from (184) follows

∣∣ψ ′(t)∣∣ ≤ 2
t
‖y(t)− x‖y(t) ψ(t)≤ 2

t
‖y(t)− x‖x

1−‖y(t)− x‖x
ψ(t)

≤ 2
‖y− x‖x

1− t ‖y− x‖x
ψ(t) .

Therefore for 0 < t < ‖y− x‖−1
x follows

|ψ ′(t)|
ψ(t)

≤ 2‖y− x‖x
1− t ‖y− x‖x

.

By integrating the above inequality we get

−2
∫ s

0

‖y− x‖x
1− t ‖y− x‖x

dt ≤
∫ s

0

ψ ′(t)
ψ(t)

dt ≤ 2
∫ s

0

‖y− x‖x
1− t ‖y− x‖x

dt ,

for 0 < s < ‖y− x‖−1
x , hence

2ln(1− s‖y− x‖x)≤ lnψ(s)− lnψ(0)≤−2ln(1− s‖y− x‖x) .

For s = 1, we have

ψ(0)(1−‖y− x‖x)
2 ≤ ψ(1)≤ ψ(0)(1−‖y− x‖x)

−2 . (186)

In view of ψ(0) = (∇2F(x)u,u) and ψ(1) = (∇2F(y)u,u) for any u ∈ Rn \ {0}
from (186) follows

(1−‖y− x‖x)
2 (

∇
2F(x)u,u

)
≤
(
∇

2F(y)u,u
)
≤ (1−‖y− x‖x)

−2 (
∇

2F(x)u,u
)
.

Therefore the following matrix inequality holds

(1−‖y− x‖x)
2

∇
2F(x)4 ∇

2F(y)4 ∇
2F(x)(1−‖y− x‖x)

−2 , (187)
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where A < B means that A−B is nonnegative definite. Note that (187) takes place
for any x,y ∈ domF .

In order to find the upper and the lower bounds for the matrix

G =
∫ 1

0
∇

2F(x+ τ(y− x))dτ (188)

let us consider (187) for y := x+ τ(y− x).
From the left inequality (187) follows

G =
∫ 1

0
∇

2F(x+ τ(y− x))dτ < ∇
2F(x)

∫ 1

0
(1− τ ‖y− x‖x)

2 dτ .

Therefore, for r = ‖y− x‖x < 1, we have

G< ∇
2F(x)

∫ 1

0
(1− τr)2dτ = ∇

2F(x)
(

1− r+
r2

3

)
. (189)

From the right inequality (187) follows

G4 ∇
2F(x)

∫ 1

0
(1− τr)−2dτ = ∇

2F(x)
1

1− r
, (190)

i.e. for any x ∈ domF , the following inequalities hold:(
1− r+

r2

3

)
∇

2F(x)4 G4
1

1− r
∇

2F(x) . (191)

The first two integrations produced two very important facts.

1. For any x ∈ domF , Dikin’s ellipsoid

E(x,r) =
{

y ∈ Rn : ‖y− x‖2
x ≤ r

}
is contained in domF , for any 0≤ r < 1.

2. For any x ∈ domF and any y ∈ E(x,r) from (187) follows

(1− r)2
∇

2F(x)4 ∇
2F(y)4

1
(1− r)2 ∇

2F(x) , (192)

i.e. the function F is almost quadratic inside the ellipsoid E(x,r) for small 0 ≤
r < 1.

The bounds for the gradient ∇F(x), which is a monotone operator in Rn, we
establish by integrating (182).
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Third Integration

From (182), for 0≤ t < f (0)−1/2 = ‖y− x‖−1
x and 0≤ s≤ 1 we obtain∫ s

0

(
f ′′(0)−1/2 + t

)−2
dt ≤

∫ s

0
f ′′(t)dt ≤

∫ s

0

(
f ′′(0)−1/2− t

)−2
dt ,

or

f ′(0) + f ′′(0)1/2
(

1−
(

1+ s f ′′(0)1/2
)−1

)
≤ f ′(s)≤ f ′(0)− f ′′(0)1/2

(
1−
(

1− s f ′′(0)1/2
)−1

)
.

The obtained inequalities we can rewrite as follows

f
′
(0)+w

′
( f
′′
(0)

1
2 s)≤ f

′
(s)≤ f

′
(0)+w∗

′
( f
′′
(0)

1
2 s), (193)

where ω(t) = t− ln(1+ t) and ω∗(s) = supt>−1{st− t + ln(1+ t)} = −s− ln(1−
s) = ω(−s) is the LET of ω(t).

From the right inequality (193), for s = 1 follows

f ′(1)− f ′(0)≤− f ′′(0)1/2
(

1− 1
1− f ′′(0)1/2

)
=

f ′′(0)
1− f ′′(0)1/2 .

Recalling formulas for f ′(0), f ′(1), f ′′(0), and f ′′(1) we get

(∇F(y)−∇F(x),y− x)≤
‖y− x‖2

x
1−‖y− x‖x

(194)

for any x and y ∈ domF .
From the left inequality in (193), for s = 1 follows

f ′(1)− f ′(0)≥ f ′′(0)1/2
(

1− 1
1+ f ′′(0)1/2

)
=

f ′′(0)
1+ f ′′(0)1/2

or

(∇F(y)−∇F(x),y− x)≥
‖y− x‖2

x
1+‖y− x‖x

. (195)

Fourth Integration

In order to establish bounds for F(y)−F(x) it is enough to integrate the inequalities
(193).

Taking the integral of the right inequality (193), we obtain
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f (s) ≤ f (0)+ f ′(0)s+ω
∗
(

f ′′(0)1/2s
)

= f (0)+ f ′(0)s− f ′′(0)1/2s− ln
(

1− f ′′(0)1/2s
)

= U(s) . (196)

In other words, U(s) is an upper bound for f (s) on the interval [0, f ′′(0)−1/2). Recall
that f ′′(0)−1/2 = ‖y− x‖−1

x > 1. For s = 1 from (196) follows

f (1)− f (0)≤ f ′(0)+ω
∗
(

f ′′(0)1/2
)
= f ′(0)+ω

∗ (‖y− x‖x) . (197)

Keeping in mind f (0) = F(x), f (1) = F(y), from (197), we get

F(y)−F(x)≤ (∇F(x),y− x)+ω
∗ (‖y− x‖x) . (198)

Integration of the left inequality (193) leads to the lower bound L(s) for f (s)

f (s) ≥ f (0)+ f ′(0)s+ω

(
f ′′(0)1/2s

)
= f (0)+ f ′(0)s+ f ′′(0)1/2s− ln

(
1+ f ′′(0)1/2s

)
= L(s) , ∀s≥ 0 . (199)

For s = 1, we have

f (1)− f (0)> f ′(0)+ω

(
f ′′(0)1/2

)
or

F(y)−F(x)≥ (∇F(x),y− x)+ω (‖y− x‖x) . (200)

We conclude the section by considering the existence of the minimizer

x∗ = argmin{F(x) : x ∈ domF} (201)

for a self-concordant function F .
It follows from (173) that the Hessian ∇2F(x) is positive definite for any x ∈

domF , but the existence of x∗ : ∇F(x∗) = 0, does not follow from strict convexity
of F .

However, it guarantees the existence of the local norm ‖v‖∗x =
((

∇2F(x)
)−1 v,v

)1/2
>

0 at any x ∈ domF .
For v = ∇F(x), one obtains the following scaled norm of the gradient ∇F(x),

λ (x) =
(
∇

2F(x)−1
∇F(x), ∇F(x)

)1/2
= ‖∇F(x)‖∗x > 0 ,

which plays an important role in SC theory. It is called Newton decrement of F at
the point x ∈ domF .

Theorem 14. If λ (x)< 1 for some x ∈ domF then the minimizer x∗ in (201) exists.
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Proof. For u = y−x 6= 0 and v = ∇F(x), where x and y ∈ domF from CS inequality
|(u,v)| ≤ ‖v‖∗x ‖u‖x follows

|(∇F(x),y− x)| ≤ ‖∇F(x)‖∗x ‖y− x‖x . (202)

From (200) and (202) and the formula for λ (x) follows

F(y)−F(x)≥−λ (x)‖y− x‖x +ω (‖y− x‖x) .

Therefore, for any y ∈L (x) = {y ∈ Rn : F(y)≤ F(x)} we have

ω (‖y− x‖x)≤ λ (x)‖y− x‖x ,

i.e.
‖y− x‖−1

x ω (‖y− x‖x)≤ λ (x)< 1 .

From the definition of ω(t) follows

1− 1
‖y− x‖x

ln(1+‖y− x‖x)≤ λ (x)< 1 .

The function 1− τ−1 ln(1+ τ) is monotone increasing for τ > 0. Therefore, for a
given 0 < λ (x)< 1, the equation

1−λ (x) = τ
−1 ln(1+ τ)

has a unique root τ̄ > 0. Thus, for any y ∈L (x), we have

‖y− x‖x ≤ τ̄ ,

i.e. the level set L (x) at x ∈ domF is bounded and closed due to the continuity of
F . Therefore, x∗ exists due to the Weierstrass theorem. The minimizer x∗ is unique
due to the strict convexity of F(x) for x ∈ domF . �

The theorem presents an interesting result: a local condition λ (x) < 1 at some
x ∈ domF guarantees the existence of x∗, which is a global property of F on the
domF . The condition 0 < λ (x)< 1 will plays an important role later.

Let us briefly summarize the basic properties of the SC functions established so
far.

1. The SC function F is a barrier function on domF .
2. For any x ∈ domF and any 0 < r < 1, there is a Dikin’s ellipsoid inside domF ,

i.e.
E(x,r) =

{
y : ‖y− x‖2

x ≤ r
}
⊂ domF .

3. For any x∈ domF and small enough 0< r < 1, the function F is almost quadratic
inside of the Dikin’s ellipsoid E(x,r) due to the bounds (192).

4. The gradient ∇F is a strictly monotone operator on domF with upper and lower
monotonicity bounds given by (194) and (195).
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5. For any x ∈ domF and any direction u = y−x, the restriction f (s) = F(x+ s(y−
x)) is bounded by U(s) and L(s) (see (196) and (199)).

6. Condition 0 < λ (x) < 1 at any x ∈ domF guarantees the existence of a unique
minimizer x∗ on domF .

It is quite remarkable that practically all important properties of SC functions
follow from a single differential inequality (176), which is, a direct consequence of
the boundedness of LEINV( f ).

We conclude the section by showing that Newton method can be very efficient
for global minimization of SC functions, in spite of the fact that F is not strongly
convex.

7.2 Damped Newton Method for Minimization of SC Function

The SC functions are strictly convex on domF . Such a property, generally speaking,
does not guarantee global convergence of the Newton method. For example, f (t) =√

1+ t2 is strictly convex, but Newton method for finding mint f (t) diverges from
any starting point t0 /∈]−1,1[.

Turns out that SC properties guarantee convergence of the special damped New-
ton method from any starting point. Moreover, such method goes through three
phases. In the first phase each step reduces the error bound ∆ f (x) = f (x)− f (x∗) by
a constant, which is independent on x ∈ domF . In the second phase the error bound
converges to zero with at least superlinear rate. The superlinear rate is characterized
explicitly through w(λ ) and its LET w∗(λ ), where 0 < λ < 1 is the Newton decre-
ment. At the final phase the damped Newton method practically turns into standard
Newton method and the error bound converges to zero with quadratic rate.

The following bounds for the restriction f (s) = F(x+ su) at x ∈ domF in the
direction u = y− x ∈ Rn \{0} is our main tool

L (s)
s≥0
≤ f (s)≤ U(s)

0≤s≤ f ′′(0)−(1/2)
. (203)

Let x ∈ domF , f (0) = F(x) and x 6= x∗, then there exists y ∈ domF such that for
u = y− x 6= 0 we have

a) f ′(0) = (∇F(x),u)< 0 , and

b) f ′′(0) =
(
∇

2F(x)u,u
)
= ‖u‖2

x = d2 > 0. (204)

We would like to estimate the reduction of F , as a result of one Newton step with
x ∈ domF as a starting point.

Let us consider the upper bound

U(s) = f (0)+ f ′(0)s−ds− ln(1−ds) ,
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for f (s). The function U(s) is strongly convex in s on [0,d)−1. Also, U ′(0) =
f ′(0)< 0 and U ′(s)→ ∞ for s→ d−1. Therefore, the equation

U ′(s) = f ′(0)−d +d(1−ds)−1 = 0 (205)

has a unique solution s̄ ∈ [0,d−1), which is the unconstrained minimizer for U(s).
From (205) we have

s̄ =− f ′(0)d−2 (1− f ′(0)d−1)−1
= ∆(1+λ )−1

where ∆ = − f ′(0)d−2 and 0 < λ = − f ′(0)d−1 < 1. On the other hand, the un-
constrained minimizer s̄ is a result of one step of the damped Newton method for
finding mins≥0 U(s) with step length t = (1+λ )−1 from s = 0 as a starting point. It
is easy to see that

U
(
(1+λ )−1

∆
)
= f (0)−ω(λ ) .

From the right inequality in (203), we obtain

f
(
(1+λ )−1

∆
)
≤ f (0)−ω(λ ) . (206)

Keeping in mind (204) for the Newton direction u = y− x = −(∇2F(x))−1∇F(x)
we obtain

∆ =− f ′(0)
f ′′(0)

=− (∇F(x),u)
(∇2F(x)u,u)

= 1 .

In view of f (0) = F(x), we can rewrite (206) as follows:

F
(
x− (1+λ )−1(∇2F(x))−1

∇F(x)
)
≤ F(x)−ω(λ ) . (207)

In other words, finding an unconstrained minimizer of the upper bound U(s) is
equivalent to one step of the damped Newton method

xk+1 = xk− (1+λ (xk))
−1 (

∇
2F(xk)

)−1
∇F(xk) (208)

for minimization of F(x) on domF . Moreover, our considerations are independent
from the starting point x ∈ domF . Therefore, for any starting point x0 ∈ domF and
k ≥ 1, we have

F (xk+1)≤ F (xk)−ω(λ ) . (209)

The bound (209) is universal, i.e. it is true for any xk ∈ domF .
Let us compute λ = f ′(0) f ′′(0)−1/2 for the Newton direction

u =−∇
2F(x)−1

∇F(x) .

We have
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λ ≡ λ (x) = − f ′(0) f ′′(0)−1/2

= − (∇F(x),u)
(∇2F(x)u,u)1/2

=
(
∇

2F(x)−1
∇F(x),∇F(x)

)1/2

= ‖∇F(x)‖∗x .

We have seen already that it is critical that 0 < λ (xk)< 1, ∀k ≥ 0.
The function ω(t) = t− ln(1+ t) is a monotone increasing, therefore for a small

β > 0 and 1 > λ (x) ≥ β , from (209) we obtain reduction of F(x) by a constant
ω(β ) at each damped Newton step. Therefore, the number of damped Newton steps
is bounded by

N ≤ (ω(β ))−1(F(x0)−F(x∗)) .

The bound (209), however, can be substantially improved for

x ∈ S(x∗,r) = {x ∈ domF : F(x)−F(x∗)≤ r}

and 0 < r < 1.
Let us consider the lower bound

L(s) = f (0)+ f ′(0)s+ds− ln(1+ds)≤ f (s), s≥ 0 .

The function L(s) is strictly convex on s≥ 0. If 0 < λ =− f ′(0)d−1 < 1, then

L′
(
∆(1−λ )−1)= 0 .

Therefore,
¯̄s = ∆(1−λ )−1 = argmin{L(s) | s≥ 0}

and
L( ¯̄s) = f (0)−ω(−λ ) .

Along with s̄ and ¯̄s we consider (see Fig. 2)

s∗ = argmin{ f (s) | s≥ 0} .

For a small 0 < r < 1 and x ∈ S(x∗,r), we have f (0)− f (s∗) < 1, hence
f (0)− f (s̄) < 1. The relative progress per step is more convenient to measure on
the logarithmic scale

κ =
ln( f (s̄)− f (s∗))
ln( f (0)− f (s∗))

.

From ω(λ )< f (0)− f (s∗)< 1 follows− lnω(λ )>− ln( f (0)− f (s∗)) or ln( f (0)−
f (s∗))> lnω(λ ). From f (s̄)≤ f (0)−ω(λ ) and f (s∗)≥ f (0)−ω(−λ ) follows (see
Fig 2)

f (s̄)− f (s∗)≤ ω(−λ )−ω(λ ) .

Hence,
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ln( f (s̄)− f (s∗))< ln(ω(−λ )−ω(λ ))

and

κ(λ ) ≤ ln(ω(−λ )−ω(λ ))

lnω(λ )

=
ln
(
−2λ + ln(1+λ )(1−λ )−1

)
ln(λ − ln(1+λ ))

.

For 0 < λ ≤ 0.5, we have

κ(λ )≤
ln
(

2λ 3

3 + 2λ 5

5

)
ln
(

λ 2

2 −
λ 3

3 + λ 4

4

) .

In particular, κ(0.40)≈ 1.09. Thus, the sequence {xk}∞

k=0 generated by the damped
Newton method (208) with λ (xk) = 0.40 converges in value at least with 1.09 Q-

Fig. 2
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superlinear rate, that is for the error bound the ∆(xk) = F(xk)−F(x∗)< 1, we have
∆(xk+1)≤ (∆(xk))

1.09.
Due to limk→∞ λ (xk) = limk→∞ ‖∇F(xk)‖x = 0 from some point on, method

(208) practically turns into the classical Newton method

xk+1 = xk−∇
2F(xk)

−1
∇F(xk) , (210)

which converges with quadratic rate.
Instead of waiting for this to happen, there is a way of switching, at some point,

from (208) to (210) and guarantee that from this point on, only Newton method
(210) is used. Using such a strategy it is possible to achieve quadratic convergence
earlier.

The following Theorem characterize the neighborhood at x∗ when quadratic con-
vergence accuracy.

Theorem 15. Let x ∈ domF and

λ (x) =
(
∇

2F(x)−1
∇F(x),∇F(x)

)1/2
< 1 ,

then,

1. the point
x̂ = x−∇

2F(x)−1
∇F(x) (211)

belongs to domF;
2. the following bound holds

λ (x̂)≤
(

λ (x)
1−λ (x)

)2

. (212)

Proof. 1. Let p = x̂− x =−∇2F(x)−1∇F(x), λ = λ (x), then

‖p‖x =
(
∇

2F(x)p, p
)1/2

=
(
∇F(x), ∇

2F(x)−1
∇F(x)

)1/2

= ‖∇F(x)‖∗x = λ (x) = λ < 1;

therefore, x̂ ∈ domF .
2. First of all, note that if A = AT � 0, B = BT � 0 and A< B, then

A−1−B−1 =−A−1(A−B)B−1 4 0 .

For y = x̂ from the left inequality in (187), we obtain

λ (x̂) = ‖∇F(x̂)‖∗x̂ ≤ (1−‖p‖x)
−1 (

∇
2F(x)−1

∇F(x̂), ∇F(x̂)
)1/2

= (1−‖p‖x)
−1 ‖∇F(x̂)‖∗x .

We can then rewrite (211) as follows

∇
2F(x)(x̂− x)+∇F(x) = 0 .
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Therefore,
∇F(x̂) = ∇F(x̂)−∇F(x)−∇

2F(x)(x̂− x) .

Then, using (188) and formula (13) (see p. 6 [ ]), we obtain

∇F(x̂)−∇F(x) =
∫ 1

0

(
∇

2F(x+ τ(x̂− x)
)
(x̂− x)dτ = G(x̂− x) .

Hence,
∇F(x̂) =

(
G−∇

2F(x)
)
(x̂− x) = Ĝ(x̂− x) = Ĝp

and ĜT = Ĝ.
From CS inequality follows

‖∇F(x̂)‖∗2x =
(
∇

2F(x)−1Ĝp, Ĝp
)
=
(
Ĝ∇

2F(x)−1Ĝp, p
)

≤
∥∥Ĝ∇

2F(x)−1Ĝp
∥∥∗

x ‖p‖x . (213)

Then ∥∥Ĝ∇
2F(x)−1Ĝp

∥∥∗
x =

(
Ĝ∇

2F(x)−1Ĝp, ∇
2F(x)−1Ĝ∇

2F(x)−1Ĝp
)1/2

=
(

H(x)2
∇

2F(x)−1/2Ĝp, ∇
2F(x)−1/2Ĝp

)1/2

≤ ‖H(x)‖
(

∇
2F(x)−1/2Ĝp,∇2F(x)−1/2Ĝp

)1/2

= ‖H(x)‖
(
∇

2F(x)−1Ĝp, Ĝp
)

= ‖H(x)‖
(
∇

2F(x)−1
∇F(x̂),∇F(x̂)

)1/2

= ‖H(x)‖ ‖∇F(x̂)‖∗x ,

where H(x) = ∇2F(x)−1/2Ĝ∇2F(x)−1/2, therefore ∇2F(x)
1
2 H(x)∇2F

1
2 (x) = Ĝ.

From (213) and the last inequality we obtain

‖∇F(x̂)‖∗x ≤ ‖H(x)‖ ‖p‖x = λ‖H(x)‖ .

It follows from (191)(
−λ +

λ 2

3

)
∇

2F(x)4 Ĝ = G−∇
2F(x)4

λ

1−λ
∇

2F(x) .

Then,

‖H(x)‖ ≤max
{

λ

1−λ
,−λ +

λ 2

3

}
=

λ

1−λ
.

Therefore,

λ
2(x̂)≤ 1

(1−λ )2 ‖∇F(x̂)‖∗2x ≤
1

(1−λ )2 λ
2‖H(x)‖2 ≤ λ 4

(1−λ )4



62 Roman A. Polyak

or

λ (x̂)≤ λ 2

(1−λ )2 .

We saw already that λ = λ (x) < 1 is the main ingredient for the damped Newton
method (208) to converge. To retain the same condition for λ (x̂), it is sufficient to
require λ (x̂) ≤ λ ≤ λ 2/(1−λ )2. The function [λ/(1−λ )]2 is positive and mono-
tone increasing on (0,1). Therefore, to find an upper bound for λ it is enough to
solve the equation λ/(1−λ )2 = 1. In other words, for any λ = λ (x)< λ̄ = 3−

√
5

2 ,
we have

λ (x̂)≤
(

λ

1−λ

)2

.

Thus, the damped Newton method (208) follows three major stages in terms of the
rate of convergence. First, it reduces the function value by a constant at each step.
Then, it converges with superlinear rate and ,finally, in the neighborhood of the
solution it converges with quadratic rate.

The Newton area, where the Newton method converges with the quadratic rate is
defined as follows:

N(x∗,β ) =

{
x : λ (x) = ‖∇F(x)‖∗x ≤ β < λ̄ =

3−
√

5
2

}
. (214)

To speed up the damped Newton method (208) one can use the following switching
strategy. For a given 0< β < λ̄ = (3−

√
5)/2, one uses the damped Newton method

(208) if λ (xk)> β and the “pure” Newton method (210) when λ (xk)≤ β .

8 Concluding Remarks

The LEID is an universal instrument for establishing the duality results for SUMT,
NR and LT methods. The duality result, in turn, are critical for both understanding
the convergence mechanisms and the convergence analysis.

In particular, the update formula (107) and concavity of the dual function d leads
to the following bound

d(λs+1)−d(λs)≥ (kL)−1‖λs+1−λs‖2,

which together with d(λs+1)−d(λs)→ 0 shows that the Lagrange multipliers do not
change much from same point on. It means that if Newton method is used for primal
minimization then, from some point on, usually after very few Lagrange multipliers
update the approximation for the primal minimizer xs is in the Newton area for the
next minimizer xs+1.

Therefore it takes few and, from some point on, only one Newton step to find the
next primal approximation and update the Lagrange multipliers.
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This phenomenon is called - the ”hot” start (see [46]). The neighborhood of the
solution where the ”hot” start occurs has been characterized in [37] and observed in
[5], [10], [25], [41].

It follows from Remark 5 that, under standard second order optimality condition,
each Lagrange multipliers update shrinks the distance between the current and the
optimal solution by a factor, which can be made as small as one wants by increasing
k > 0.

In contrast to SUMT the NR methods requires much less computational effort
per digit of accuracy at the end of the process then at the beginning.

Therefore NR methods is used when high accuracy needed (see, for example,
[1]).

One of the most important features of NR methods is their numerical stability. It
is due to the stability of the Newton’s area, which does not shrink to a point in the
final phase. Therefore one of the most reliable NLP solver PENNON is based on
NR methods (see [32]-[34]).

The NR method with truncated MBF transformation has been widely used for
both testing the NLP software and solving real life problems (see [1], [5], [10], [25],
[32]-[34], [37] , [41] ). The numerical results obtained strongly support the theory,
including the ”hot” start phenomenon.

The NR as well as LT are primal exterior points methods. Their dual equivalence
are interior points methods.

In particular, the LT with MBF transform ψ(t) = ln(t + 1) leads to the interior
prox with Bregman distance, which is based on the self-concordant MBF kernel
ϕ(s) = −ψ∗(s) = − lns+ s− 1. Application of this LT for LP calculations leads
to Dikin’s type interior point method for the dual LP. It establishes, eventually, the
remarkable connection between exterior and interior point methods (see [39], [49]).

On the other hand, the LEINV is in the heart of the SC theory - one of the most
beautiful chapters of the modern optimization.

Although the Legendre Transformation was introduced more than 200 years ago,
we saw that LEID and LEINV are still critical in modern optimization both con-
strained and unconstrained.
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