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Abstract

A class Ψ of strictly concave and twice continuously differentiable functions ψ : R → R

with particular properties is used for constraint transformation in the framework of

a Nonlinear Rescaling (NR) method with “dynamic” scaling parameter updates. We

show that the NR method is equivalent to the Interior Quadratic Prox method for the

dual problem in a rescaled dual space.

The equivalence is used to prove convergence and to estimate the rate of convergence

of the NR method and its dual equivalent under very mild assumptions on the input

data for a wide class Ψ of constraint transformations. It is also used to estimate the

rate of convergence under strict complementarity and under the standard second order

optimality condition.

We proved that for any ψ ∈ Ψ, which corresponds to a well-defined dual kernel

ϕ = −ψ∗, the NR method applied to LP generates a quadratically convergent dual

sequence if the dual LP has a unique solution.
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1 Introduction

The intimate relationship between multiplier methods based on Quadratic Augmented

Lagrangians [10], [25] and Quadratic Prox methods for the dual problem [14], [16] was

established by R.T. Rockafellar in the 70’s (see [26]–[28]).

In this paper we show that a similar relationship exists between Nonlinear Rescaling

multiplier methods, with “dynamic” scaling parameter updates (see [2], [4], [21], [30]),

and Interior Quadratic Prox methods for the dual problem in the rescaled dual space.

We consider a class Ψ of monotone increasing, concave and sufficiently smooth

functions ψ : R → R with particular properties. We use the functions to trans-

form constraints of a given constrained optimization problem into an equivalent set of

constraints. The transformation is scaled by a vector of positive scaling parameters,

one for each constraint. The unconstrained minimization of the Lagrangian for the

equivalent problem in the primal space followed by both the Lagrange multipliers and

scaling parameters update forms the general NR multiplier method. We update the

scaling parameter vector by the formula suggested by P. Tseng and D. Bertsekas for

the exponential multiplier method [30].

It is well known that the NR multiplier method with “dynamic” scaling parameters

update leads to the Prox method with second order ϕ-divergence distance for the dual

problem (see [2], [4], [21], [30]). It is also well known that the convergence analysis

of the NR method with “dynamic” scaling parameter updates and its dual equiva-

lent turned out to be rather difficult, even for a particular exponential transformation

(see [30]). The first convergence result for the NR method with “dynamic” scaling

parameter updates was obtained by A. Ben-Tal and M. Zibulevsky [4]. They proved

that, for a particular class of constraint transformations, the primal and the dual se-

quences generated by NR type methods are bounded and any convergent primal-dual

subsequence converges to the primal-dual solution. The result in [4] was extended

by A. Auslender et al. in [2], establishing that the inexact proximal version of the

multiplier method with “dynamic” scaling parameter updates generates a bounded se-

quence with every limit point being an optimal solution. Moreover, for a particular
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kernel ϕ(t) = 0.5ν(t−1)2+µ(t−ln t−1), which is a regularized logarithmic MBF kernel

(see [23]), the authors in [2] proved the global convergence of the dual sequence and

established under very mild assumptions on the input data that the rate of convergence

is O ((ks)−1).

The regularization, which provides the strong convexity of the dual kernel, was

an important element in the analysis given in [2]. Unfortunately, such a modification

of the dual kernel in some instances leads to substantial difficulties when it comes to

finding the primal transformation, which is a Fenchel conjugate for the dual kernel.

For example, in case of the exponential transformation, it leads to solving a transcen-

dental equation. Therefore, the results of [2] cannot be applied for the exponential

multiplier method [30]. In case of the logarithmic MBF kernel, there is a closed form

solution for the corresponding equation, but the primal transformation (see Section 7

in [2]) is substantially different from the original logarithmic MBF transformation [19],

which is proven to be very efficient numerically (see [3], [6], [17], [22]). In general, the

regularization of the dual kernel changes substantially the properties of the original

transformation, which are critical for convergence and rate of convergence of the NR

methods.

Therefore, in this paper we consider an alternative approach. We guarantee the

strong convexity of the dual kernels on IR+ by a slight modification of the wide class

of well known primal transformations ψ ∈ Ψ, using the “gluing” idea (see for example

[5]). Such a modification makes the primal transformation well defined on IR, pro-

vides the original transformations with important properties and allows us to show

that eventually only original transformations are responsible for convergence, rate of

convergence and numerical efficiency of the NR method.

Our first contribution is the new convergence proof and the rate of convergence

estimate of the general NR method for a wide class of transformations ψ ∈ Ψ, under

very mild assumptions on the input data. The key component of the convergence proof

is the equivalence of the NR method to an Interior Quadratic Prox method for the dual

problem.

We prove that under strict complementarity conditions, the NR method converges
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with rate o ((ks)−1) . Such an estimate is typical for the Classical Quadratic Prox

method (see [9] and references therein), where k is the penalty parameter and s is the

number of steps. This is our second contribution. We show also that under the stan-

dard second order optimality condition, the NR method converges with Q-linear rate

without unbounded increase of the scaling parameters, which correspond to the active

constraints. This means that a Q-linear rate can be achieved without compromising

the condition number of the Hessian of the Lagrangian for the equivalent problem. We

introduced a stopping criterion that allows us to replace the primal minimizer by an

approximation and to retain the Q-linear rate of convergence.

Our third contribution is the quadratic rate of convergence of the NR method with

“dynamic” scaling parameter updates for Linear Programming (LP) problems. We

proved that for any ψ ∈ Ψ, that corresponds to the well defined dual kernel, the NR

method converges with quadratic rate, under the assumption that one of the dual LPs

has a unique solution.

We also provide numerical results, which are consistent with the theory.

The paper is organized as follows. In the second section, we state the problem and

describe the basic assumptions on the input data. In the third section, we introduce a

class Ψ of smooth, strictly concave transformations ψ : R → R with special properties.

We consider their Fenchel conjugate ϕ∗(s) = inf
t
{st−ψ(t)} and establish properties of

the dual kernels ϕ = −ψ∗ that play the key role in our analysis. We also describe the

NR method and prove its equivalence to the Interior Quadratic Prox method for the

dual problem in the rescaled dual space. In Section 4, we establish convergence and

estimate the rate of convergence for the NR method under very mild assumptions on the

input data. In Section 5, we establish the rate of convergence of the NR method under

the strict complementarity condition and under the standard second order optimality

condition. In Section 6, we establish quadratic convergence of the NR method for

LP problems for a wide class of transformations ψ ∈ Ψ, which correspond to the well

defined kernels ϕ ∈ϕ. In Section 7, we provide numerical results, which support the

theory for both the NLP and LP calculations. We conclude the paper by discussing

issues related to future research.
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2 Statement of the Problem and Basic Assump-

tions

Let f : IRn → IR1 be convex and all ci : IRn → IR1, i = 1, . . . , q be concave and smooth

functions. We consider a convex set Ω = {x ∈ IRn
+ : ci(x) ≥ 0, i = 1, . . . , q} and the

following convex optimization problem

(P) x∗ ∈ X∗ = Argmin{f(x)|x ∈ Ω}

We assume that:

A: The optimal set X∗ is not empty and bounded.

B: The Slater’s condition holds, i.e., there exists x̂ : ci(x̂) > 0, i = 1, . . . , q.

We consider the Lagrangian L(x, λ) = f(x)−∑q
i=1 λici(x), the dual function d(λ) =

inf
x∈IRn L(x, λ) and the dual problem

(D) λ ∈ L∗ = Argmax{d(λ)|λ ∈ IRq
+}

It follows from B that the Karush-Kuhn-Tucker’s (K-K-T’s) conditions hold true and

the dual optimal set

L∗ =

{

λ ∈ IRm
+ : ∇f(x∗) −

q
∑

i=1

λi∇ci(x∗) = 0, x∗ ∈ X∗

}

(2.1)

is bounded.

3 Nonlinear Rescaling - Interior Quadratic Prox

We consider a class Ψ of twice continuously differentiable functions ψ : (−∞,∞) → R

with the following properties

1o ψ(0) = 0
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2o a) ψ′(t) > 0, b) ψ′(0) = 1, c) ψ′(t) ≤ at−1, ∀ t ∈ (0,∞), a > 0

3o −m−1 ≤ ψ′′(t) < 0, ∀ t ∈ (−∞,∞)

4o ψ′′(t) ≤ −M−1, ∀ t ∈ (−∞, 0] and 0 < m < M <∞.

5o −ψ′′(t) ≥ 0.5t−1ψ′(t), ∀ t ∈ [1,∞).

Several examples of ψ ∈ Ψ are given at the end of this section.

For any given vector k = (k1, . . . , kq) ∈ IRq
++ due to 1o and 2o (a) we have

ci(x) ≥ 0 ⇔ k−1
i ψ(kici(x)) ≥ 0, i ≡ 1 . . . , q . (3.1)

Therefore, the problem

x∗ ∈ X∗ = Argmin{f(x)/k−1
i ψ(kici(x)) ≥ 0, i = 1, . . . , q} (3.2)

is equivalent to the primal problem (P ). The Lagrangian L : IRn × IRq
++ × IRq

++ → R

for the equivalent problem, which is given by formula

L(x, λ,k) = f(x) −
q
∑

i=1

λik
−1
i ψ(kici(x))

is our main tool.

We are ready to describe the NR method. Let (λ0,k0) ∈ IRq
++ × IRq

++, for example,

we can take k > 0, λ0 ∈ IRq
++ and k

0 = (k0
1, . . . , k

0
q) : k0

i = k/λ0
i , i = 1, . . . , q. The

NR method generates three sequences {xs} ⊂ IRn, {λs} ⊂ IRq
++, {ks} ⊂ IRq

++ by

formulas

xs+1 = arg min{L(x, λs,ks)/x ∈ IRn} (3.3)

λs+1
i = λs

iψ
′(ks

i ci(x
s+1)) (3.4)

ks+1
i = k(λs+1

i )−1, i = 1, . . . , q . (3.5)

The minimizer xs+1 in (3.3) exists for any λs ∈ IRq
++ and k

s ∈ IRq
++ due to the

boundedness of X∗, convexity f, concavity ci and property 40 of ψ ∈ Ψ. It can be
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proven using consideration similar to those in [1]. So the NR method (3.3)-(3.5) is well

defined.

Our main motivation is to understand from a general view point what kind of

properties of the original transformation ψi ∈ Ψ are responsible for convergence and

the rate of convergence of the NR method (3.3)-(3.5).

First, we show that properties of 30 and 40 are critical for both theoretical analysis

and numerical performance. On the other hand, for all well known transformations

including exponential, logarithmic, hyperbolic and parabolic MBF as well as for those

related to the smoothing technique [21], at least one of these properties is not satisfied.

This is, in our opinion, the main source of difficulties for both theoretical analysis and

numerical performance of the NR methods.

Second, we show that a slight modification of the classical transformations guaran-

tees properties 30 and 40. Moreover, it became clear from the convergence proof that

such modification does not affect the original transformations, because practically only

the original transformations govern the NR method (3.3)-(3.5).

Third, the critical part of our analysis is based on the properties of the dual kernel

ϕi = −ψ∗
i , induced by 30 and 40.

Fourth, the main ingredient of the convergence proof is the equivalence of the NR

method (3.3)-(3.5) to the Interior Quadratic Prox (IQP) for the dual problem.

Fifth, the equivalence is also important for establishing the rate of convergence of

the NR method for both convex and linear optimization under some extra assumptions

on the input date.

Along with ψ ∈ Ψ, we consider the Fenchel conjugate ψ∗(s) = inf
t
{st − ψ(t)}. It

follows from 4o that limt→−∞ ψ′(t) = ∞. Therefore, for any 0 < s <∞ due to 3o there

exist ψ′−1. Thus, the equation

(st− ψ(t))′t = s− ψ′(t) = 0
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has a unique solution for t, i.e., t(s) = ψ′−1(s). Using the well known formula ψ′−1 = ψ∗′

and s = ψ′(t) we obtain the following identity

s ≡ ψ′(ψ∗′(s)) . (3.6)

With each ψ ∈ Ψ we associate a smooth, strongly convex and nonnegative function

ϕ(s) = −ψ∗(s) which is defined together with its derivatives on (0,∞). So, with the

class Ψ of constraints transformations we associate the classϕ of barrier type kernels

ϕ : R+ → R+.

It is well known (see [2],[4],[21],[30]) that the NR method (3.3)-(3.5) is equivalent

to the following prox method for the dual problem

λs+1 = argmax
{

d(λ) − k−1D(λ, λs)/λ ∈ IRq
}

(3.7)

where the second order ϕ-divergence distance function D : IRq
+ × IRq

++ → R+ is given

by formula D(u, v) =
∑

v2
iϕ(ui/vi). The function ϕ : IR++ → R+ is the kernel of the

ϕ-divergence distance function D(u, v). Also, in view of lims→0 ϕ
′(s) → −∞ we have

λs+1 ∈ IRq
++. So, the Prox method (3.7) is an Interior Prox method with second order

ϕ-divergence distance function D(u, v). Now we will prove that the NR (3.3)-(3.5)

method is equivalent to IQP for the dual problem.

Theorem 3.1 If (P) is a convex programming problem and the assumptions A and

B are satisfied, then for any given k > 0 and any given pair (λ0,k0) ∈ IRq
++ × IRq

++

the NR method (3.3)–(3.5) is equivalent to the Interior Quadratic Prox method for the

dual problem.

Proof. From (3.4), 2ob) and the mean value formula we obtain

λs+1
i − λs

i = λs
i (ψ

′(ks
i ci(x

s+1)) − ψ′(0))

= λs
ik

s
iψ

′′(θs
i k

s
i ci(x

s+1))ci(x
s+1)

= λs
ik

s
iψ

′′
[s,i](·)ci(xs+1), i = 1, . . . , q

where 0 < θs
i < 1. Using (3.5) we can rewrite the multiplicative formula (3.4) in an

additive form

λs+1 = λs + kΨ′′
[s](·)c(xs+1) (3.8)
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where Ψ′′
[s](·) = diag (ψ′′

[s,i](·))
q
i=1. The equation (3.8) can be rewritten as follows

−c(xs+1) − k−1(−Ψ′′
[s](·))−1(λs+1 − λs) = 0 . (3.9)

Keeping in mind −c(xs+1) ∈ ∂d(λs+1) we can view the equation (3.9) as optimality

criteria for the vector λs+1 in the following problem:

λs+1 = arg max

{

d(λ) − 1

2
k−1

q
∑

i=1

(−ψ′′
[s,i](·))−1(λi − λs

i )
2/λ ∈ IRq

}

= arg max
{

d(λ) − 1

2
k−1‖λ− λs‖2

Rs
/λ ∈ IRq

}

, (3.10)

where Rs = (−Ψ′′
[s](·))−1. In other words, the NR method is equivalent to the Quadratic

Prox method in the rescaled from step to step dual space. At the same time, the

Quadratic Prox (3.10) produces a positive dual sequence {λs} ⊂ IRq
++. Therefore,

(3.10) is, in fact, an Interior Quadratic Prox for the dual problem in the rescaled dual

space. The properties of the kernel ϕ ∈ ϕ are playing the key role in our further

analysis. Therefore we start by characterizing the class ϕ .

Theorem 3.2 The kernels ϕ ∈ ϕ are convex, twice continuously differentiable and

possess the following properties

1. ϕ(s) ≥ 0, ∀ s ∈ (0,∞) and mins≥0 ϕ(s) = ϕ(1) = 0

2. (a) lim
s→0+

ϕ′(s) = −∞, (b) ϕ′(s) is monotone increasing, and (c) ϕ′(1) = 0.

3. (a) ϕ′′(s) ≥ m > 0, ∀ s ∈ (0,∞), (b) ϕ′′(s) ≤M <∞, ∀ s ∈ [1,∞).

Proof.

1) Due to concavity ψ(t), ψ(0) = 0 and ψ′(0) = 1 for any 0 < s < 1 there is

t > 0 : ψ(t) > st. Therefore, ψ∗(s) = inf
t
{st − ψ(t)} < 0, ∀ s ∈ (0, 1). For the

same reasons, for any given 1 < s < ∞, there is t < 0 : ψ(t) > st. Therefore,

ψ∗(s) < 0, ∀ s ∈ (1,∞). For s = 1 due to 2o b), we have ψ∗(1) = 0. Thus,

ϕ(s) = −ψ∗(s) ≥ 0, ∀ s ∈ (0,∞) and ϕ(1) = 0.
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2) From the definition of ϕ(s) and 2o c) follows lim
s→0+

ϕ′(s) = −∞. The monotonicity

ϕ′(s) follows directly from the strong convexity of ϕ(s), which we will prove later.

From 2o b) we have ϕ′(1) = 0. So, min{ϕ(s)/0 < s <∞} = ϕ(1) = 0.

3) By differentiating the identity (3.6) we obtain

1 = ψ′′(ψ∗′(s)) · ψ∗′′(s) .

Using again t = ψ′−1(s) = ψ∗′(s) we have

ψ∗′′(s) = [ψ′′(t)]−1 (3.11)

From 3o we have [−ψ′′(t)]−1 ≥ m. Therefore, using (3.11) we obtain

ϕ′′(s) = −ψ∗′′(s) = [−ψ′′(t)]−1 ≥ m, ∀ s ∈ (0,∞) .

From 4o we have [−ψ′′(t)]−1 ≤ M . Using again (3.11) we obtain ϕ′′(s) ≤ M , ∀s ∈
[1,∞). The proof is complete.

As we pointed out earlier, several well known transformations (see [13], [19]-[21],

[23]) do not satisfy 3o or 4o.

Let us consider some of them.

Exponential [13]: ψ̂1(t) = 1 − e−t

Logarithmic MBF [19]: ψ̂2(t) = ln(t+ 1)

Hyperbolic MBF [19]: ψ̂3(t) = t(t+ 1)−1

Log-sigmoid [21]: ψ̂4(t) = 2(ln 2 + t− ln(1 + et))

Modified CHKS [21]: ψ̂5(t) = t−
√
t2 + 4η + 2

√
η η > 0.

The transformations ψ̂1–ψ̂3 do not satisfy 3o (m = 0), while the transformations ψ̂4

and ψ̂5 do not satisfy 4o (M = ∞). However, a slight modification of ψ̂i(t), i = 1, . . . , 5
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leads to transformations which satisfy 1o–5o. We consider −1 < τ < 0 and define the

modified transformations ψi : R → R as follows

ψi(t) :=











ψ̂i(t), t ≥ τ

qi(t), t ≤ τ
(3.12)

where qi(t) = ait
2 + bit + ci and ai = 0.5ψ̂′′

i (τ), bi = ψ̂′
i(τ) − τψ̂′′

i (τ), ci = ψ̂i(τ) −
τψ̂′

i(τ)+0.5τ 2ψ̂′′
i (τ). The coefficients ai, bi, ci we found by solving the following system

for ai, bi, ci

ψ̂i(τ) = qi(τ), ψ̂
′
i(τ) = q′i(τ), ψ̂

′′
i (τ) = q′′i (τ) .

So, the transformations given by (3.12) are twice continuously differentiable, strictly

concave on R and satisfy 1o–5o, i.e. ψi ∈ Ψ.

The truncated logarithmic MBF ψ2(t) given by formula (3.12) was successfully used

(see [3], [5], [6], [17]) for solving large-scale real world NLP problems, including the

COPS set (see [22]).

For transformations ψ ∈ Ψ given by (3.12), we consider their Fenchel conjugate

functions

ψ∗
i (s) :=















ψ̂∗
i (s), s ≤ ψ̂′

i(τ)

q∗i (s) = (4ai)
−1(s− bi)

2 − c, s ≥ ψ̂′
i(τ) .

(3.13)

The class ϕ = {ϕ = −ψ∗ : R+ → R+}, where ψ∗ is defined by (3.13) consists of

kernels ϕ with properties established in Theorem 3.2.

On the other hand, the following kernels

ϕ̂1(s) = s ln s+ 1 − s

ϕ̂2(s) = − ln s+ s− 1

ϕ̂3(s) = −2
√
s+ s+ 1

ϕ̂4(s) = (2 − s) ln(2 − s) + s ln s

ϕ̂5(s) = −2
√
η
(

√

(2 − s)s− 1
)

that correspond to original transformations ψ̂1–ψ̂5 do not satisfy 3(a) and 3(b) because

either m = 0 or M = ∞. We consider ϕi(s) = −ψ∗
i (s), i = 1, . . . , 5. The following

statement can be verified directly.
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Proposition 3.3 Transformations ψ1–ψ5 defined by (3.12) satisfy properties 1o–5o and

correspondent kernels ϕ1–ϕ5 possess all properties established in Theorem 3.2.

We will call the kernel ϕ ∈ϕ well defined if 0 < ϕ(0) <∞. Assuming t ln t = 0 for

t = 0, we can see that the kernels ϕ1 and ϕ3–ϕ5 are well defined, while the logarithmic

MBF kernel ϕ2 is not well defined.

4 Convergence of the NR Method

In this section, we present a new convergence proof and estimate the rate of convergence

for a wide class of constraint transformation ψ ∈ Ψ under very mild assumption on the

input data. The important ingredients of the convergence proof are the equivalence of

the NR method (3.3)–(3.5) to Interior Quadratic Prox (3.10) and to the Prox method

(3.7). The critical factors in the convergence proof are properties 3(a) and 3(b) (see

Theorem 3.2) of the dual kernel. The proof extends one given in [21] for the special

case of Log-Sigmoid transformation.

Let d = d(λ∗) − d(λ0), the dual level set Λ0 = {λ ∈ IRq
+ : d(λ) ≥ d(λ0)} is

bounded due to concavity of d(λ) and boundedness of L∗ (see Corollary 20 in [8]),

L0 = max{max1≤i≤q λi : λ ∈ Λ0}, I−l = {i : ci(x
l) < 0}, I+

l = {i : ci(x
l) ≥ 0}. We

consider the maximum constraints violation

vl = max{−ci(xl)/i ∈ I−l }

and the upper bound for the duality gap

dl =
q
∑

i=1

λl
i|ci(xl)| ≥

q
∑

i=1

λl
ici(x

l)

at the step l. Let v̄s = min1≤l≤s vl, d̄s = min1≤l≤s dl. For a bounded closed set Y ∈ IRn

and y0∈̄Y we consider distance ρ(y0, Y ) = min{||y0 − y||/y ∈ Y }.

Remark 4.1. By adding one extra constraint c0(x) = N − f(x) ≥ 0 from Assump-

tion A and Corollary 20 in [8] follows the boundedness of Ω. For N > 0 large enough

the extra constraint does not affect the solution.
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Theorem 4.1 If the standard assumption A and B are satisfied, then

1) the dual sequence {λs} is monotone increasing in value, bounded and the following

estimation

d(λs+1) − d(λs) ≥ mk−1‖λs+1 − λs‖2

holds true.

2) the primal sequence {xs} is bounded, liml→∞ vl = 0, and the following estimation

holds

d(λs+1) − d(λs) ≥ kmM−2
∑

i∈I
−

s+1

c2i (x
s+1)

3) for the constraints violation and the duality gap the following estimations

v̄s ≤ O
(

(sk)−0.5
)

, d̄s ≤ O
(

(sk)−0.5
)

hold

4) the primal-dual sequence {xs, λs} converges to the primal-dual solution in value,

i.e.

f(x∗) = lim
s→∞

f(xs) = lim
s→∞

d(λs) = d(λ∗) .

and

lim
s→∞

ρ(xs, X∗) = 0, lim
s→∞

ρ(λs, L∗) = 0.

Proof. 1) The dual monotonicity follows immediately from (3.10), i.e.,

d(λs+1) − 1

2
k−1||λs+1 − λs||2Rs

≥ d(λs) − 1

2
k−1||λs − λs||2Rs

= d(λs) . (4.1)

Taking into account ||λs+1 − λs||2Rs
> 0 for λs+1 6= λs, we obtain

d(λs+1) ≥ d(λs) +
1

2
k−1||λs+1 − λs||2Rs

> d(λs) . (4.2)

If d(λs+1) = d(λs), then ||λs+1 − λs||2Rs
= 0 ⇒ λs+1 = λs. Due to the formula (3.4) for

the Lagrange multipliers update, λs+1
i = λs

i leads to ci(x
s+1) = 0, i = 1, . . . , m. Hence

for the pair (xs+1, λs+1), the K-K-T’s conditions hold. Therefore, xs+1 = x∗ ∈ X∗,
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λs+1 = λ∗ ∈ L∗. In other words, we can either have d(λs+1) > d(λs) or λs+1 = λs = λ∗

and xs+1 = x∗. Recall that due to the boundedness of L∗ and concavity of the dual

function d(λ) the set Λ0 = {λ : d(λ) ≥ d(λ0)} is bounded and so is the dual sequence

{λs} ⊂ Λ0. Let us find the lower bound for d(λs+1)−d(λs). From the concavity of d(λ)

and −c(xs+1) ∈ ∂d(λs+1) we obtain d(λ) − d(λs+1) ≤ (−c(xs+1), λ− λs+1) or

d(λs+1) − d(λ) ≥ (c(xs+1), λ− λs+1) . (4.3)

Keeping in mind 3o, we conclude that ψ′−1 exists. Using the formula (3.4), we have

ci(x
s+1) = (ks

i )
−1ψ′−1(λs+1

i /λs
i ) ,

then using ψ′−1 = ψ∗′, we obtain

ci(x
s+1) = (ks

i )
−1ψ∗′(λs+1

i /λs
i ), i = 1, . . . , m. (4.4)

Using ψ∗′(1) = ψ∗′(λs
i/λ

s
i ) = 0 and (4.3) for λ = λs we obtain

d(λs+1) − d(λs) ≥
q
∑

i=1

(ks
i )

−1

(

ψ∗′

(

λs+1
i

λs
i

)

− ψ∗′

(

λs
i

λs
i

))

(λs
i − λs+1

i ) . (4.5)

Using the mean value formula we have

ψ∗′

(

λs+1
i

λs
i

)

− ψ∗′

(

λs
i

λs
i

)

= −ψ∗′′(·)(λs
i )

−1(λs
i − λs+1

i ) = ϕ′′(·)(λs
i )

−1(λs
i − λs+1

i ) .

Therefore we can rewrite (4.5) as follws

d(λs+1) − d(λs) ≥
q
∑

i=1

(ks
iλ

s
i )

−1ϕ′′(·)(λs
i − λs+1

i )2.

Keeping in mind the update formula (3.5) and 3(a) from Theorem 3.2, we obtain the

following inequality

d(λs+1) − d(λs) ≥ mk−1‖λs − λs+1‖2, (4.6)

which is typical for the Quadratic Prox method (see [9]).

2) We start with the set I−l+1 = {i : ci(x
l+1) < 0} of constraints that are violated at

the point xl+1. Let’s consider i ∈ I−l+1. Using ψ∗′(1) = ψ∗′(λl
i/λ

l
i) = 0, the mean value

formula, the equation (4.4), the dual kernel property 3(b) from Theorem 3.2 and the

update formula (3.5), we obtain

−ci(xl+1) = (kl
i)

−1

[

ψ∗′

(

λl
i

λl
i

)

− ψ∗′

(

λl+1
i

λl
i

)]

=
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(

λl
ik

l
i

)−1
(−ψ∗′′(·)) (λl+1

i − λl
i) ≤ k−1ϕ′′(·)|λl+1

i − λl
i| ≤ k−1M |λl+1

i − λl
i|

or

|λl+1
i − λl

i| ≥ kM−1(−ci(xl+1)) , i ∈ I−l+1.

Combining the last bound with (4.6) we obtain

d(λl+1) − d(λl) ≥ kmM−2
∑

i∈I
−

l+1

c2i (x
l+1) . (4.7)

3) Let us consider vl+1 = maxi∈I
−

l+1

(−ci(xl+1))—the maximum constraints violation

at the step l + 1, then from (4.7) we have

d(λl+1) − d(λl) ≥ kmM−2v2
l+1. (4.8)

Summing up (4.8) from l = 1 to l = s we obtain

d = d(λ∗) − d(λ0) ≥ d(λs+1) − d(λ0) ≥ kmM−2
s
∑

l=0

v2
l+1 .

Therefore, vl → 0. Remembering that v̄s = min{vl|1 ≤ l ≤ s}, we obtain

v̄s ≤M
√
dm−1(ks)−0.5 = O

(

(ks)−0.5
)

. (4.9)

The primal asymptotic feasibility follows from vl → 0.

Using arguments similar to those we used to prove Theorem 2 in [21] we can show

the estimate (4.9) for the duality gap d̄s.

4) It follows from (4.6) that the sequence {d(λs)} is monotone icreasing and d(λs) ≤
f(x∗), s ≥ 1. Therefore there is lims→∞ d(λs) = d(λ∞) ≤ f(x∗) and again from (4.6)

we have

lim
s→∞

‖λs+1 − λs‖ = 0. (4.10)

Due to concavity of d(λ) and boundedness of L∗, the sequence {λs} is bounded (see

Corollary 20 in [8]). Therefore there is a converging subsequence {λsl} that

lim
sl→∞

λsl = lim
sl→∞

λsl+1 = λ̄. (4.11)

15



From assumption A, Remark 4.1, Corollary 20 in [8] and vl → 0 follows the bound-

edness of the primal sequence {xs}. Without loosing the generality we can assume

that limsl→∞ xsl+1 = x̄. We consider two sets of indices I+ = {i : λ̄i > 0} and

I0 = {i : λ̄i = 0}. From (4.11) and (3.5) we have k̄i = limsl→∞ ksl

i = k limsl→∞(λsl

i )−1 =

k(λ̄i)
−1, i ∈ I+. From (3.4) we obtain

ci(x
sl+1) = k−1λs+l

i ψ′−1
(λsl+1

i /λsl

i ) = −k−1λs+l
i ϕ′−1

(λsl+1
i /λsl

i ). (4.12)

Passing (4.12) to the limit, we obtain

ci(x̄) = −k−1λ̄iϕ
′(1) = 0, i ∈ I+ (4.13)

From vs → 0 we obtain limsl→∞ ci(x
sl+1) = ci(x̄) ≥ 0, i ∈ I0. In view of (3.3)-

(3.4) we have ∇xL(xsl+1, λsl,ksl) = ∇xL(xsl+1, λsl+1) = 0. Therefore for any limit

point (x̄, λ̄) the KKT’s conditions are satisfied. Hence, x̄ = x∗, λ̄ = λ∗. From the

dual monotonicity, we obtain that the entire dual sequence {λs} converges to the dual

solution in value, i.e. lims→∞ d(λs) = d(λ∗) . Using considerations similar to those

we used to prove (4.13) we obtain the asymptotic complementarity conditions for the

entire primal-dual sequence, i.e.

lim
sl→∞

λs
i ci(x

s) = 0, i = 1, . . . , q (4.14)

From (4.14) we obtain

d(λ∗) = lim
s→∞

d(λs) = lim
s→∞

L(xs, λs) = lim
s→∞

f(xs) = f(x∗) . (4.15)

So we proved the first part of statement 4). The second part of the statement 4) follows

directly from (4.15) boundedness of X∗ = {x ∈ Ω : f(x) ≤ f(x∗)} and L∗ = {λ ∈
IRr

++ : d(λ) ≥ d(λ∗)}, and Lemma 11 (see [18], Chapter 9, §1).

We would like to mention again that the results in part 4) of Theorem 4.1 have

been proven by other means in [4] (see Theorem 1) and [2] (see Theorem 5.1).

Remark 4.2. The estimation (4.7) is the critical part of the convergence proof. It in-

dicates how the NR method (3.3)-(3.5) transforms the primal constraints violation into

the increase of the dual function value. Keeping in mind the dual monotonicity and
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the boundedness of the dual function it became evident from (4.7) that the constraints

violation has to vanish. So the estimation (4.7) simplify substantially the proof of

the primal asymptotic feasibility, which always has been the most difficult part of the

convergence proof. On the other hand, it allows to understand better the pricing mech-

anism of NR method (3.3)-(3.5). We would like to emphasize that for transformations

ψ̂1 − ψ̂5 either m = 0 or M = ∞, which makes the estimation (4.7) trivial and useless.

The modification (3.12) provides properties 3o and 4o for the primal transformation

and properties 3a) and 3b) (see Theorem 3.2) for the dual kernels, which are critical

for the convergence proof. Also, the strong convexity of the dual kernel (property 3a))

allows to prove (4.6), which is another important element of the convergence proof.

Remark 4.3. It follows from (4.7) that for any given τ < 0 and any i = 1, . . . , q the

inequality ci(x
s+1) ≤ τ is possible only for a finite number of steps. So the quadratic

branch in the modification (3.12) can be used only a finite number of times. In fact,

for k > 0 large enough, just once. Therefore, from some point on only original trans-

formations ψ̂1 − ψ̂5 are used in the NR method (3.3)-(3.5) and only kernels ϕ̂1 − ϕ̂5

that correspond to the original transformations ψ̂1–ψ̂5 are used in the Interior Prox

method with ϕ-divergence distance (3.7). Transformations ψ̂1–ψ̂5 for t ≥ τ are infi-

nitely differentiable and so are the Lagrangians L(x, λ,k) if the input data possesses

the correspondent property. This is an important advantage, because it allows to use

the Newton method for primal minimization or for solving the primal-dual system [20].

To the best of our knowledge, the strongest result so far under the assumptions

A and B for the Interior Prox method (3.7) was obtained in [2]. It was proven that

for the regularized MBF kernel ϕ(t) = 0.5ν(t − 1)2 + µ(t − ln t − 1), µ > 0, ν > 0

the method (3.7) produces a convergent sequence {λs} and the rate of convergence in

value is O(ks)−1. In the next section, we strengthen the estimation under some extra

assumptions on the input data.

5 Rate of Convergence

.
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We will say that for the primal-dual sequence {xs, λs}∞s=0, which converges to the

primal-dual solution (x∗, λ∗), the complementarity condition is satisfied in the strict

form if

max{λ∗i , ci(x∗)} > 0, i = 1, . . . , q. (5.1)

Theorem 5.1 If for the primal-dual sequence generated by (3.3)–(3.5) the complemen-

tarity condition is satisfied in strict form (5.1), then for any fixed k > 0 the following

estimation holds true

d(λ∗) − d(λs) = o(ks)−1.

Proof. Recall that I∗ = {i : ci(x
∗) = 0} = {1, . . . , r} is the active constraint set, then

min{ci(x∗) | i∈̄I∗} = σ > 0. Therefore, there is such a number s0 that ci(x
s) ≥ σ

2
,

s ≥ s0, i∈̄I∗. From 2oc) and (3.5) we have

a) λs+1
i = λs

iψ
′(ks

i ci(x
s+1)) ≤ aλs

i (k
s
i ci(x

s+1))−1 = 2a(σk)−1(λs
i )

2 and

b) ks+1
i = k(λs+1

i )−1 ≥ σ

2a
(ks

i )
2 and ks

i → ∞, i∈̄I∗ = {1, . . . , r}. (5.2)

Then,

L(x, λs,ks) = f(x) − k−1
r
∑

i=1

(λs
i )

2ψ(ks
i ci(x)) − k−1

m
∑

i=r+1

(λs
i )

2ψ(ks
i ci(x)) .

Let us estimate the last term. We have

k−1
q
∑

i=r+1

(λs
i )

2ψ(ks
i ci(x)) = k−1

q
∑

i=r+1

(λs
i )

2(ψ(ks
i ci(x)) − ψ(0))

= k−1
q
∑

i=r+1

(λs
i )

2ks
i ci(x)ψ

′(θs
i k

s
i ci(x))

and 0 < θs
i < 1 . For ks

i → ∞ and ci(x) ≥ 0.5σ, we obtain θs
i → 1. Therefore, for s0

large enough and any s ≥ s0, we have θs
i ≥ 0.5. Thus, using 2oc) and (3.5) we obtain

k−1
q
∑

i=r+1

(λs
i )

2ψ(ks
i ci(x)) =

q
∑

i=r+1

λs
i c(x)ψ

′(θs
i k

s
i c(x))

≤ a
q
∑

i=r+1

λs
i c(x)(θ

s
i k

s
i ci(x))

−1

≤ 2a
q
∑

i=r+1

λs
i (k

s
i )

−1 = 2ak−1
q
∑

i=r+1

(λs
i )

2.
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From (5.2) we have

λs+1
i = O(λs

i )
2, i = 1, . . . , r .

So, for s0 large enough and any s ≥ s0, the last term is negligibly small, and instead

of L(x, λ,k) we can consider the truncated Lagrangian for the equivalent problem

L(x, λ,k) := f(x) − ∑r
i=1(k

s
i )

−1(λs
i )ψ(ks

i ci(x)) and the correspondent truncated La-

grangian L(x, λ) := f(x) − ∑r
i=1 λici(x) for the original problem (P). Accordingly,

instead of the original dual function and the second order ϕ-divergence distance, we

consider the dual function d(λ) := infx∈IRn L(x, λ) and the second order ϕ-divergence

distance D2(u, v) :=
∑r

i=1 v
2
iϕ(ui/vi) in the truncated dual space IRr.

For simplicity, we retain the previous notations for the truncated Lagrangians,

for both the original and the equivalent problems, correspondent dual function and

the second order ϕ-divergence distance. Below we will assume that {λs}∞s=1, is the

truncated dual sequence, i.e., λs = (λs
1, . . . , λ

s
r). Let us consider the optimality criteria

for the truncated Interior Prox method

λs+1 = arg max

{

d(λ) − k−1
r
∑

i=1

(λs
i )

2ϕ(λi/λ
s
i ) | λ ∈ IRr

}

.

We have

c(xs+1) + k−1
r
∑

i=1

λs
iϕ

′(λs+1
i /λs

i )ei = 0 , (5.3)

where ei = (0, . . . , 1, . . . , 0) ∈ IRr. Using ψ∗′(1) = ψ∗′(λs
i/λ

s
i ) = 0 we can rewrite (5.3)

as follows

c(xs+1) + k−1
r
∑

i=1

λs
i (ϕ

′(λs+1
i /λs

i ) − ϕ′(λs
i/λ

s
i ))ei = 0 .

Using the mean value formula, we obtain

c(xs+1) + k−1
r
∑

i=1

ϕ′′

(

1 +

(

λs+1
i

λs
i

− 1

)

θs
i

)

(λs+1
i − λs

i )ei = 0 , (5.4)

where 0 < θs
i < 1. We recall that −c(xs+1) ∈ ∂d(λs+1), so (5.4) is the optimality

criteria for the following problem in the truncated dual space

λs+1 = arg max{d(λ) − 0.5k−1‖λ− λs‖2
Rs

| λ ∈ IRr} , (5.5)

where ‖x‖R = xTRx, Rs = diag(rs
i )

r
i=1 and rs

i = ϕ′′

(

1 +
(

λs+1

i

λs

i

− 1
)

θs
i

)

, i = 1, . . . , r.

Due to λs
i → λ∗i > 0, we have lims→∞ λs+1

i (λs
i )

−1 = 1, i = 1, . . . , r. Keeping in mind
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Theorem 3.2 we have

lim
s→∞

rs
i = lim

s→∞
ϕ′′

(

1 +

(

λs+1
i

λs
i

− 1

)

θs
i

)

= ϕ′′(1) ≥ m > 0 .

Therefore, due to the continuity of ϕ′′(·) for s0 > 0 large enough and any s > s0 we

have m ≤ rs
i < 2ϕ′′(1) = m1 and ||Rs|| ≤ m1.

We will show now that the convergence analysis, which is typical for the Quadratic

Prox method (see [9]), can be extended for the Interior Quadratic Prox method (3.10)

in the truncated dual space. From (4.6) we have

d(λ∗) − d(λs) − (d(λ∗) − d(λs+1)) ≥ mk−1‖λs − λs+1‖2

or

vs − vs+1 ≥ mk−1‖λs − λs+1‖2, (5.6)

where vs = d(λ∗) − d(λs) > 0. Using the concavity of d(λ) we obtain

d(λ) − d(λs+1) ≤ (−c(xs+1), λ− λs+1)

or d(λs+1) − d(λ) ≥ (c(xs+1), λ− λs+1) . Using (5.4), we obtain

d(λs+1) − d(λ) ≥ −k−1(Rs(λ
s+1 − λs), λ− λs+1) .

So, for λ = λ∗ we have

k−1(Rs(λ
s+1 − λs), λ∗ − λs+1) ≥ d(λ∗) − d(λs+1) = vs+1

or

k−1(Rs(λ
s+1 − λs), λ∗ − λs) − k−1‖λs+1 − λs‖2

Rs
≥ vs+1.

Hence,

‖Rs‖ · ‖λs+1 − λs‖ · ‖λ∗ − λs‖ ≥ kvs+1

or

‖λs+1 − λs‖ ≥ 1

m1
kvs+1‖λs − λ∗‖−1. (5.7)

From (5.6) and (5.7), it follows that

vs − vs+1 ≥
m

m2
1

kv2
s+1‖λs − λ∗‖−2
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or

vs ≥ vs+1

(

1 +
m

m2
1

kvs+1‖λs − λ∗‖−2

)

.

By inverting the last inequality we obtain

v−1
s ≤ v−1

s+1

(

1 +
m

m2
1

kvs+1‖λs − λ∗‖−2

)−1

. (5.8)

Furthermore, from (5.5) we obtain

d(λs+1) − 0.5k−1‖λs+1 − λs‖2
Rs

≥ d(λ∗) − 0.5k−1‖λ∗ − λs‖2
Rs

or

vs+1 ≤ 0.5k−1‖λs − λ∗‖2
Rs

≤ 0.5k−1m1‖λs − λ∗‖2.

Therefore, m−1
1 kvs+1‖λ∗ − λs‖−2 ≤ 1 or mm−2

1 kvs+1‖λ∗ − λs‖−2 ≤ mm−1
1 < 1.

Let us consider the function (1 + t)−1. It is easy to see that (1 + t)−1 ≤ −0.5t+ 1,

0 ≤ t ≤ 1. Using the last inequality for t = mm−2
1 kvs+1‖λs+1 − λ∗‖−2 from (5.8) we

obtain

v−1
s ≤ v−1

s+1

(

1 − 0.5mm−2
1 kvs+1‖λs+1 − λ∗‖−2

)

or

v−1
i ≤ v−1

i+1 − 0.5mm−2
1 k‖λi+1 − λ∗‖−2, i = 0, . . . , s− 1. (5.9)

Summing up (5.9) for i = 1, . . . , s− 1 we obtain

v−1
s ≥ v−1

s − v−1
0 ≥ 0.5mm−2

1 k
s−1
∑

i=1

‖λi − λ∗‖−2.

By inverting the last inequality we obtain

vs = d(λ∗) − d(λs) ≤ 2m−1m2
1

k
∑s−1

i=0 ‖λi − λ∗‖−2

or

ksvs =
2m−1m2

1

s−1
∑s−1

i=0 ‖λi − λ∗‖−2
.

From ‖λs−λ∗‖ → 0 it follows ‖λs−λ∗‖−2 → ∞. Using the Silverman-Toeplitz theorem

[12], we have lims→∞ s−1∑s
i=1 ‖λi − λ∗‖−2 = ∞. Therefore, there exists αs → 0 such

that

vs = m−1m2
1αs

1

ks
= o

(

(ks)−1
)

. (5.10)
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We completed the proof of Theorem 5.1.

The estimation (5.10) can be strengthened. Under the standard second order opti-

mality conditions, the method NR (3.3)–(3.5) converges with Q-linear rate if k > 0 is

fixed but large enough.

First of all, due to the standard second order optimality conditions, the primal-

dual solution is unique. Therefore, the primal-dual sequence {xs, λs}} converges to the

primal-dual solution (x∗, λ∗), for which the complementarity conditions are satisfied

in a strict form (5.1). Therefore, the Lagrange multipliers for the passive constraints

converge to zero quadratically. From (3.5) we have lims→∞ ks
i = k(λ∗i )

−1, i = 1, . . . , r,

i.e., the scaling parameters, which correspond to the active constraints, grow linearly

with k > 0. Therefore, the technique used in [19], [20] can be applied for the asymptotic

analysis of the method (3.3)–(3.5).

For a given small enough δ > 0, we define the extended neighborhood of λ∗ as

follows

D(λ∗,k, δ) = {(λ,k) ∈ IRm
+ × IRm

+ : λi ≥ δ, |λi − λ∗i | ≤ δki, i = 1, . . . , r; k ≥ k0

0 ≤ λi ≤ kiδ, i = r + 1, . . . , m} .

Proposition 5.2 If f and all ci ∈ C2 and the standard second order optimality con-

ditions hold, then there exists such small δ > 0 and large enough k0 > 0 that for any

(λ,k) ∈ D(·):

1. There exists x̂ = x̂(λ,k) = arg min{L(x, λ,k) | x ∈ IRn} such that

∇xL(x̂, λ,k) = 0

and

λ̂i = λiψ
′(kici(x̂)), k̂i = kλ̂−1

i , i = 1, . . . , m.

2. For the pair (x̂, λ̂) the estimate

max{‖x̂− x∗‖, ‖λ̂− λ∗‖} ≤ ck−1‖λ− λ∗‖ (5.11)

holds and c > 0 is independent on k ≥ k0.
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3. The Lagrangian L(x, λ,k) is strongly convex in the neighborhood of x̂.

Theorem 5.2 can be proven by a slight modification of the correspondent proof in

[19] (see also [20]).

Finding xs+1 requires solving an unconstrained minimization problem (3.3), which

is generally speaking an infinite procedure. To make the multipliers method (3.3)-(3.5)

practical one has to replace xs+1 by and approximation x̄s+1, which can be found by

a finite number of Newton steps. It turns out that if x̄s+1 is used in the formula (3.4)

for the Lagrange multipliers update instead of xs+1 then the bound similar to (5.11)

remtains true.

For a given σ > 0 let us consider the sequence {x̄s, λ̄s,ks} generated by the following

formulas.

x̄ : ‖∇xL(x̄s+1, λ̄s,ks)‖ ≤ σk−1‖Ψ′
(

k(λ̄s)−1c(x̄s+1)
)

λ̄s − λ̄s‖ (5.12)

λ̄s+1 = Ψ′
(

k(λ̄s)−1c(x̄s+1)
)

λ̄s, (5.13)

where

Ψ′
(

k(λ̄s)−1c(x̄s+1)
)

= diag
(

ψ(k(λ̄s
i )

−1ci(x̄
s+1))

)q

i=1

and

k̄
s+1

= (k̄s+1
i = k(λs+1

i )−1, i = 1, . . . , q).

By using arguments similar similar to those in [20], we can prove the following propo-

sition.

Proposition 5.3 If the standard second order optimality conditions hold and the Hes-

sians ∇2f and ∇2ci, i = 1, . . . , m satisfy Lipschitz conditions

‖∇2f(x)−∇2f(y)‖ ≤ L0‖x−y‖, ‖∇2ci(x)−∇2ci(y)‖ ≤ Li‖x−y‖, i = 1, . . . , m (5.14)

then there is k0 > 0 large enough, that for the primal-dual sequence {x̄s, λ̄s} generated by

the formulas (5.12)-(5.13) the following estimations hold true and c > 0 is independent

on k ≥ k0 for s ≥ 0.

‖x̄− x∗‖ ≤ c(1 + σ)k−1‖λ− λ∗‖, ‖λ̄− λ∗‖ ≤ c(1 + σ)k−1‖λ− λ∗‖. (5.15)
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We used the stopping criteria (5.12)for the inner iteration and formula (5.13) for

the Lagrange multipliers update. To measure the distance between the current ap-

proximation y = (x, λ) and the primal-dual solution y∗ = (x∗, λ∗) we use the following

merit function

ν(x, λ) = max {‖∇xL(x, λ)‖, −ci(x), λi|ci(x)|, i = 1, . . . , q} .

It is easy to see that ν(x, λ) = 0 ≡ x = x∗, λ = λ∗. We used the following final stopping

criteria

ν(x, λ) ≤ ε, (5.16)

where ε > 0 the desired accuracy.

In the next section, we apply the NR method (5.1)-(5.3) for Linear Programming.

The convergence under very mild assumption follows from Theorem 4.1. Under the

dual uniqueness, we prove the global quadratic convergence. The key ingredients of

the proof are the A. Hoffman-type lemma ([11], see also [18], Ch. 10, §1) and the

properties of the well defined kernels ϕ ∈ϕ .

6 Nonlinear Rescaling Method for Linear Program-

ming

Let A : IRn → IRm, a ∈ IRn, b ∈ IRm. We assume that

X∗ = Argmin{(a, x) | ci(x) = (Ax− b)i = (ai, x) − bi ≥ 0, i = 1, . . . , q} (6.1)

and

L∗ = Argmax{(b, λ) | ATλ− a = 0, λi ≥ 0, i = 1, . . . , q} (6.2)

are nonempty and bounded.

We consider ψ ∈ Ψ, which corresponds to the well-defined kernel ϕ ∈ ϕ , i.e.,

0 < ϕ(0) <∞.
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The NR method (3.3)–(3.5) being applied to (6.1) produces three sequences {xs} ⊂
IRn, {λs} ⊂ IRq

++ and {ks} ∈ IRq
++:

xs+1 : ∇xL(xs+1, λs,ks) = a−
m
∑

i=1

λs
iψ

′
(

ks
i ci(x

s+1)
)

ai = 0 , (6.3)

λs+1 : λs+1
i = λs

iψ
′
(

ks
i ci(x

s+1)
)

ai = 0 , i = 1, . . . , q (6.4)

k
s+1 : ks+1

i = k(λs+1
i )−1, i = 1, . . . , q . (6.5)

If X∗ and L∗ are bounded, then all statements of Theorem 4.1 are taking place for

the primal-dual sequence {xs, λs} generated by (6.3)–(6.5). In particular,

lim
s→∞

(a, xs) = (a, x∗) = lim
s→∞

(b, λs) = (b, λ∗) .

Using Lemma 5 (see [18], Ch. 10, §1), we can find such α > 0 that

(b, λ∗) − (b, λs) ≥ αρ(λs, L∗) . (6.6)

Therefore, lims→∞ ρ(λs, L∗) = 0.

If λ∗ is a unique dual solution, then the same Lemma 5 guarantees the existence of

α > 0 that the following inequality

(b, λ∗) − (b, λ) = α‖λ− λ∗‖ (6.7)

holds true for ∀λ ∈ L = {λ : ATλ = a, λ ∈ IRm
+}.

Theorem 6.1 If the dual problem (6.2) has a unique solution, then for any well defined

ϕ ∈ ϕ the dual sequence {λs} converges in value quadratically, i.e., there is c > 0

independent on k > 0 that the following estimation

(b, λ∗) − (b, λs+1) ≤ ck−1[(b, λ∗) − (b, λs)]2 (6.8)

holds true.

Proof. It follows from (6.3)–(6.5) that

∇xL(xs+1, λs,ks) = a−
q
∑

i=1

λs+1
i ai = a− ATλs+1 = 0 (6.9)
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and λs+1 ∈ IRm
++. In other words, the NR method generates a dual interior point

sequence {λs}∞s=0.

From (6.9) we obtain

0 = (a−ATλs+1, xs+1) = (a, xs+1) −
q
∑

i=1

λs+1
i ci(x

s+1) − (b, λs+1)

or

(b, λs+1) = L(xs+1, λs+1) .

The multipliers method (6.3)–(6.5) is equivalent to the following Interior Prox for

the dual problem

λs+1 = arg max

{

(b, λ) − k−1
q
∑

i=1

(λs
i )

2ϕ

(

λi

λs
i

)

| ATλ− a = 0

}

. (6.10)

Keeping in mind Remark 4.3, we can assume without restricting the generality that

only kernels ϕi, i = 1, . . . , 5. which corresponds to the original transformations ψ̂1–ψ̂5

are used in the method (6.10). Moreover, we consider only ϕi ∈ ϕ , which are well

defined, i.e. ϕ1, ϕ3–ϕ5.

From (6.10), taking into account λ∗ ∈ IRm
+ and ATλ∗ = a, we obtain

(b, λs+1) − k−1
q
∑

i=1

(λs
i )

2ϕ

(

λs+1
i

λs
i

)

≥ (b, λ∗) − k−1
q
∑

i=1

(λs
i )

2ϕ

(

λ∗i
λs

i

)

.

Keeping in mind k−1∑q
i=1(λ

s
i )

2ϕ
(

λ
s+1

i

λs

i

)

≥ 0, we have

k−1
q
∑

i=1

(λs
i )

2ϕ

(

λ∗i
λs

i

)

≥ (b, λ∗) − (b, λs+1) . (6.11)

Let us assume that λ∗i > 0, i = 1, . . . , r; λ∗i = 0, i = r + 1, . . . , q. Then ϕ
(

λ∗

i

λs

i

)

=

ϕ(0) < ∞, i = r + 1, . . . , q. Keeping in mind ϕ(λs
i/λ

s
i ) = ϕ′(λs

i/λ
s
i ) = 0, i = 1, . . . , r

and using the mean value formula twice, we obtain

k−1
q
∑

i=1

(λs
i )

2ϕ

(

λ∗i
λs

i

)

= k−1





r
∑

i=1

(λs
i )

2

(

ϕ

(

λ∗i
λs

i

)

− ϕ

(

λs
i

λs
i

))

+ ϕ(0)
q
∑

i=r+1

(λ∗i − λs
i )

2



 ≤

k−1





r
∑

I=1

ϕ′′

(

1 + ¯̄θ
s

i θ̄
s
i

λ∗i − λs
i

λs
i

)

(λ∗i − λs
i )

2 + ϕ(0)
q
∑

i=r+1

(λ∗i − λs
i )

2



 ,
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where 0 < θ̄s
i < 1, 0 < ¯̄θ

s

i < 1.

Taking into account the dual uniqueness from (6.6), we obtain lims→∞ λs
i = λ∗i > 0,

i = 1, . . . , r. Therefore, lims→∞ ϕ′′
(

1 + ¯̄θ
s

i θ̄
s
i

λ∗

i
−λs

i

λs

i

)

= ϕ′′(1), i = 1, . . . , r. Hence,

there is s0 > 0 such that for any s ≥ s0 we have m ≤ ϕ′′(·) ≤ m1. Then, for

ϕ0 = max{m1, ϕ(0)}, we obtain

k−1
q
∑

i=1

(λs
i )

2ϕ

(

λ∗i
λs

i

)

≤ ϕ0k
−1‖λ∗ − λs‖2. (6.12)

Combining (6.11) and (6.12) we have

ϕ0k
−1‖λ∗ − λs‖2 ≥ (b, λ∗) − (b, λs+1) . (6.13)

From (6.7) with λ = λs we obtain

‖λs − λ∗‖ = α−1[(b, λ∗) − (b, λs)] .

Therefore, the following estimation

(b, λ∗) − (b, λs+1) ≤ ck−1[(b, λ∗) − (b, λs)]2 (6.14)

holds true with c = ϕ0α
−2 for any s ≥ s0.

It follows from Theorem 4.1 that by taking k > 0 large enough, we can make s0 = 1.

Also one can make the rate of convergence of the NR method for LP superquadratic

by increasing the penalty parameter k > 0 from step to step.

Remark 6.1. Theorem 6.1 is valid for the NR method (6.3)–(6.5) with exponential,

LS, CHKS and hyperbolic MBF transformations because correspondent kernels ϕ1, ϕ3–

ϕ5 are well defined.

7 Numerical Results

The numerical realization of the NR method (3.3)–(3.5) requires the replacement of the

unconstrained minimizer xs+1 by an approximation x̄s+1. We used the overall stopping
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criteria (5.16) with ε = 10−10. To find an approximation x̄s+1 we applied damped

Newton’s method with Armijo steplength rule for minimizing L(x, λs,ks) in x, using

the stopping criteria (5.12).

For the NLP calculations we used the truncated MBF transformation ψ2(t) given

by (3.12) and λ0 = e = (1, . . . , 1) ∈ IRq
++, k = 102, k

0 = 102e as starting Lagrange

multipliers and scaling parameters vectors. For LP calculations we used truncated

log-sigmoid transformation ψ4(t) given by (3.12). Also for LP calculations we used

LIPSOL solver (see [32]) to find the first primal-dual approximation with one digit

of accuracy for the duality gap, i.e. we find the interior primal-dual approximation,

for which
∑q

i=1 λici(x) ≤ 0.1. We show in the tables below the duality gap and the

infeasibility after each Lagrange multipliers and scaling parameters update. We also

show the number of Newton steps that is required for each update as well as the total

number of Newton steps required to obtain the duality gap and infeasibility with at

least ten digits of accuracy.

The numerical results obtained using the Newton NR method allowed us to observe

systematically the “hot start” phenomenon (see [15], [19], [22]). Practically speaking,

the “hot start” means that from some point on the primal approximation will remain

in the Newton area after each Lagrange multiplier and scaling parameters update.

Therefore, from this point on only few (often one) Newton steps require to find x̄s+1

and to reduce the duality gap and primal infeasibility by a factor 0 < γ = ck−1 < 1

(see Proposition 5.2). In our numerical experiments we took γ = 0.5.

In the tables below we show numerical results for the some NLP problems from R.

Vanderbei webpage (http://www.sor.princeton.edu/ rvdb/ampl/nlmodels/index.html)

and LP problems from Netlib library. The number of variables is n and q is the number

of constraints.

Name: esflsocp; Objective: linear; Constraints: convex quadratic.

n = 1002, q = 1000
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it gap inf # of steps

1 2.20e-01 8.76e-04 18

2 2.41e-03 5.17e-06 2

3 2.78e-04 2.50e-06 2

4 1.51e-05 6.24e-07 1

5 2.05e-08 3.90e-08 1

6 2.22e-11 1.52e-10 1

Total number of Newton steps 25

Name: moonshot; Objective: linear; Constraints: nonconvex quadratic.

n = 786, q = 592

it gap inf # of steps

1 3.21e+00 4.98e-05 10

2 8.50e-06 5.44e-10 1

3 1.19e-08 1.24e-11 1

4 3.96e-09 4.16e-12 1

Total number of Newton steps 13

Name: markowitz2; Objective: convex quadratic; Constraints: linear .

n = 1200, q = 1201,

29



it gap inf # of steps

0 7.032438e+01 1.495739e+00 0

1 9.001130e-02 5.904234e-05 10

2 4.205607e-03 3.767383e-06 12

3 6.292277e-05 2.654451e-05 13

4 1.709659e-06 1.310097e-05 8

5 1.074959e-07 1.381697e-06 5

6 7.174959e-09 3.368086e-07 4

7 4.104959e-10 3.958086e-08 3

8 1.749759e-11 2.868086e-09 2

9 4.493538e-13 1.338086e-10 2

Total number of Newton steps 59

Name: brandy.

n = 149, q = 259

it gap inf # of steps

0 6.56e+04 3.57e+03 0

1 1.68e-01 2.04e-05 28

2 2.66e-01 3.58e-04 15

3 3.33e-03 2.73e-05 7

4 1.74e-04 6.68e-07 4

5 2.83e-08 3.68e-10 3

6 2.49e-14 1.33e-15 2

Total number of Newton steps 59

Name: Israel.

n = 174, q = 316

30



it gap primal inf # of steps

0 1.05e+10 1.21e+06 0

1 6.40e+00 2.77e-09 20

2 7.364041e-02 1.0729e-07 14

3 7.497715e-07 4.2011e-12 6

4 1.628188e-10 1.7764e-15 3

Total number of Newton steps 43

Name: AGG2.

n = 516, q = 758

it gap primal inf # of steps

0 6.93e+10 7.41e+06 0

1 6.07e+00 4.39e-07 16

2 1.422620e-03 2.2625e-09 3

3 2.630272e-10 7.1054e-15 3

Total number of Newton steps 25

Name: BNL1.

n = 644, p = 1175

it gap primal inf # of steps

0 3.98e+06 1.83e+04 0

1 9.47e-05 7.13e-09 25

2 2.645905e-07 3.8801e-10 5

3 2.025197e-12 4.5938e-13 4

Total number of Newton steps 34
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8 Concluding Remarks

The NR methods provide an exchange of information between the primal and dual

variables. However, the calculations are always conducted sequentially: first is the

primal minimization, then the Lagrange multiplier and the scaling parameter updates.

On the other hand, it has become evident lately that the most efficient methods that

are based on the interior point path-following ideas, are the Primal-Dual methods, for

which calculations are conducted simultaneously in the primal and dual spaces (see

[29], [31]).

For each NR multiplier method, there exists the Primal-Dual equivalent (see [20]).

Our experiments with the Primal-Dual NR methods are very encouraging [22].

It seems that NR methods with “dynamic” scaling parameter update are particu-

larly suitable for the Primal-Dual approach. It follows from Theorem 5.1 and Proposi-

tion 5.2 that under strict complementarity or standard second-order optimality condi-

tions, the Lagrange multipliers, which correspond to the passive constraints, converge

to zero at least quadratically. Therefore, the Primal-Dual NR method asymptotically

turns into the Newton method for the Lagrange system of equations, which corresponds

to the set of active constraints.

On the other hand, it follows from Theorem 9 (see [18], p. 247) that under the stan-

dard second-order optimality condition for sufficiently smooth functions, the Newton

method for the Lagrange system of equations converges to the primal-dual solution

with quadratic rate.

Therefore, it seems the Primal-Dual NR methods with “dynamic” scaling parameter

updates have the potential to be globally convergent with asymptotic quadratic rate.

We will cover the corresponding theory and methods in an upcoming paper.
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