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Abstract. We introduce the Lagrangian Transformation(LT) and develop a
general LT method for convex optimization problems.

A class Ψ of strongly concave and smooth functions ψ : R → R with

specific properties is used to transform the terms of the classical Lagrangian
associated with constraints. The transformation is scaled by a positive vector

of scaling parameters one for each constraint.

Each step of the LT method alternates unconstrained minimization of LT
in primal space with both Lagrange multipliers and scaling parameters update.

The scaling parameters are updated inversely proportional to the square of

the Lagrange multipliers. The updating the scaling parameters in such a way
makes the LT multipliers method equivalent to the Interior Quadratic Prox

for the dual problem in the rescaled dual space. We used this equivalence to

prove convergence and to estimate the rate of convergence of the LT method
under minimum assumptions on the input data.

Our main focus is on the primal-dual LT(PDLT) method. The PDLT
generates a primal-dual sequence that is globally convergent to the primal-

dual solution. We proved that under the standard second order optimality

condition the PDLT sequence converges to the primal-dual solution with an
asymptotic quadratic rate.

Keywords. Lagrangian transformation, duality, interior quadratic prox,

primal-dual LT method.

1. Introduction

The Lagrangian Transformation is defined and smooth on the entire primal
space.The LT combines the best properties of the classical Lagrangian and smooth
penalty functions and at the same time is free from their basic drawbacks.

The LT multipliers method has several important properties.
First, both the Lagrange multipliers and the scaling parameters vector remain

positive without any particular care, just due to the way they are updated from
step to step. This allows to eliminate the combinatorial nature of constrained
optimization problems with inequality constraints.

Second, the Lagrange multipliers that corresponding to the passive constraints
converge to zero with at least a quadratic rate, thus allowing the detection of the
active constraints in the early stage of the computational process.

Third, the scaling parameters that corresponding to the active constraints re-
main bounded when the primal-dual sequence approaches the primal-dual solution.
This keeps the condition number of the LT Hessian stable, improves the rate of
convergence as compared to the penalty methods and makes the computational
process equally stable both far and near to solution.
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The LT multipliers method is equivalent to the Interior Quadratic Prox for the
dual problem in the rescaled dual space. It allows us to prove convergence as well
as estimate the rate of convergence under minimum assumptions on the input data.

Our main focus is on the primal-dual LT(PDLT) method. We replace the uncon-
strained minimization of the LT in the primal space and the update of the Lagrange
multipliers by solving the primal-dual(PD) system of equation. The application of
Newton’s method to the PD system leads to the PDLT method.

The PDLT method generates a globally convergent primal-dual sequence that
under the standard second order optimality conditions converges to the primal-dual
solution with a quadratic rate. This is our main contribution.

By solving the PD system a given vector of Lagrange multipliers is mapped
into a new primal-dual pair, while the vector of scaling parameters remains fixed.
The contractability properties of the corresponding map are critical both for the
convergence and for the rate of convergence. To understand the conditions under
which the corresponding map is contractive and to find the contractibility bounds
one has to analyze the primal-dual maps (see [17]–[19]). It should be emphasized
that neither the primal LT sequence nor the dual sequence generated by the In-
terior Quadratic Prox provides sufficient information for this analysis. Only the
PD system, which is equivalent to one LT step, has all necessary components for
such an analysis. This reflects the important observation that for any multipliers
method neither the primal sequence nor the dual sequence control the computa-
tional process. The numerical process is governed rather by the PD system. The
importance of the PD system associated with nonlinear rescaling methods has been
recognized for quite some time (see [17]–[18]).

Recently the corresponding PD systems were used to develop globally convergent
primal-dual nonlinear rescaling methods with an up to 1.5-Q superlinear rate (see
[21]–[22]).

In this paper a general primal-dual LT method is developed. The method gen-
erates a globally convergent primal-dual sequence that under the standard second
order optimality conditions converges to the primal-dual solution with a quadratic
rate. In many aspects it reminds Newton’s method for smooth unconstrained opti-
mization.

This similarity becomes possible due to:
1) the special properties of ψ∈Ψ;
2) the structure of the LT method, in particular, the way in which the Lagrange

multipliers and scaling parameters are updated at each step;
3) the fact that the Lagrange multipliers corresponding to the passive constraints

converge to zero with at least a quadratic rate;
4) the way in which we use the merit functions for updating the penalty para-

meter;
5) the way in which we employ the merit function for the Lagrangian regular-

ization.
During the initial phase the PDLT works as the Newton LT method, i.e. New-

ton’s method for LT minimization followed by the Lagrange multipliers and the
scaling parameters update. At some point, the Newton LT method automatically
turns into Newton’s method for the Lagrange system of equations corresponding to
the active constraints.
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It should be emphasized that the PDLT is free from any stringent conditions on
accepting the Newton step, which are typical for constrained optimization problems.

There are three important features, that make Newton’s method for the primal-
dual LT system free from such restrictions.

First, the LT is defined on the entire primal space.
Second, after a few Lagrange multipliers update the terms of the LT correspond-

ing to the passive constraints become negligibly small due to the quadratic conver-
gence to zero of the Lagrange multipliers corresponding to the passive constraints.
Therefore on the one hand these terms became irrelevant for finding the Newton
direction. On the other hand, there is no need to enforce their nonnegativity.

Third, the LT multipliers method is, generally speaking, an exterior point method
in the primal space. Therefore there is no need to enforce the nonnegativity of the
the slack variables for the active constraints as it takes place in the Interior Point
Methods (see [26]).

After a few Lagrange multipliers update the primal-dual LT direction becomes
practically identical to the Newton direction for the Lagrange system of equations
corresponding to the active constraints. This makes possible to prove the asymp-
totic convergence of the primal-dual sequence with quadratic rate.

The paper is organized as follows. In the next section we state the problem and
the basic assumptions on the input data. In section 3 we describe the LT method
and show that it is equivalent to an Interior Quadratic Prox. In section 4 we describe
the convergence results for the LT method. In section 5 we introduce the Primal-
Dual LT method and prove its local quadratic convergence under the standard
second order optimality conditions. In section 6 we consider the globally convergent
primal-dual LT method and show that the primal-dual sequence converges with an
asymptotic quadratic rate. We conclude the paper with some remarks concerning
possible future research.

2. Statement of the problem and basic assumptions

Let f : Rn → R1 be convex and all ci : Rn → R1, i = 1, . . . , q, be concave and
smooth functions. We consider the following convex optimization problem:

x∗ ∈ X∗ = Argmin{f(x) | x ∈ Ω}, (P )

where Ω = {x : ci(x) ≥ 0, i = 1, . . . , q}. We assume that:
A: The optimal set X∗ is not empty and bounded.
B: The Slater’s condition holds , i.e. there exists

x̂ : ci(x̂) > 0, i = 1, . . . , q.

Let us consider the Lagrangian L(x, λ) = f(x)−
∑q

i=1 λici(x), the dual function

d(λ) = inf
x∈Rn

L(x, λ)

and the dual problem

λ ∈ L∗ = Argmax{d(λ) | λ∈Rq
+}. (D)

Due to the assumption B, the Karush-Kuhn-Tucker (KKT) conditions hold true, i.
e. there exists a vector λ∗ = (λ∗1, . . . , λ

∗
q) ∈ Rq

+ such that

(2.1) ∇xL(x∗, λ∗) = ∇f(x∗)−
q∑

i=1

λ∗i∇ci(x∗) = 0
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and the complementary slackness conditions

(2.2) λ∗i ci(x
∗) = 0, i = 1, . . . , q

are satisfied. We assume that the active constraints set at x∗ is I∗ = {i : ci(x∗) =
0} = {1, . . . , r}. Let us consider the vector-functions cT (x) = (c1(x), . . . , cq(x)),
cT(r)(x) = (c1(x), . . . , cr(x)) and their Jacobians ∇c(x) = J(c(x)) and ∇c(r)(x) =
J(c(r)(x)).

The sufficient regularity condition

(2.3) rank∇c(r)(x∗) = r, λ∗i > 0, i ∈ I∗

together with sufficient condition for the minimum x∗ to be isolated

(2.4) (∇2
xxL(x∗, λ∗)y, y) ≥ µ(y, y), µ > 0 ∀y 6= 0 : ∇c(r)(x∗)y = 0

comprise the standard second order optimality condition.

3. Lagrangian transformation

We consider a class Ψ of twice continuous differentiable functions ψ : (−∞,∞) →
R with the following properties:

10. ψ(0) = 0;
20. a) ψ′(t) > 0; b) ψ′(0) = 1; c) ψ′(t) ≤ at−1; d) |ψ′′(t)|≤bt−2 ∀t∈[1,∞),

a > 0, b > 0;
30. −m−1 ≤ ψ′′(t) < 0 ∀t ∈ (−∞,∞);
40. ψ′′(t) ≤ −M−1 ∀t ∈ (−∞, 0] and 0 < m < M <∞;
50. − ψ′′(t) ≥ 0.5t−1ψ′(t) ∀t ∈ [1,∞).
The Lagrangian transformation L : Rn × Rq

++ × Rq
++ → R we define by the

following formula:

(3.1) L(x, λ,k) = f(x)−
q∑

i=1

k−1
i ψ(kiλici(x)),

and we assume kiλ
2
i = k > 0, i = 1, . . . , q. Due to concavity of ψ(t), convexity of

f(x) and concavity of ci(x), i = 1, . . . , q the LT L(x, λ,k) is a convex function in x
for any fixed λ ∈ Rq

++ and k ∈ Rq
++. Also due to property 40, assumption A and

convexity of f(x) and all −ci(x) for any given λ∈Rq
++ and k = (k1, . . . , kq) ∈ Rq

++,
the minimizer

(3.2) x̂ ≡ x̂(λ,k) = argmin{L(x, λ,k) | x ∈ Rn}

exists. It can be proved using arguments similar to those in [1]. Due to the com-
plementarity condition (2.2) and properties 10 and 20b) for any KKT pair (x∗, λ∗)
and any k ∈ Rq

++ we have
1) L(x∗, λ∗,k) = f(x∗);
2) ∇xL(x∗, λ∗,k) = ∇xL(x∗, λ∗) = 0, i.e.

x∗ ∈ X∗ = Argmin{L(x, λ∗,k) | x ∈ Rn};

3) ∇2
xxL(x∗, λ∗,k) = ∇2

xxL(x∗, λ∗) +ψ′′(0)∇c(r)(x∗)K(r),Λ∗(r)
2∇c(r)(x∗), where

K(r) = diag(ki)r
i=1, Λ(r) = diag(λi)r

i=1. Therefore, for K(r) = kΛ∗(r)
−2 we have

(3.3) ∇2
xxL(x∗, λ∗,k) = ∇2

xxL(x∗, λ∗)− kψ′′(0)∇cT(r)(x
∗)∇c(r)(x∗).
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Before describing the LT multipliers method we would like to make a few com-
ments about properties 1)–3). Let us consider a nonsmooth function Q : Rn → R+

given by the following formula

Q(x, x∗) = max{f(x)− f(x∗), −ci(x), i = 1, . . . , q}.

It is easy to see that the constrained optimization problem (P) is equivalent to the
unconstrained nonsmooth optimization problem

Q(x∗, x∗) = min{Q(x, x∗) | x∈Rn} = 0.

For any fixed k ∈ Rq
++ due to 1) and 2) the function P (x, λ∗,k) = L(x, λ∗,k)−f(x∗)

is an exact smooth approximation of Q(x, x∗) at the solution x∗, i. e.

P (x∗, λ∗,k) = min{P (x, λ∗,k) | x ∈ Rn} = Q(x∗, x∗) = 0 ∀k ∈ Rq
++.

The Log-barrier function F (x, k) = f(x) − k−1
∑q

i=1 ln ci(x) one can also view
as an approximation for Q(x, x∗) at x = x∗, however, for any fixed k > 0

lim
x→x∗

(F (x, k)−Q(x∗, x∗)) = ∞.

Therefore there is only one way to guarantee convergence of the minimizers

x(k) = argmin{F (x, k) | x∈Rn}

to the solution x∗: unbounded increase of the penalty parameter k > 0. It leads to
the well known numerical problems, which for NLP calculations have much stronger
effect than for LP.

On the other hand, the LT L(x, λ,k) along with the penalty parameter k > 0
has two extra tools: the vector of the Lagrange multipliers λ∈Rq

++ and the scaling
parameter vector k ∈ Rq

++. We will show later that the LT method generates a
primal-dual sequence converging to the primal-dual solution under any fixed penalty
parameter k > 0. Moreover, using properly all three tools it becomes possible to
develop a primal-dual LT method with a quadratic rate of convergence. This is the
main purpose of the paper.

It follows from 3) (see (3.3)) that the LT Hessian ∇xxL(x∗, λ∗,k) is identical
to the Hessian of the Quadratic Augmented Lagrangean (see [11], [23]–[25]) corre-
sponding to the active constraints set. Moreover, due to Debreu lemma, (see [7])
under the standard second order optimality condition (2.3)–(2.4) the LT Hessian
∇2

xxL(x∗, λ∗,k) is positive definite for all k ≥ k0 if k0 > 0 is large enough, whether
f(x) and all −ci(x) are convex or not. This is another important property of the LT
L(x, λ,k) allowing to extend some of the obtained result for nonconvex optimization
problems.

Now we are ready to introduce the LT method.
Let x0 ∈ Rn, λ0 ∈ Rq

++, k > 0 and k0 = (k0
i = k(λ0

i )
−2, i = 1, . . . , q). The LT

multipliers method maps the triple (xs, λs,ks) into (xs+1, λs+1,ks+1) defined by
the following formulas:

xs+1 = argmin{L(x, λs,ks) | x ∈ Rn},(3.4)

λs+1
i = λs

iψ
′(ks

i λ
s
i ci(x

s+1)) = λs
iψ
′(k(λs

i )
−1ci(xs+1)), i = 1, . . . , q,(3.5)

ks+1
i = k(λs+1

i )−2, i = 1, . . . , q.(3.6)

Theorem 3.1. If assumption A is satisfied then
1) the LT method (3.4)–(3.6) is well defined;
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2) the LT method (3.4)–(3.6) is equivalent to an Interior Quadratic Prox for the
dual problem;

3) the LT method (3.4)–(3.6) is equivalent to an Interior Prox method with second
order ϕ-divergence distance function.

Proof. 1) As we have mentioned already the existence of xs+1 for any given λs ∈
Rq

++ and ks ∈ Rq
++ follows from assumption A, convexity of f(x), concavity of ci(x)

and properties 30 and 40 of the transformation ψ∈Ψ. Therefore the LT method
(3.4)–(3.6) is well defined.

2) From (3.4) and (3.5) we obtain

(3.7) ∇xL(xs+1, λs,ks) = ∇f(xs+1)−
∑

λs
iψ
′(k(λs

i )
−1
ci(xs+1))∇ci(xs+1)

= ∇xL(xs+1, λs+1) = 0.

From (3.5) and 20a) follows λs+1 = (λs+1
i , . . . , λs+1

q ) ∈ Rq
++. Therefore from

(3.6) we have ks+1 = (ks+1
1 , . . . , ks+1

q ) ∈ Rq
++. It follows from (3.7) that

(3.8) xs+1 = argmin{L(x, λs+1) | x ∈ Rn},

so d(λs+1) = L(xs+1, λs+1) and −c(xs+1) ∈ ∂d(λs+1), where ∂d(λs+1) is subdiffer-
ential of d(λ) at λ = λs+1.

From (3.5), 20b) and the mean value formula we obtain

λs+1
i − λs

i = λs
i (ψ

′(ks
i λ

s
i ci(x

s+1))− ψ′(0)) = ks
i (λ

s
i )

2ψ′′(θs
i k

s
i λ

s
i ci(x

s+1))ci(xs+1)

= ks
i (λ

s
i )

2
ψ′′[s,i](·)ci(x

s+1), i = 1, . . . , q,

where 0 < θs
i < 1.

Using (3.6) we have

(3.9) λs+1 = λs + kΨ′′[s](·)c(x
s+1),

where Ψ′′[s](·) = diag(ψ′′[s,i](·))
q
i=1.

The equation (3.9) can be rewritten as follows:

(3.10) −c(xs+1) + k−1(Ψ′′[s](·))
−1(λs+1 − λs) = 0.

Keeping in mind −c(xs+1) ∈ ∂d(λs+1) the equation (3.10) is the optimality
criteria for the vector λs+1 to be a maximizer in the following problem:

(3.11) d(λs+1) = max{d(λ)− 1
2
k−1

∑
(−ψ′′[s,i](·))

−1(λi − λs
i )

2 | λ ∈ Rq}

= max{d(λ)− 1
2
k−1||λ− λs||2Rs

| λ ∈ Rq},

where Rs = (−Ψ′′[s](·))
−1 and ‖λ‖2Rs

= λTRsλ.
Therefore the LT method (3.4)–(3.6) is equivalent to the Quadratic Prox method

(3.11) for the dual problem in the rescaled dual space. Keeping in mind that
Quadratic Prox (3.11) generates positive dual sequence {λs} ∈ Rq

++ we conclude
that LT method (3.4)–(3.6) is equivalent to Interior Quadratic Prox (3.11).

3) The formula for the Lagrange multipliers update can be rewritten as follows:

(3.12) ks
i λ

s
i ci(x

s+1) = ψ′
−1(λs+1

i /λs
i ), i = 1, . . . , q.
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The inverse ψ−1 exists due to 30. Using ψ′−1 = ψ∗′, formula (3.6) and assuming
ϕ=− ψ∗, we can rewrite (3.12) as follows:

(3.13) −ci(xs+1) = k−1λs
iϕ
′(λs+1

i /λs
i ).

Again, keeping in mind −c(xs+1) ∈ ∂d(λs+1) from (3.13) we obtain

(3.14) d(λs+1) = max{d(λ)− k−1

q∑
i=1

(λs
i )

2ϕ(λi/λ
s
i ) | λ ∈ Rq}.

Due to limt→∞ ψ′(t) = 0, which follows from 20c), for the kernel ϕ we obtain
limt→0+ ϕ

′(t) = −∞, hence λs+1 ∈ Rq
++.

In other words the LT method (3.4)–(3.6) is equivalent to the Interior Prox
method

(3.15) d(λs+1) = max{d(λ)− k−1D(λ, λs) | λ∈Rq},
where D : Rq

+ × Rq
++ → R+ ,given by formula D(u, v) =

∑q
i=1 v

2
i ϕ(ui/vi), is the

second order ϕ−divergence distance with the kernel ϕ : R++ → R+. �

The method (3.11) reminds the classical quadratic prox (see [6], [10], [13], [14],
[25]). On the other hand, the LT method (3.4)–(3.6) is an exterior-interior point
method. The LT method is an exterior-point method in the primal space and an
interior-point mathod in the dual space. The Interior Prox method (3.15) has been
studied in [2], [3], [20], [27].

The properties of the kernels ϕ are induced by properties 10–50 of the original
transformation ψ∈Ψ. They were established in the following theorem.

Theorem 3.2. [20] The kernels ϕ∈Φ are convex twice continuously differentiable
and possess the following properties:

1) ϕ(s) ≥ 0 ∀s ∈ (0,∞) and mins≥0 ϕ(s) = ϕ(1) = 0;
2) a) lims→0+ ϕ

′(s) = −∞; b) ϕ′(s) is monotone increasing; c) ϕ′(1) = 0;
3) a) ϕ′′(s) ≥ m > 0 ∀s ∈ (0,∞); b) ϕ′′(s) ≤M <∞ ∀s ∈ [1,∞).

Unfortunately several well known transformations including exponential ψ1(t) =
1− e−t [12], logarithmic ψ2(t) = ln(t+ 1) and hyperbolic ψ3(t) = t(t+ 1)−1 MBF
[17] as well as log-sigmoid ψ4(t) = 2(ln 2 + t − ln(1 + et)) and modified CHKS
transformation ψ5(t) = t−

√
t2 + 4η+2

√
η, η>0 ([20]) do not satisfy 10–50. Trans-

formations ψ1–ψ3 do not satisfy property 30 (m = 0), while for ψ4 and ψ5 the
property 40 is violated (M = ∞). It can be fixed however by using the quadratic
extrapolation idea, which first was introduced in [5] for the logarithmic MBF trans-
formation ψ2. For a given −1 < τ < 0 we modified the transformations ψ1–ψ5 as
follows:

(3.16) ψj(t) :=
{
ψj(t), t ≥ τ,
qj(t) t ≤ τ,

i = 1, . . . , 5,

where qj(t) = ajt
2+bjt+cj and the coefficients aj = 0.5ψ′′j (τ), bj = ψ′j(τ)−τψ′′j (τ),

cj = ψj(τ)− τψ′j(τ) + 0.5τ2ψ′′j (τ) are defined from the system

ψj(τ) = qj(τ), ψ′j(τ) = q′j(τ), ψ′′j (τ) = q′′j (τ).

One can check directly that ψj , j = 1, . . . , 5 given by (3.16) belong to Ψ. Their
Fenchel conjugate are given by formula

ψ∗j (s) :=
{
ψ∗i (s), s ≤ ψ′(τ),
q∗(s), s ≥ ψ′(τ), j = 1, . . . , 5.
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Therefore due to Theorem 3.2 kernels ϕi = −ψ∗i ∈Φ.
In [2] to guarantee 3a) the authors regularized the logarithmic MBF kernel

ψ2(s) = s− ln s−1. The regularized logarithmic MBF kernel ϕ̄2(s) = 0.5ν(s−1)2+
µ(s−ln s−1), µ > 0, ν > 0 has some very interesting properties allowing us to prove
the global convergence of the dual sequence {λs} generated by the Interior Prox
method (3.15) to the dual solution λ∗ with O((ks)−1) rate (see [2]). The Fenchel
transform ϕ̄∗2 of the kernel ϕ̄2 leads to primal transformation ψ̄2 = −ϕ̄∗2, which
satisfy properties 10–50, therefore such transformation along with those given by
(3.16) can be used in the framework of primal-dual LT method, which we develop
in sections 5 and 6.

4. Convergence and rate of convergence of the LT method

In this section we present convergence results for the general LT method. The
key component of the convergence proof is the equivalence of the LT method (3.4)–
(3.6) to the Interior Quadratic Prox (3.11) for the dual problem.

Let λ0∈Rq
++ be the initial vector of Lagrange multipliers and d = d(λ∗)− d(λ0).

The dual level set Λ0 = {λ∈Rq
+ : d(λ)≥d(λ0)} is bounded due to concavity of d(λ)

and boundedness of L∗ (see Corollary 20 in [8]). For x∈Rn we consider two sets of
indices: I−(x) = {i : ci(x) < 0} and I+(x) = {i : ci(x) ≥ 0}. We introduce the
maximum constraint violation

vl = max{−ci(xl) | i∈I−(xl)}

and the upper bound

dl =
q∑

i=1

λl
i|ci(xl)| ≥

q∑
i=1

λl
ici(x

l)

for the duality gap at the step 1.
Let v̄s = min1≤l≤s vl, d̄s = min1≤l≤s dl. For a bounded close set Y ⊂ Rn and

y0 /∈Y we consider the distance ρ(y0, Y ) = min{‖y0 − y‖ | y ∈ Y } from y0 to Y .

Theorem 4.1. If the assumptions A and B are satisfied then
1) the primal-dual sequence {xs, λs} is bounded, and the following estimations

hold:

d(λs+1)− d(λs) ≥ mk−1‖λs+1 − λs‖2,
d(λs+1)− d(λs)≥kmM−2

∑
i∈I−(xs+1)

c2i (x
s+1);

2) for the constraints violation and the duality gap the following bounds hold:

v̄s = O((ks)−0.5), d̄s = O((sk)−0.5);

3) the primal-dual sequence {xs, λs} converges to the primal-dual solution in
value, i. e.

f(x∗) = lim
s→∞

f(xs) = lim
s→∞

d(λs) = d(λ∗),

and
lim

s→∞
ρ(xs, X∗) = 0, lim

s→∞
ρ(λs, L∗) = 0;

besides, any converging primal-dual subsequence has the primal-dual solution as a
limit point.
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Proof. 1) From the concavity of d(λ) and −c(xs+1) ∈ ∂d(λs+1) we have

d(λ)− d(λs+1)≤(−c(xs+1), λ−λs+1)

or

(4.1) d(λs+1)− d(λ)≥(c(xs+1), λ− λs+1).

Using (3.5) and (3.6) we have

ci(xs+1) = (ks
i λ

s
i )
−1
ψ′
−1(λs+1

i /λs
i ) = k−1λs

iψ
′−1(λs+1

i /λs
i ).

Using ψ′−1 = ψ∗′ we obtain

(4.2) ci(xs+1) = k−1λs
iψ
∗′(λs+1

i /λs
i ), i, . . . , q.

Keeping in mind ψ∗′(1) = ψ∗′(λs
i/λ

s
i ) = 0 from (4.1) for λ = λs we obtain

(4.3) d(λs+1)− d(λs)≥
m∑

i=1

k−1λs
i (ψ

∗′(λs+1
i /λs

i )− ψ∗′(λs
i/λ

s
i ))(λ

s
i − λs+1

i ).

Using the mean value formula we have

ψ∗′(λs+1
i /λs

i )− ψ∗
′(λs

i/λ
s
i ) = −ψ∗′′(·)(λs

i )
−1(λs

i − λs+1
i ) = ϕ′′(·)(λs

i )
−1(λs

i − λs+1
i ).

Using 3(a) from Theorem 3.2 and (4.3) we obtain

(4.4) d(λs+1)− d(λs)≥mk−1‖λs − λs+1‖2.
Let i∈I−(xs+1) = {i : ci(xs+1) < 0}. Using ψ∗′(1) = ψ∗′(λs

i/λ
s
i ) = 0, the mean

value formula, the equation (4.2) and 3(b) from Theorem 3.2 we obtain

−ci(xs+1) = k−1λs
i [ψ

∗′(λs
i/λ

s
i )− ψ∗′(λs+1

i /λs
i )]

= k−1(−ψ∗′′(·))(λs+1
i − λs

i )≤k−1ϕ′′(·)|λs+1
i − λs

i |≤k−1M |λs+1
i − λs

i |,
or

|λs+1
i − λs

i |≥kM−1(−ci(xs+1)), i∈I−(xs+1).
Combining the last inequality with (4.4) we obtain

(4.5) d(λs+1)− d(λs)≥kmM−2
∑

i∈I−(xs+1)

c2i (x
s+1).

2) From (4.5) we have

(4.6) d(λs+1)− d(λs)≥kmM−2v2
s+1.

Summing up (4.5) from l = 0 to l = s we obtain

d = d(λ∗)− d(λ0)≥d(λs+1)− d(λ0)≥kmM−2
s∑

l=0

v2
l+1.

Keeping in mind that v̄s = min{vl | 1≤l≤s}, we obtain

(4.7) v̄s≤M
√
dm−1(ks)−0.5 = O((ks)−0.5).

The primal asymptotic feasibility follows from vl → 0.
The bound similar to (4.7) for the duality gap d̄s can be established using argu-

ments similar to those in [20].
3) From assumption B follows boundedness of L∗. From boundedness of L∗ and

concavity of d(λ) follows boundedness of L0 = {λ∈Rq
+ : d(λ)≥d(λ0)} (see Corollary

20 in [8]).
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From (4.4) follows the dual monotonicity d(λs+1)≥d(λs) + mk−1‖λs+1 − λs‖2,
s≥0. Also d(λs)≤f(x∗), s≥0, therefore there is d(λ∞) = lims→∞ d(λs) and

(4.8) lim
s→∞

(d(λs+1)− d(λs)) = 0.

The dual sequence {λs} is bounded, therefore there is a converging subsequence
{λsl} : lims→∞ λsl = λ̄.

Due to (4.4) and (4.8) we have

(4.9) lim
s→∞

λsl+1 = λ̄.

The boundedness of the primal sequence {xs} follows from the boundedness of
X∗ and liml→∞ vl = 0 (see Corollary 20 in [8]).

From (3.4)–(3.5) we have

(4.10) ∇xL(xs+1, λs, ks) = ∇xL(xs+1, λs+1) = 0.

Without loss of generality we can assume that

lim
s→∞

xsl+1 = x̄.

By passing to limit (4.10) we obtain

lim
sl→∞

∇xL(xsl+1, λsl+1) = ∇xL(x̄, λ̄) = 0.

We consider two sets of indices I+ = {i : λ̄i > 0} and I0 = {i : λ̄i = 0}.
From (3.5)–(3.6) we have

(4.11) ci(xsl+1) = k−1λsl
i ψ

′−1(λsl+1
i /λsl

i ), i∈I+.

By passing (4.11) to the limit and keeping in mind 2c) from Theorem 3.2 we
obtain

ci(x̄) = k−1λ̄iϕ
′(1) = 0, i∈I+.

Due to vs→0 for any i∈Ī0 we have

lim
sl→∞

ci(xsl+1) = ci(x̄)≥0.

Therefore for the pair (x̄, λ̄) the KKT’s conditions are satisfied, i. e.

∇xL(x̄, λ̄) = 0, λ̄∈Rq
+, c(x̄)∈Rq

+, (λ̄, c(x̄)) = 0,

therefore x̄ = x∗, λ̄ = λ∗. In view of the dual monotonicity we have

lim
s→∞

d(λs) = d(λ̄) = d(λ∗).

Therefore,

(4.12) d(λ∗) = lim
s→∞

d(λs) = lim
s→∞

(f(xs)−
q∑

i=1

λs
i ci(x

s)).

To complete the proof we have to show the asymptotic complementarity condi-
tion

(4.13) lim
s→∞

q∑
i=1

λs
i ci(x

s) = 0.



LAGRANGIAN TRANSFORMATION IN CONVEX OPTIMIZATION 11

From λs∈Rq
++ and vs→0 we have lims→∞ λs

i ci(x
s)≥0. Let us assume the oppo-

site to (4.13), i.e. that there is i∈{1, . . . , q} such that for a primal-dual subsequence
{xsl , λsl} we have

lim
s→∞

λsl
i ci(x

sl) = ρ > 0.

Without loosing the generality we can assume that limsl→∞ xsl = x̄, limsl→∞ λsl =
λ̄i > 0. Then λ̄ici(x̄) = ρ > 0, therefore ci(x̄) > 0 and λ̄i = ρ(ci(x̄))

−1
> 0, which

is impossible because for any i∈I+ we have ci(x̄) = 0.
From (4.12)–(4.13) we have

(4.14) d(λ∗) = lim
s→∞

d(λs) = lim
s→∞

(f(xs)−
q∑

i=1

λs
i ci(x

s)) = lim
s→∞

f(xs) = f(x∗).

Keeping in mind that X∗ = {x∈Ω : f(x)≤f(x∗)}, from primal asymptotic
feasibility and (4.14) we obtain lims→∞ ρ(xs, X∗) = 0 (see [19] Lemma 11, Chap.
9, §1).

Taking in to account L∗ = {λ∈Rr
++ : d(λ)≥d(λ∗)} and using again(4.14) and

Lemma 11 we obtain lims→∞ ρ(λs, L∗) = 0.
We completed the proof of the Theorem 4.1. �

Remark 4.1. It follows from (4.5) that for any τ< 0 and any i = 1, . . . , q the
inequality ci(xs+1)≤τ is possible only for a finite number of steps. Therefore from
some point on only original transformations can be used in the LT method. In
fact for k > 0 large enough the quadratic branch can be used just once. Therefore,
the asymptotic analysis and the numerical performance of the LT method (3.4)–
(3.6) and its dual equivalent (3.11) or (3.15) depends only on the properties of the
original transformations ψ1–ψ5 and the correspondent original dual kernels ϕ1–ϕ5.
The transformations ψ1–ψ5 for t≥τ are infinite time differentiable and so is the
LT L(x, λ,k) if the input data has the corresponding property. It allows to use the
Newton method for solving the Primal-Dual system, which is equivalent to (3.4)–
(3.5). We will concentrate on it in section 5.

Each transformation ψj∈Ψ, j = 1, . . . , 5 leads to a particular second order Entro-
py-like distance function Dj(u, v) =

∑q
i=1 v

2
i ϕj(ui/vi). Each distance function

Dj(u, v) leads to a corresponding Interior Prox method (3.15) for finding maximum
of a concave function on Rq

+.
Sometimes the origin of the function d(λ) is irrelevant for the convergence analy-

sis of the method (3.15) (see [3]). However, when d(λ) is the dual function for the
dual problem (D), such analysis can produce only limited results, because neither
the primal nor the dual sequence controls the LT method. The LT method is rather
governed by the PD system solving which is equivalent to LT step.

The PD system is defined by the primal-dual map similar to those we used
to establish the rate of convergence of nonlinear rescaling methods(see [17]–[19]).
Using the corresponding primal-dual map we can strengthen the convergence results
of Theorem 4.1 by assuming the standard second order optimality conditions.

From (3.6) we have lims→∞ ks
i = k(λ∗i )

−2
, i = 1, . . . , r, i. e. the scaling para-

meters corresponding to the active constraints grow linearly with k > 0. Therefore
the technique we used in [17], [19] can be applied for the asymptotic analysis of the
method (3.4)–(3.6).
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For a given small enough δ>0, we define the following set:

D(λ∗,k, δ) = {(λ,k) ∈ Rq
+ × Rq

++ : λi ≥ δ, |λi − λ∗i | ≤ δk, i = 1, . . . , r,

0≤λi≤kδ, k≥k0, i = r + 1, . . . , q; ki = kλ−2
i , i = 1, . . . , q}.

Theorem 4.2. If f(x), ci(x)∈C2 and the standard second order optimality condi-
tions (2.3)–(2.4) hold, then there exists such small δ>0 and large enough k0 > 0
that for any (λ,k)∈D(·) we have:

1) There exists x̂ = x̂(λ,k) = argmin{L(x, λ,k) | x∈Rn} such that

∇xL(x̂, λ,k) = 0

and
λ̂i = λiψ

′′(k(λi)
−1
ci(x̂)), k̂i = kλ̂−2

i , i = 1, . . . , q.

2) For the pair (x̂, λ̂) the bound

max{‖x̂− x∗‖, ‖λ̂− λ∗‖}≤ck−1‖λ− λ∗‖

holds and c > 0 is independent on k≥k0.
3) The LT L(x, λ,k) is strongly convex in the neighborhood of x̂.

Theorem 4.2 can be proved by a slight modification of the correspondent proof
of Theorem 1 in [17] (see also [19]).

Remark 4.2. All results of Theorem 4.2 do not require convexity of f(x) and all
−ci(x), i = 1, . . . , q. Therefore the LT method can be used for solving nonconvex
optimization problems. In fact, it is enough to find x̂ just ones for k > 0 large
enough before the LT method starts finding minimums of strongly convex functions
at each step. To find the first unconstrained minimizer for a wide class of noncon-
vex functions one can use very interesting cubic regularization of Newton’s method
recently developed in [15].

Finding xs+1 requires solving an unconstrained minimization problem (3.4),
which is, generally speaking, an infinite procedure. The stopping criteria (see [19]–
[21]) allows to replace xs+1 by an approximation x̄s+1, which can be found in a
finite number of Newton steps by minimizing L(x, λ̄s, k̄s) in x∈Rn. If x̄s+1 is used
in the formula (3.5) for the Lagrange multipliers update then bounds similar those
established in 2) of Theorem 4.2 remain true.

For a given σ>0 let us consider the sequence {x̄s, λ̄s, k̄s} generated by the fol-
lowing formulas:

x̄s+1 : ‖∇xL(x̄s+1, λ̄s, k̄s)‖ ≤ σk−1‖Ψ′(k(λ̄s)−1c(x̄s+1))λ̄s − λ̄s‖,(4.15)

λ̄s+1 = Ψ′(k(λ̄s)−1
c(x̄s+1))λ̄s,(4.16)

where
Ψ′(k(λ̄s)−1

c(x̄s+1)) = diag(ψ′(k(λ̄s
i )
−1
ci(x̄s+1))

q

i=1

and
k̄s = (k̄s

i = k(λ̄s
i )
−2, i = 1, . . . , q).

The following theorem can be proven the same way we proved Theorem 7.1 in
[19].
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Theorem 4.3. If the standard second order optimality conditions (2.1)–(2.3) hold
and the Hessians ∇2f(x) and ∇2ci(x), i = 1, . . . ,m satisfy the Lipschitz conditions
(4.17)
‖∇2f(x)−∇2f(y)‖≤L0‖x− y‖, ‖∇2ci(x)−∇2ci(y)‖≤Li‖x− y‖, i = 1, . . . , q,

then there is k0 > 0 large enough such that for the primal-dual sequence {x̄s, λ̄s}
generated by the formulas (4.15)–(4.16) the following estimations hold true and
c > 0 is independent from k≥k0 for s≥0:

(4.18) ‖x̄s+1 − x∗‖≤c(1 + σ)k−1‖λ̄s − λ∗‖, ‖λ̄s+1 − λ∗‖≤c(1 + σ)k−1‖λ̄s − λ∗‖.

To find an approximation x̄s+1 one can use Newton’s method with steplength
for minimization L(x, λ̄s,ks) in x. It requires generally speaking several Newton
steps to find x̄s+1. Then we update the vector of Lagrange multipliers λ̄s and the
scaling parameters vector k̄s using x̄s+1 instead of xs+1 in (3.5) and λ̄s+1 instead
of λs+1 in (3.6).

In the next section we develop a different approach. Instead of finding x̄s+1 and
then updating the Lagrange multipliers we consider a primal-dual system, solving
which is equivalent to finding x̄s+1 and λ̄s+1. Newton’s method for solving the
primal-dual system that is equivalent to (3.4)–(3.5) leads to the Primal-Dual LT
method.

5. Local Primal-Dual LT method

In this section we describe the PDLT method and prove local quadratic rate
of convergence of the primal-dual sequence to the primal-dual solution under the
standard second order optimality condition. One step of the LT method (3.4)–(3.6)
maps the given triple (x, λ,k)∈Rn×Rq

++×Rq
++ into a triple (x̂, λ̂, k̂)∈Rn×Rq

++×Rq
++

by formulas

x̂ : ∇xL(x̂, λ,k) = ∇f(x̂)−
∑
ψ′(kiλici(x̂))λi∇ci(x)

= ∇f(x̂)−
∑
λ̂i∇ci(x̂) = 0,

(5.1)

λ̂ : λ̂i = λiψ
′(kλ−1

i ci(x̂)), i = 1, . . . , q,(5.2)

k̂ : k̂i = kλ̂−2
i , . . . , q.(5.3)

By removing the scaling vector update formula (5 3) from the system (5.1)–(5.3),
we obtain the primal-dual LT system

∇xL(x̂, λ̂) = ∇f(x̂)−
q∑

i=1

λ̂∇ci(x̂) = 0,(5.4)

λ̂ = Ψ′(kλ−1c(x̂))λ,(5.5)

where Ψ′(kλ−1c(x̂)) = diag(ψ′(kiλ
−1
i ci(x̂)))

q
i=1.

From the standard second order optimality condition (2.3)–(2.4) follows the
uniqueness of x∗ and λ∗. Also there is τ∗ > 0 that

a) min{ci(x∗) | r + 1≤i≤q}≥τ∗ and b) min{λ∗i | 1≤i≤r}≥τ∗.
Therefore due to (4.18) there is k0 > 0 large enough that for any k≥k0 and s≥1

(5.6) a) min{ci ¯(xs) | r + 1≤i≤q}≥0.5τ∗ and b) min{λ̄s
i | 1≤i≤r}≥0.5τ∗.

Using formula (3.5) and the property 20c) we have

λ̄s+1
i = ψ′(k(λ̄s

i )
−1ci(x̄s+1))λ̄s

i≤2a(kτ∗)−1(λ̄s
i )

2, s≥1.
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Hence for any fixed k > max{k0, 2a(τ∗)
−1} we have

λ̄s+1
i ≤ (λ̄s

i )
2, s ≥ 1, r + 1 ≤ i ≤ q.

So for a given accuracy 0 < ε << 1 in at most s = O(ln lnε−1) Lagrange mul-
tipliers updates the Lagrange multipliers for the passive constraints will be of the
order o(ε2). From this point on they will be automatically ignored in the further
calculations together with the part of LT related to the passive constraints. There-
fore the primal-dual system (5.4)–(5.5) will be actually reduced to the following
system for x̂ and λ̂ = (λ̂1, . . . , λ̂r):

∇xL(x̂, λ̂) = ∇f(x̂)−
r∑

i=1

λ̂i∇ci(x̂) = 0,(5.7)

λ̂i = ψ′(k(λi)
−1
ci(x̂))λi, i = 1, . . . , r.(5.8)

To simplify notation we use L(x, λ) for the truncated Lagrangian i. e. L(x, λ) =
f(x)−

∑r
i=1 λici(x) and c(x) for the active constraints vector-function, i. e. cT (x) =

(c1(x), . . . , cr(x)).
We use the vector norm ‖x‖ = max1<i≤n |xi| and the matrix A : Rn → Rn norm

‖A‖ = max1≤i≤n(
∑n

j=1 |aij |). For a given ε0 > 0 we define the ε0-neighborhood
Ωε0 = {y = (x, λ)∈Rn×Rq

++ : ‖y − y∗‖≤ε0} of the primal-dual solution y∗ =
(x∗, λ∗).

We will measure the distance between the current approximation y = (x, λ) and
the solution y∗ using the following merit function:

ν(y) = ν(x, λ) = max{‖∇xL(x, λ)‖,− min
1≤i≤q

ci(x),
q∑

i=1

|λi‖ci(x)| − min
1≤i≤q

λi},

assuming that the input data is properly normalized. It follows from the KKT
condition (2.1)–(2.2) that

ν(x, λ) = 0 ⇔ x = x∗, λ = λ∗.

Later we will use the following lemma.

Lemma 5.1. [22] Under the standard second order optimality condition (2.3)–(2.4)
and Lipschitz condition (4.17) there exists 0 < m0 < M0 < ∞ and ε0 > 0 small
enough that

(5.9) m0‖y − y∗‖≤ν(y)≤M0‖y − y∗‖ ∀y∈Ωε0 .

It follows from (5.9) that in the neigbourhood Ωε0 the merit function ν(y) is
similar to ‖∇f(x)‖ for unconstrained optimization problem min{f(x) | x∈Rn}.
The merit function ν(y) will be used

1) to update the penalty parameter k > 0;
2) to control accuracy at each step as well as for the overall stopping criteria;
3) to identify “small” and “large” Lagrange multipliers at each PDLT step;
4) to decide whether the primal or primal-dual direction has to be used at the

current step.
First we consider Newton’s method for solving system (5.7)–(5.8) and show its

local quadratic convergence. To find the Newton direction (∆x,∆λ) we have to
linearize the system (5.7)–(5.8) at y = (x, λ).
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We start with system (5.8). Due to 30 there exists the inverse ψ′−1. Therefore
using the identity ψ′−1 = ψ∗′ we can rewrite (5.8) as follows:

ci(x̂) = k−1λiψ
′−1(λ̂i/λi) = k−1λiψ

∗′(λ̂i/λi) = −k−1λiϕ
′(λ̂i/λi).

Assuming x̂ = x + ∆x and λ̂ = λ + ∆λ, keeping in mind ϕ′′(1) = 0 and ignoring
terms of second and higher order we obtain

ci(x̂) = ci(x) +∇ci(x)∆x = −k−1λiϕ
′((λi + ∆λi)/λi)

= −k−1λiϕ
′(1 + ∆λi/λi) = −k−1ϕ′(1)∆λi, i = 1, . . . , r,

or
ci(x) +∇ci(x)∆x+ k−1ϕ′(1)∆λi = 0, i = 1, . . . , r.

Now we linearize the system (5.7) at y = (x, λ). We have

∇f(x) +∇2f(x)∆x−
r∑

i=1

(λi + ∆λi)(∇ci(x) +∇2ci(x)∆x) = 0.

Again, ignoring terms of the second and higher orders we obtain the following
linearization of the PD system (5.7)–(5.8):

∇2
xxL(x, λ)∆x−∇cT (x)∆λ = −∇xL(x, λ),(5.10)

∇c(x)∆x+ k−1ϕ′′(1)Ir∆λ = −c(x),(5.11)

where Ir identical matrix in Rr and ∇c(x) = J(c(x)) Jacobian of c(x). Let us
introduce the matrix

Nk(x, λ) = Nk(y) = Nk(·) =
[
∇2

xxL(·) −∇cT (·)
∇c(·) k−1ϕ′′(1)Ir

]
.

Then the system (5.10)–(5.11) can be written as follows:

Nk(·)
[

∆x
∆λ

]
=

[
−∇xL(·)
−c(·)

]
.

The local PDLT method consists of the following operations:
1. Find the primal-dual Newton direction ∆y = (∆x,∆λ) from the system

(5.12) Nk(·)
[

∆x
∆λ

]
=

[
−∇xL(·)
−c(·)

]
.

2. Find the new primal-dual vector ŷ = (x̂, λ̂) by formulas

(5.13) x̂ := x+∆x, λ̂ := λ+∆λ.

3. Update the scaling parameter

(5.14) k̂ = (ν(ŷ))−1
.

Along with the matrix Nk(·) we consider the matrix

N∞(y) = N∞(·) =
[
∇2L(·) −∇cT (·)
∇c(·) 0

]
.

We will use later the following technical Lemma.

Lemma 5.2. [22] Let A : Rn→Rn be an invertible matrix and ‖A−1‖≤c0 then for
small enough ε>0 any B : Rn − Rn such that ‖A − B‖≤ε is invertible and the
following bounds hold:

(5.15) a) ‖B−1‖≤2c0 and b) ‖A−1 −B−1‖≤2c20ε.
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Lemma 5.3. If the standard second order optimality conditions (2.3)–(2.4) and
the Lipschitz conditions (4.17) are satisfied then there exists small enough ε0 > 0
and large enough k0 > 0 that both matrices N∞(y) and Nk(y) are non-singular and
there is c0 > 0 independent on y∈Ωε0 and k≥k0 that

(5.16) max{‖N−1
∞ (y)‖‖N−1

k (y)‖}≤2c0 ∀y∈Ωε0 and ∀k≥k0.

Proof. It is well known (see for example [16 ]) that under the standard second order
optimality conditions (2.3)–(2.4) the matrix

N∞(x∗, λ∗) =
[
∇2L(x∗, λ∗) −∇cT (x∗)
∇c(x∗) 0

]
is non-singular, hence there exists c0 > 0 that ‖N−1

∞ (y∗)‖≤c0. Due to Lipschitz
condition (4.17) there exists L > 0 that ‖Nk(y)−N∞(y∗)‖≤L‖y− y∗‖+ k−1ϕ′′(1)
and ‖N∞(y) − N∞(y∗)‖≤L‖y − y∗‖. Therefore for any small enough ε > 0 there
exists such small ε0 > 0 and large k0 > 0 that

max{‖Nk(y)−N∞(y∗)‖, ‖N∞(y)−N∞(y∗)‖}≤ε ∀y∈Ωε0 , ∀k≥k0.

Applying Lemma 5.2 first with A = N∞(y∗) and B = Nk(y) and then with
A = N∞(y∗) and B = N∞(y) we obtain (5.16). �

The following theorem establishes the local quadratic convergence of the PDLT
method.

Theorem 5.1. If the standard second order optimality conditions (2.3)–(2.4) and
the Lipschitz condition (4.17) are satisfied then there exists ε0 > 0 small enough that
for any primal-dual pair y = (x, λ)∈Ωε0 the PDLT methods (5.12)–(5.14) generates
the primal-dual sequence that converges to the primal-dual solution with quadratic
rate, i. e. , the following bound holds:

‖ŷ − y∗‖≤c‖y − y∗‖2 ∀y∈Ωε0 ,

and c > 0 is independent on y∈Ωε0 .

Proof. The primal-dual Newton direction ∆y = (∆x,∆λ) we find from the system

(5.17) Nk(y)∆y = b(y),

where

b(y) =
[
−∇xL(x, λ)
−c(x)

]
.

Along with the primal-dual system (5.7)–(5.8) we consider the Lagrange system
of equations, which corresponds to the active constraints at the same point y =
(x, λ):

∇xL(x, λ) = ∇f(x)−∇c(x)T
λ=0,(5.18)

c(x) = 0.(5.19)

We apply Newton method for solving (5.18)–(5.19) from the same starting point
y = (x, λ). The Newton directions ∆ȳ = (∆x̄,∆λ̄) for (5.18)–(5.19) we find from
the following system of linear equations:

N∞(y)∆ȳ = b(y).

The new approximation for the system (5.18)–(5.19) we obtain by formulas

x̄ = x+ ∆x̄, λ̄ = λ+ ∆λ̄ or ȳ = y + ∆ȳ.
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Under standard second order optimality conditions (2.3)–(2.4) and the Lipschitz
conditions (4.17) there is c1 > 0 independent on y∈Ωε0 that the following bounds
holds (see Theorem 9, Ch. 8 [16]):

(5.20) ‖ȳ − y∗‖≤c1‖y − y∗‖2.
Now we can prove the similar bound for ‖ŷ − y∗‖. We have

‖ŷ − y∗‖ = ‖y + ∆y − y∗‖ = ‖y + ∆ȳ + ∆y −∆ȳ − y∗‖
≤ ‖ȳ − y∗‖+ ‖∆y −∆ȳ‖.

For ‖∆y −∆ȳ‖ we obtain

‖∆y −∆ȳ‖ = ‖(N−1
k (y)−N−1

∞ (y))b(y)‖ ≤ ‖N−1
k (y)−N−1

∞ (y)‖‖b(y)‖.

From Lemma 5.3 we have max{‖N−1
k (y)‖, ‖N−1

∞ (y)‖}≤2c0. Besides, ‖Nk(y) −
N∞(y)‖ = k−1ϕ′′(1), therefore using Lemma 5.2 with A = Nk(y), B = N∞(y) we
obtain

(5.21) ‖∆y −∆ȳ‖≤2k−1ϕ′′(1)c20‖b(y)‖.
In view of ∇xL(x∗, λ∗) = 0, c(x∗) = 0 and the Lipschitz condition (4.17) we have

‖b(y)‖≤L‖y − y∗‖ ∀y∈Ωε0 .

Using (5.9), (5.14) and (5.21) we obtain

‖∆y −∆ȳ‖≤2ϕ′′(1)c20ν(y)L‖y − y∗‖
≤2ϕ′′(1)c20M0L‖y − y∗‖2.

Therefore for c2 = 2ϕ′′(1)c20M0L, which is independent on y∈Ωε0 , we have

(5.22) ‖∆y −∆ȳ‖≤c2‖y − y∗‖2.
Using (5.20) and (5.22) for c = 2max{c1, c2} we obtain

‖ŷ − y∗‖≤‖ȳ − y∗‖+ ‖∆y −∆ȳ‖≤c‖y − y∗‖2 ∀y∈Ωε0

and c = max{c1, c2} > 0 is independent on y∈Ωε0 . We completed the proof. �

6. Primal-Dual LT method

In this section we describe the globally convergent PDLT method.The globally
convergent PDLT method roughly speaking works as the Newton LT multipliers
method (4.15)–(4.16) in the initial phase and as the primal-dual LT method (5.12)–
(5.14) in the final phase of the computational process.

Each step of PDLT consists of finding the primal-dual direction ∆y = (∆x,∆λ)
by solving the linearized primal-dual system (5.4)–(5.5). Then we use either the
primal-dual Newton direction ∆y to find a new primal-dual vector or the primal
Newton direction ∆x for minimization of L(x, λ,k) in x.

The choice at each step depends on the merit function ν(y) value and how the
value changes after one step. If the primal-dual step produces quadratic reduction
of the merit function then the primal-dual step is accepted, otherwise we use the
primal direction ∆x to minimize L(x, λ,k) in x.

The important part of the method is the way the system (5.4)–(5.5) is linearized.
Let us start with y = (x, λ) and compute ν(y). By linearizing the system (5.4) we
obtain

(6.1) ∇2
xxL(x, λ)∆x−∇cT (x)∆λ = −∇xL(x, λ).
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The system (5.5) we split into two sub-systems. The first is associated with
the set I+(y) = {i : λi > ν(y)} of “big” Lagrange multipliers, while the second
is associated with the set I0(y) = {i : λi≤ν(y)} of “small” Lagrange multipliers.
Therefore, I+(y)∩I0(y) = ∅ and I+(y)∪I0(y) = {1, . . . , q}. We consider two sub-
systems:

λ̂i = ψ′(kλ−1
i ci(x̂))λi, i∈I+(y),(6.2)

λ̂i = ψ′(kλ−1
i ci(x̂))λi, i∈I0(y).(6.3)

The equations (6.2) can be rewritten as follows:

kλ−1
i ci(x̂) = ψ′

−1(λ̂i/λi) = −ϕ′(λ̂i/λi).

Let x̂ = x+ ∆x and λ̂ = λ+ ∆λ, then

ci(x) +∇ci(x)∆x = −k−1λiϕ
′(1 + ∆λi/λi), i∈I+(y).

Taking into account ϕ′(1) = 0 and ignoring terms of second and higher order we
obtain

(6.4) ci(x) +∇ci(x)∆x = −k−1ϕ′′(1)∆λi, i∈I+(y).

Let c+(x) be the vector-function associated with “big” Lagrange multipliers, i.
e. c+(x) = (ci(x), i∈I+(y)), ∇c+(x) = J(c+(x)) is the correspondent Jacobian
and ∆λ+ = (∆λi, i∈I+(y)) is the dual Newton direction associated with “big”
Lagrange multipliers. Then the system (6.4) can be rewritten as follows:

(6.5) ∇c+(x)∆x+ k−1ϕ′′(1)∆λ+ = −c+(x).

Now let us linearize the system (6.3). Ignoring terms of second and higher order
we obtain

(6.6) λ̂i = λi + ∆λi = ψ′(kλ−1
i (ci(x) +∇ci(x)∆x))λi

= ψ′(kλ−1
i ci(x))λi + kψ′′(kλ−1

i ci(x))∆ci(x)∆x

= λ̄i + kψ′′(kλ−1
i ci(x))∇ci(x)∆x, i∈I0(y).

Let c0(x) be the vector-function associated with “small” Lagrange multiplier,
∇c0(x) = J(c0(x)) the correspondent Jacobian, λ0 = (λi, i∈I0(y)) is vector of
“small” Lagrange multipliers and ∆λ0 = (λi, i∈I0(y)) is the correspondent dual
Newton direction. Then (6.6) can be rewritten as follows:

(6.7) −kΨ′′(kλ−1
0 c0(x))∆c0(x)∆x+ ∆λ0 = λ̄0 − λ0,

where

λ̄0 = Ψ′(kλ−1
0 c0(x))λ0,

Ψ′(kλ−1
0 c0(x)) = diag(ψ′(kλ−1

i ci(x)))i∈I0(y),

Ψ′′(kλ−1
0 c0(x)) = diag(ψ′′(kλ−1

i ci(x)))i∈I0(y).

Combining (6.1), (6.6), (6.7) we obtain the following system for finding the
primal-dual direction ∆y = (∆x,∆λ), where ∆λ = (∆λ+,∆λ0) and IB and IS are
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identical matrices in spaces of “big” and “small” Lagrange multipliers:

(6.8) M(x, λ)∆y

=

 ∇2
xxL(x, λ) −∇cT+(x) −∇cT0 (x)
∇c+(x) k−1ϕ′′(1)IB 0

−kΨ′′(kλ−1
0 c0(x))∇c0(x) 0 IS

 ∆x
∆λ+

∆λ0


=

 −∇xL(x, λ)
−c+(x)
λ̄0 − λ0

 .
To guarantee the existence of the primal-dual LT direction ∆y for any (x, λ) ∈

Rn ×Rq
+ we replace the system (6.8) by the following regularized system where In

identical matrix in Rn:

(6.9) Mk(x, λ)∆y

=

 ∇2
xxL(x, λ) + k−1In −∇cT+(x) −∇cT0 (x)

∇c+(x) k−1ϕ′′(1)IB 0
−kΨ′′(kλ−1

0 c0(x))∇c0(x) 0 IS

 ∆x
∆λ+

∆λ0


=

 −∇xL(x, λ)
−c+(x)
λ̄0 − λ0

 .
Finding the primal-dual direction δy from the system (6.9) we call PDLTD(x, λ)

procedure.
Now we are ready to describe the PDLT method.
Step 1: Initialization: We chose an initial primal approximation x0∈Rn, La-

grange multipliers vector λ0 = (1, . . . , 1)∈Rq, penalty parameter k > 0 and vector
of scaling parameters k0 =kλ0. Let ε > 0 be the overall accuracy. We chose pa-
rameters α > 1, 0 < η < 0.5, σ > 0 and 0 < θ < 0.25. Set x := x0, λ = λ0 :=
(1, . . . , 1) ∈ Rm, ν := ν(x, λ), λc := λ0, k := k0.

Step 2: If ν ≤ ε then stop. Output: x, λ.
Step 3: Find direction: (∆x,∆λ) := PDLTD(x, λc), λ := λc. Set x̂ := x+ ∆x,

λ̂ := λ+ ∆λ.
Step 4: If ν(x̂, λ̂) ≤ min{ν2−θ, 1 − θ}, set x := x̂, λ := λ̂, ν := ν(x, λ),

k := max{ν−1, k}, Goto Step 2.
Step 5: Decrease t≤1 until L(x+t∆x, λc,k)−L(x, λc,k) ≤ ηt(∆L(x, λc,k),∆x).
Step 6: Set x := x+ t∆x, λ̂ := Ψ′(kλ−1

c c(x))λc.
Step 7: If ‖∆xL(x, λc,k)‖ ≤ σ

k ‖λ̂− λc‖, Goto Step 9.
Step 8: Find direction: (∆x,∆λ) := PDLTD(x, λc), Goto Step 5.
Step 9: If ν(x, λ̂)≤ν2−θ, set λc := λ̂, λ := λc, ν := ν(x, λ), k := max{ν−1, k},

k := (ki = kλ−2
i , i = 1, . . . , q), Goto Step 2.

Step 10: Set k := kα, Goto step 8.
The matrix Mk(y)≡Mk(x, λ) is nonsingular for any (x, λ)∈Rn×Rq

++, λ∈Rq
+ and

any k > 0. Let us consider a vector w = (u, v+, v0). Keeping in mind ψ′′(t) < 0,
convexity f(x), concavity ci(x) and the regularization term k−1In, it is easy to
see that Mk(y)w = 0→w = 0. Therefore M−1

k (y) exists and the primal-dual LT
direction ∆y can be found for any y = (x, λ)∈Rn×Rq

+ and any k > 0.
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It follows from (5.9) that for ∀y/∈Ωε0 there is τ>0 that ν(y)≥τ , therefore from
(5.14) we have k−1 = ν(y)≥τ .

After finding ∆λ+ and ∆λ0 from the second and third system in (6.9) and
substituting their value into the first system we obtain

(6.10) Pk(y)∆x≡Pk(x, λ)∆x = −∇xL(x, λ̄) = −∇xL(x, λ, k),

where

Pk(y) = ∇2
xxL(x, λ) + k−1In

+ k(ϕ′′(1))−1∇cT+(x)∇c+(x)− k∇cT0 (x)Ψ′′(kλ−1
0 c0(x))∇c0(x)

and λ̄ = (λ̄+, λ̄0), where λ̄+ = λ+ − k(ψ′′(1))−1
c+(x), λ̄0 = (λi = ψ′(kλ−1

i ci(x))λi,
i∈I0(y)).

Using the arguments similar to those we used in case of Mk(y) we conclude that
the symmetric matrix Pk(y) is positive definite. Moreover due to k−1≥τ>0 the ma-
trix Pk(y) has uniformly bounded from below mineigval Pk(y)≥τ > 0 ∀y/∈Ωε0 . For
any y∈Ωε0 the mineigvalue Pk(y)≥ρ > 0 due to Debreu’s lemma [7], the standard
second order optimality condition (2.2)–(2.4) and the Lipschitz condition (4.17).
Therefore the primal Newton direction ∆x defined by (6.9) or (6.10) is a descent
direction for minimization L(x, λ,k) in x. Therefore for 0<η≤0.5 we can find
t≥t0>0 that

(6.11) L(x+ t∆x, λ,k)− L(x, λ,k)≤ηt(∇L(x, λ,k),∆x)≤− τtη‖∆x‖22.

On the other hand, due to the boundedness of the primal-dual sequence and
the Lipschitz conditions (4.17) there exists such M̄ > 0 that ||∇xxL(x, λ,k)|| ≤ M̄ .
Hence, the primal sequence generated by Newton’s method x := x+t∆x with t > 0
defined from (6. 11) converges to x̂ = x̂(λ,k) : ∇xL(x̂, λ,k) = ∇xL(x̂, λ̂) = 0.

Under the standard second order optimality condition according to Theorem 4.3
we can find x̄s+1 from (4.15) in finite number of Newton steps and update the
Lagrange multipliers by (4.16). Due to (4.18) after s0 = O(ln ε−1

0 ) updates we find
the primal-dual approximation y∈Ωε0 .

Let 0 < ε << ε0 < 1 be the desired accuracy.
Keeping in mind properties 20c), 20d) of the transformation ψ∈Ψ as well as (5.6),

(5.9) and (5.14) after s1 = O(ln lnε−1) updates we obtain

(6.12) max{||kΨ′′(kλ−1
0 c0(x))||, ||λ̄0 − λ0‖} = o(ε2), i ∈ I0.

For any y∈Ωε0 the term ‖∇c0(x)‖ is bounded. The boundedness of ‖∆x‖ follows
from boundedness of ‖∇xL(x, λ̄)‖ and the fact that Pk(y) has a mineigenvalue
bounded from below by a positive number uniformly in y.

Let us consider the third part of the system (6.9), that is associated with the
“small” Lagrange multipliers

kψ′′(kλ0
−1c0(x))∇c0(x)∆x+ ∆λ0 = λ̄0 − λ0.

It follows from (6.12) that ‖∆λ0‖ = o(ε2). It means that after s = max{s0, s1}
updates the part of the system (6.9) associated with “small” Lagrange multipliers
became irrelevant for the calculation of a Newton direction from (6.9). In fact, the
system (6.9) reduces into the following system:

(6.13) M̄k(x, λ)∆ȳ = b̄(x, λ),
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where ∆ȳT = (∆x,∆λ+), b̄(x, λ)T = (−∇xL(x, λ)− c+(x)), and

M̄k(x, λ) =

[
∇2

xxL(x, λ) + k−1In −∇cT(+)(x)
∇c(+)(x) k−1ϕ′′(1)I

+

]
.

At this point we have y∈Ωε0 , therefore it follows from (5.9) that ν(y)≤M0ε0.
Hence for small enough ε0 > 0 from |λi − λ∗i |≤ε0 we obtain λi≥ν(y), i∈I∗. On
the other hand we have ν(y) > λi = O(ε2), i∈I0, otherwise we obtain ν(y)≤O(ε2)
and from (5.9) follows ‖y − y∗‖ = o(ε2). So, if after s = max{s0, s1} Lagrange
multipliers updates we have not solve the problem with a given accuracy ε > 0
then I+(y) = I∗ and I0(y) = I∗0 = {r + 1, . . . , q} and we continue to perform the
PDLT (5.12)–(5.14) using

M̄k(x, λ) =
[
∇2

xxL(x, λ) + k−1In −∇cT(r)(x)
∇c(r)(x) k−1ϕ′′(1)Ir

]
instead of Nk(·).

Therefore we have

||∆y −∆ȳ|| = ||(M̄−1
k (y)−N−1

∞ (y))b(y)|| ≤ ||M̄−1
k (y)−N−1

∞ (y)||||b(y)||.
On the other hand ‖M̄k(y)−N∞(y)‖ ≤ k−1(1 +ϕ′′(1)). From Lemma 5.3 we have
max{‖M̄−1

k (y)‖, ‖N−1
∞ (y)‖}≤2c0. Keeping in mind(5.9), (5.14) (4.17) we obtain

the following estimation:

(6.14) ‖∆y −∆ȳ‖≤2c02k−1(1 + ϕ′′(1))‖b̄(y)‖

= 2c20ν(y)(1 + ϕ′′(1))‖b̄(y)‖≤2(1 + ϕ′′(1))c20M0L‖y − y∗‖2 = c3‖y − y∗‖2,
where c3 > 0 is independent on y∈S(y∗, ε0).

In other words, by finding ∆y from (6.13) instead of (5.13) we do not compromise
a quadratic rate of convergence of the PDLT method. Therefore the following
theorem takes place.

Theorem 6.1. If the standard second order optimality conditions are satisfied and
the Hessian ∇2f(x) and all Hessians ∇2ci(x), i = 1, . . . , q satisfy Lipschitz con-
dition, then PDLT method generates globally convergent primal-dual sequence that
converges to the primal-dual solution with asymptotic quadratic rate.

7. Concluding remarks

The PDLT method (5.12)–(5.14) is fundamentally different from the Newton LT
multipliers method. The distinct characteristics of the PDLT method is its global
convergence with an asymptotic quadratic rate. The PDLT method combines the
best features of the Newton LT method and the Newton method for the Lagrange
system of equations corresponding to the active constraints. At the same time the
PDLT method is free from their critical drawbacks. In the intial phase the PDLT
method performs similar to Newton’s method for LT minimization followed by La-
grange multipliers and scaling parameters update. Such method converges under a
fixed penalty parameter. This allows us to reach the ε0-neighborhood of the primal-
dual solution in O(lnε−1

0 ) Lagrange multipliers update without compromising the
condition number of the LT Hessian.

On the other hand, once in the neighborhood of the primal-dual solution, the
penalty parameter, which is inversely proportional to the merit function, grows ex-
tremely fast. Again, the unbounded increase of the scaling parameter at this point
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does not compromise the numerical stability, because instead of uncounstrained
minimization the PDLT solves the primal-dual LT system. Moreover, the primal-
dual direction ∆y becomes very close to the Newton direction (see(6.14)) for the
Lagrange system of equations corresponding to the active constraints. This guar-
antees the asymptotic quadratic convergence.

The situation reminds the one of Newton’s method with steplength for uncon-
strained smooth optimization.

The way we regularize the Lagrangian Hessian (see (6.9)) allows us on the one
hand to guarantee the global convergence, on the other hand to avoid compromising
an asymptotic quadratic rate of convergence.

Several issues remain for future research. First, the neighborhood of the primal-
dual solution where the quadratic rate of convergence occurs needs to be charac-
terized using parameters that measure the nondegeneracy of the constrained opti-
mization problems.

Second, the value of the scaling parameter k0 > 0 is a priori unknown and
depends on the condition number (see [17]) measuring the nondegeneracy of a con-
strained optimization problem. This number could be expressed using parameters
of a constrained optimization problem at the solution, which are obviously un-
known. Therefore it is important to find an efficient way to change the penalty
parameter k > 0 using the merit function value.

Third, it is important to understand to what extent the PDLT method can be
used in the non-convex case. In this regard recent results from [15] together with
local convexity properties of the LT that follows from Debreu’s lemma [7] may play
an important role.

Fourth, numerical experiments using various versions of the primal-dual NR
methods produce very encouraging results (see [9], [21] and [21]). On the other
hand PDLT method has certain specific features that requires more numerical work
to understand better its practical efficiency.
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