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Abstract. Nonlinear rescaling (NR) methods alternate finding an uncon-
strained minimizer of the Lagrangian for the equivalent problem in the primal
space (which is an infinite procedure) with Lagrange multipliers update.

We introduce and study a proximal point nonlinear rescaling (PPNR) method
that preserves convergence and retains a linear convergence rate of the original
NR method and at the same time does not require an infinite procedure at
each step.

The critical component of our analysis is the equivalence of the NR method
with dynamic scaling parameter update to the interior quadratic proximal point
method for the dual problem in the rescaled from step to step dual space.

By adding the classical quadratic proximal term to the primal objective
function the PPNR step can be viewed as a primal-dual proximal point map-
ping. This allows analyzing a wide variety of non-quadratic augmented La-
grangian methods from unique and general point of view using tools typical
for the classical quadratic proximal-point technique.

We proved convergence of the primal-dual PPNR sequence under minimum
assumptions on the input data and established a q-linear rate of convergence
under the standard second-order optimality conditions.

1. Introduction. In this paper we introduce and study a proximal point nonlinear
rescaling (PPNR) method, which eliminates the main drawback of the NR meth-
ods (see [6]-[9]) the necessity of finding an exact unconstrained minimizer at each
step. We show that the PPNR method retains convergence and rate of convergence
properties of the original NR method without finding unconstrained minimizer at
each step.

The distinct feature of this approach is the equivalence of the NR methods with a
“dynamic” scaling parameters update to a interior quadratic proximal point method
for the dual problem in the rescaled from step to step dual space. The equivalence
allows transforming each step of the PPNR method into a step of the primal-dual
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quadratic proximal point method for finding a saddle point of the classical La-
grangian for the original problem.

The correspondent primal-dual quadratic proximal mapping leads to the rescaled
monotone operator. The properties of the rescaled operator were one of our main
concerns. The properties allowed extending the results typical for quadratic aug-
mented Lagrangian [11] for a wide class of non-quadratic augmented Lagrangians.
Unfortunately such an extension complicates the analysis, but, on the other hand,
makes the analysis universal for a wide class of non-quadratic augmented La-
grangians.

The paper is organized as follows. In the next section we state the problem and
introduce basic assumptions. In Section 3 we introduce the proximal point nonlin-
ear rescaling algorithm (PPNR). In Section 4 we analyze convergence of the PPNR
algorithm under mild assumptions on the input data. In Section 5 we establish an
asymptotic q-linear rate of convergence under the standard second-order optimal-
ity conditions. We conclude the paper by pointing out some directions of future
research.

2. Statement of the problem and basic assumptions. Let f : IRn → IR1

be convex, all ci : IRn → IR1, i = 1, . . . ,m be concave and twice continuously
differentiable functions. We consider a convex set Ω = {x ∈ IRn : ci(x) ≥ 0, i =
1, . . . ,m} and the following convex optimization problem

(P) f(x∗) = min{f(x)∣x ∈ Ω}
We assume that:

A. The optimal primal set X∗ = {x ∈ Ω : f(x) = f(x∗)} is not empty and
bounded.

B. The Slater’s condition holds, i.e. there exists x̂ ∈ IRn : ci(x̂) > 0, i = 1, . . . ,m.

We use the norm ∥x∥ =
√
xTx everywhere in the manuscript unless another norm

is explicitly specified.
Under the assumption B, the Karush-Kuhn-Tucker’s (K-K-T’s) conditions hold

true, i.e. there exists vector y∗ = (y∗1 , ..., y
∗
m) ∈ IRm

+ such that

∇xL(x
∗, y∗) = ∇f(x∗)−

m
∑

i=1

y∗i∇ci(x∗) = 0 (1)

where L(x, y) = f(x) −∑m

i=1 yici(x) is the Lagrangian for the primal problem P ,
and the complementary slackness conditions

y∗i ci(x
∗) = 0, i = 1, . . . ,m (2)

hold true.
Let us consider also the dual function d : IRm

+ → IR. which is defined by formula

d(y) = inf
x∈IRn

L(x, y)

and the dual problem

(D) d(y∗) = max{d(y)∣y ∈ IRm
+}.

Due to the Slater condition B the dual optimal set Y ∗ = {y ∈ IRm
+ : d(y) = d(y∗)}

is bounded, and due to (2) we have

f(x∗) = d(y∗).
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3. Proximal point nonlinear rescaling method. Consider a class Ψ of trans-
formations  : (t1, t2) → (a, b), where −∞ < t1 < 0 < t2 < ∞ and −∞ < a < 0 <
b <∞ that satisfy the following properties

10  (0) = 0.
20 a)  ′(t) > 0, b)  ′(0) = 1, c)  ′(t) ≤ a1(t+ 1)−1, ∀ t ∈ (0,∞), a1 > 0.
30  ′′(t) < 0, ∀ t ∈ (t1, t2).
40 − ′′(t) ≥ �e−�t, ∀ t ∈ [1,∞), � > 0, � > 0.

One can verify that well known transformations  1(t) = 1 − e−t [2],  2(t) =
ln(t + 1),  3(t) = t/(t + 1) [6] belong to Ψ. Other transformations  ∈ Ψ one can
find in [8].

For any given vector k = (k1, . . . , km) ∈ IRm
++ due to 10 and 20 (a) we have

ci(x) ≥ 0 ⇔ k−1
i  (kici(x)) ≥ 0, i = 1 . . . ,m . (3)

Therefore, the problem

f(x∗) = min{f(x) ∣ k−1
i  (kici(x)) ≥ 0, i = 1, . . . ,m} (4)

is equivalent to the primal problem P .
The Lagrangian ℒ : IRn × IRm

++ × IRm
++ → IR for the equivalent problem, is given

by formula

ℒ(x, y,k) = f(x)−
m
∑

i=1

yik
−1
i  (kici(x)).

We are ready to describe the general PPNR method. Let x0 ∈ IRn and y0 ∈
IRm

++are initial primal and dual approximations, {ks > 0} is the nondecreasing
sequence.

The PPNR method generates three sequences {ks} ⊂ IRm
++, {xs} ⊂ IRn, {ys} ⊂

IRm
++, by formulas

k
s = (ksi = ks(y

s
i )

−1, i = 1, . . . ,m), (5)

xs+1 = argmin{ℒ(x, ys,ks) +
1

2ks
∥x− xs∥2 ∣x ∈ IRn} (6)

ys+1 = (ys+1
i = ysi 

′(ksi ci(x
s+1)), i = 1, . . . ,m.) (7)

The numerical realization of the PPNR method (5)-(7) requires replacing the
primal minimizer with its approximation.

To simplify the presentation we use the same notation for the PPNR method (5)-
(7) and its modification (8)-(10). To avoid confusion we specify for each statement
the method that generates the sequences {ks}, {xs}, {ys}.

Let {"s > 0} be a sequence such that
∑∞

s=0 "s < ∞. Then the modified PPNR
method generates the following three sequences {ks} ⊂ IRm

++, {xs} ⊂ IRn, {ys} ⊂
IRm

++,

k
s = (ksi = ks(y

s
i )

−1, i = 1, . . . ,m), (8)

xs+1 : ∥∇xℒ(xs+1, ys,ks) +
1

ks
(xs+1 − xs)∥ ≤ "s

ks
(9)

ys+1 = (ys+1
i = ysi 

′(ksi ci(x
s+1)), i = 1, . . . ,m.) (10)

The minimizer xs+1 given by (6) or its approximation (9) exists and it is uniquely
defined for any given ys ∈ IRm

++ and k
s ∈ IRm

++ due to convexity f, concavity ci,

properties 10 − 40 of  ∈ Ψ and the proximal term 1
2ks

∥x− xs∥2 in (6).

Due to 20a) we have ys ∈ IRm
++ ⇒ ys+1 ∈ IRm

++, therefore the modified PPNR
method (8)-(10) is well defined.
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The formula (5) has been introduced in [14] for the exponential multipliers
method and used on several occasions (see [1, 7, 8]) in the framework of NR meth-
ods. In particular, the equivalence of the general NR multipliers method with
a “dynamic” scaling parameter update to the interior quadratic proximal point
method in the rescaled dual space plays a critical role in the convergence analysis
of the NR method (see [8]).

Our analysis extends the convergence scheme, developed in [11, 12] for the qua-
dratic augmented Lagrangians, to a wide class of nonquadratic augmented La-
grangians. The key ingredient of our analysis is the equivalence of the modified
PPNR method (8)-(10) to a quadratic proximal point method for finding a saddle
point of the classical Lagrangian for the original problem. The primal proximal
term 1

2ks

∥x − xs∥2 is standard while the dual proximal term is the quadratic term
in the rescaled dual space.

In the following section we prove convergence of the modified PPNR method
(8)-(10) under mild assumptions on the input data.

4. Convergence of the modified PPNR Method. In this section we establish
convergence properties of the modified PPNR method (8) –(10). The convergence of
the PPNR method (5)–(7) follows from the convergence the PPNR method (8)–(10)
if "s = 0 s = 0, 1, . . . .

The following several lemmas outline convergence properties of the method (8)–
(10).

Lemma 4.1. One step of the PPNR method (5)–(7) is equivalent to finding a saddle
point (xs+1, ys+1) of the following function

M(x, y, xs, ys) = L(x, y) +
1

2ks
∥x− xs∥2 − 1

2ks
∥y − ys∥2

R
−1
s+1

where ∥y∥2
R

−1
s+1

= yTR−1
s+1y, and R−1

s+1 is a diagonal matrix with positive entries,

which we will specify later; i.e.

(xs+1, ys+1) : max
y∈IRm

+

min
x∈IRn

M(x, y, xs, ys) = min
x∈IRn

max
y∈IRm

+

M(x, y, xs, ys). (11)

Proof. The saddle point (xs+1, ys+1) exists and unique because M(x, y, xs, ys) is
strongly convex in x and strongly concave in y. Therefore the approximation
(xs+1, ys+1) can be found by solving for (x, y) the following system of equations

∇xM(x, y, xs, ys) = ∇xL(x, y) +
1

ks
(x− xs) = 0, (12)

∇yM(x, y, xs, ys) = −c(x)− 1

ks
R−1

s+1(y − ys) = 0. (13)

We emphasize that we do not suggest finding (xs+1, ys+1) from (12) – (13) be-
cause such a step requires knowledge ofRs+1.Our purpose is to show the equivalence
of (12) – (13) to (5) – (7), which is critical for further analysis.

Let us show that the solution of (12) – (13) produce the same pair of vectors
(xs+1, ys+1) as (5)–(7). Since ℒ(x, ys,ks) + 1

2ks

∥x − xs∥2 is strongly convex in x,

finding xs+1 from (6) is equivalent to solving the following system for x

∇xℒ(x, ys,ks) +
1

ks
(x− xs) = 0.
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Keeping in mind (5)–(7) we have

∇xℒ(xs+1, ys,ks) +
1

ks
(xs+1 − xs)

= ∇f(xs+1)−
m
∑

i=1

ysi 
′(ksi ci(x

s+1)∇ci(xs+1) +
1

ks
(xs+1 − xs)

= ∇f(xs+1)−
m
∑

i=1

ys+1
i ∇ci(xs+1) +

1

ks
(xs+1 − xs)

= ∇xL(x
s+1, ys+1) +

1

ks
(xs+1 − xs) = 0. (14)

Also, using (5), (7), property 20b) of the transformation  (t) and the mean value
theorem we have

ys+1
i − ysi = ysi ( 

′(ksi ci(x
s+1)−  ′(0)) = ysi 

′′(�si k
s
i ci(x

s+1))ksi ci(x
s+1) =

ks 
′′(�si k

s
i ci(x

s+1))ci(x
s+1), i = 1, . . . ,m,

which is equivalent to

− c(xs+1)− 1

ks
R−1

s+1(y
s+1 − ys) = 0, (15)

where Rs+1 = diag (rs+1
i )mi=1, r

s+1
i = −

[

 ′′(�si k
s
i ci(x

s+1))
]

> 0 and 0 < �si < 1.

Therefore if (xs+1, ys+1) satisfies (5)–(7) then (xs+1, ys+1) is the solution of the
minimax problem (11). Also, the solution of the minimax problem (11) satisfies
(5)–(7) because (xs+1, ys+1) is unique.

Keeping in mind that ∇yL(x, y) = −c(x) we obtain from (14) and (15) that
finding (xs+1, ys+1) from (5)–(7) is equivalent to solving for (x, y) the following
system

k∇xL(x, y) + (x − xs) = 0, (16)

− kR∇yL(x, y) + (y − ys) = 0 (17)

with k = ks and R = Rs+1. Therefore by introducing an operator TR : IRn× IRm++ →
IRn × IRm

++ defined by the formula

TR(z) =

(

∇xL(x, y)
−R∇yL(x, y)

)

.

we can rewrite the system (16) – (17) as follows

(I + kTR)(z) = zs,

z = (x, y), where the nonlinear operator I+kTR is the sum of the identity operator
I and nonlinear operator kTR.

Thus one can view the solution of the proximal minimax problem (11) as an ap-
plication of the inverse operator PR(z) = (I+kTR)

−1 to zs. Therefore the sequence
generated by the PPNR method (5)–(7) can be described as

zs+1 = PRs+1(z
s), s = 0, 1, . . .

with a starting point z0 = (x0, y0), x0 ∈ IRn, y0 ∈ IRm
++.
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The operators TR and PR are defined on IRn × IRm
++. For convergence analy-

sis, however, we need these operators to be defined on IRn × IRm
+ . We define the

generalized operators TR(z) and consequently PR in the following way:

TR(z) =

(

∇xL(x, y)
−R∇yL(x, y)

)

, PR(z) = (I + kTR)
−1(z)

where R = diag (ri)
m
i=1, and yi = 0 ⇒ ri = 0.

The modified operators described above satisfy the following properties at any
primal-dual solution z∗ = (x∗, y∗) ∈ X∗ × Y ∗ :

TR(z
∗) = 0,

and

PR(z
∗) = z∗. (18)

The convergence proof of the modified PPNR method (8)–(10) relies on prop-
erties of the family of proximal operators PRs+1 , s = 1, 2, . . . , where Rs+1 =

diag (rs+1
i )mi=1 and

rs+1
i =

{

−
[

 ′′(�si k
s
i ci(x

s+1))
]

, 0 < �si < 1, if yi > 0
0, if yi = 0

The latter, in turn, are closely related to properties of monotone operators TRs+1 .
Our next goal is proving that TRs+1(z) are monotone operators for all s ≥ 0.

An operator T : IRp → IRp, which maps z ∈ IRp into a closed bounded convex set
T (z) is a monotone operator if

(z − z′)T (w − w′) ≥ 0 whenever w ∈ T (z), w′ ∈ T (z′).

Let F : X×Y → IRbe convex in x ∈ X and concave in y ∈ Y , X ⊂ IRn, Y ⊂ IRm.
The subdifferential of F at (x, y) is defined as follows

∂F (x, y) = {(u, v) : F (x′, y)− F (x, y) ≥ uT (x′ − x),

F (x, y′)− F (x, y) ≤ vT (y′ − y), ∀x′ ∈ X, y′ ∈ Y }.
It is known (see [13]) that the mapping T : (x, y) → {(u, v) : (u,−v) ∈ ∂F (x, y)}

is a maximal monotone operator.
Let R = diag (ri)

n+m
i=1 be a diagonal matrix with ri ≥ 0, i = 1, . . . , n + m. We

consider a mapping RT : (x, y) → {R(u, v)T : (u,−v) ∈ ∂F (x, y)}, which one
obtains by multiplying an image of T by the diagonal matrix R.

Generally speaking, RT is not necessarily a monotone operator for a convex in x
and concave in y function F. However, if F is smooth enough then RT is a monotone
operator. We show this in the following lemma.

Lemma 4.2. Let twice continuously differentiable function F : IRn × IRm
+ → IR be

convex in x and concave in y. Then the rescaled pseudo-gradient

R∇F (z) = R

(

∇xF (x, y)
−∇yF (x, y)

)

is a monotone operator.

Proof. For a vector a ∈ IRn × IRm
+ consider a scalar function 'a : IRn × IRm

+ → IR
defined as follows

'a(z) ≡ 'a(x, y) = (R∇F (x, y))T a.
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Let z = (x, y) ∈ IRn × IRm
+ and z′ = (x′, y′) ∈ IRn × IRm

+ and a ∈ IRn × IRm
+ . Then

using the mean value formula for the scalar function 'a one can find 0 ≤ � ≤ 1 such
that

'a(z)− 'a(z
′) = ∇z'a(z

′ + �(z − z′))T (z − z′),

where ∇z'a(z) = R∇2F (z)a, and

∇2F (z) = ∇2F (x, y) =

[

∇2
xxF (x, y) ∇2

xyF (x, y)
−∇2

yxF (x, y) −∇2
yyF (x, y)

]

.

In other words for a given z = (x, y), z′ = (x′, y′) and a = z − z′ there exists
0 ≤ � ≤ 1 such that

(R∇F (z)−R∇F (z′))T (z − z′) =
〈

R∇2F (z′ + �(z − z′))(z − z′), (z − z′)
〉

.

The matrix ∇2F (z) is positive semidefinite for any z = (x, y) because F (x, y) is
convex in x and concave in y. Therefore R∇2F (z) is also positive semidefinite, i.e.

(R∇F (z)− R∇F (z′))T (z − z′) ≥ 0

for any z and z′. Therefore the rescaled pseudo-gradient R∇F (x, y) is a monotone
operator.

The LargangianL(x, y) satisfies the conditions of Lemma 4.2. Therefore it follows
from Lemma 4.2 that for a given vector r ∈ IRm

+ and R = diag (ri)
m
i=1 the operator

TR : IRn × IRm
+ defined by a formula

TR(z) =

(

∇xL(x, y)
−R∇yL(x, y)

)

,

is a monotone operator. i.e. the inequality

(TR(z1)− TR(z2))
T (z1 − z2) ≥ 0 (19)

holds for any pair (z1, z2) : z1 ∈ IRn × IRm
+ , z2 ∈ IRn × IRm

+ .
Let us show that the proximal operator PRs+1 associated with the monotone

operator TRs+1 is nonexpansive.

Lemma 4.3. For any vectors a, b ∈ IRn× IRm
+ and the operator PRs+1 the following

estimation holds

∥PRs+1(a)− PRs+1(b)∥ ≤ ∥a− b∥, ∀s ≥ 0.

Proof. Let â = PRs+1(a) and b̂ = PRs+1(b).We use the fact that â and b̂ are uniquely
defined and can be found from the system

ksTRs+1(â) + â = a,

ksTRs+1(b̂) + b̂ = b.

Therefore

ks

(

TRs+1(â)− TRs+1(b̂)
)

+ (â− b̂) = a− b

and hence

(ks)
2∥TRs+1(â)−TRs+1(b̂)∥2+2ks

(

TRs+1(â)− TRs+1(b̂)
)T

(â−b̂)+∥â−b̂∥2 = ∥a−b∥2

Keeping in mind (19) we have

(ks)
2∥TRs+1(â)− TRs+1(b̂)∥2 + 2ks

(

TRs+1(â)− TRs+1(b̂)
)T

(â− b̂) ≥ 0,
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therefore

∥â− b̂∥ ≤ ∥a− b∥.

Lemma 4.4. For the modified PPNR method (8)–(10) the following estimation
holds

∥zs+1 − PRs+1(z
s)∥ ≤ "s.

Proof. Consider the vector

Ns+1(z) = TRs+1(z) + (ks)
−1(z − zs).

Note that

zs + ksNs+1(z
s+1) = zs+1 + ksTRs+1(z

s+1) = (I + ksTRs+1)(z
s+1).

Therefore

zs+1 = (I + ksTRs+1)
−1(zs + ksNs+1(z

s+1)) = PRs+1(z
s + ksNs+1(z

s+1)).

Due to (9) and (15) we have ∥Ns(z
s+1)∥ ≤ "s

ks

. Therefore since the operator PRs+1

is nonexpansive (Lemma 4.3), we have

∥zs+1 − PRs+1(z
s)∥ =∥PRs+1(z

s + ksNs+1(z
s+1))− PRs+1(z

s)∥
≤∥ksNs+1(z

s+1)∥ ≤ "s.
(20)

The next lemma establishes the boundedness of the sequence generated by the
modified PPNR method (8)–(10).

Lemma 4.5. The sequence {zs = (xs, ys)} generated by the modified PPNR method
(8)–(10) is bounded, i.e. there exists M > 0 that

∥zs∥ ≤M <∞. (21)

Proof. Due to Assumptions A and B there exists z∗ = (x∗, y∗) ∈ X∗ × Y ∗ that
KKT’s conditions (1)–(2) hold. Therefore for all s ≥ 0 we have PRs+1(z

∗) = z∗. By
Lemmas 4.3, 4.4, triangle inequality and (18), we have

∥zs+1 − z∗∥ − "s ≤ ∥PRs+1(z
s)− z∗∥ = ∥PRs+1(z

s)− PRs+1(z
∗)∥ ≤ ∥zs − z∗∥.

Keeping in mind that
∑∞

s=0 "s < +∞ we can find such � > 0 that

∥zs − z∗∥ ≤ ∥z0 − z∗∥+
s−1
∑

l=0

"k ≤ ∥z0 − z∗∥+ �.

Therefore {zs}∞s=0 is bounded.

Let us consider the mapping QRs+1 = I − PRs+1 , then for any s ≥ 0 we have

QRs+1(z
∗) = 0,

where z∗ is the solution to the problem P .
We need the following auxiliary statements, which will be used later.
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Lemma 4.6. For the operators PRs+1 and QRs+1 , s = 0, 1, 2 . . . the following is
true

a) z = PRs+1(z) +QRs+1(z) for all z.

b) (ks)
−1QRs+1(z) = (ks)

−1(z − PRs+1(z)) = TRs+1(PRs+1(z)) for all z.

c) (PRs+1(z)− PRs+1(z
′))T (QRs+1(z)−QRs+1(z

′)) ≥ 0 for all z, z′.

d) ∥PRs+1(z)− PRs+1(z
′)∥2 + ∥QRs+1(z)−QRs+1(z

′)∥2 ≤ ∥z − z′∥2 for all z, z′.

The proof of Lemma 4.6 is similar to the proof Proposition 1 in [11].

Lemma 4.7. The sequence {zs = (xs, ys)} generated by the modified PPNR method
(8)–(10) satisfies the following condition

lim
s→∞

TRs+1(z
s) = 0. (22)

Proof. The proof follows closely the proof of Theorem 1 in [11]. Without restricting
generality we assume that lims→∞ zs = z̄, otherwise we can consider a convergent
subsequence.

For any solution z∗ we have PRs+1(z
∗) = z∗, therefore QRs+1(z

∗) = 0 for all
s = 0, 1, 2, . . .. For z = zs and z′ = z∗ by Lemma 4.6 d) we have

∥PRs+1(z
s)− z∗∥2 + ∥QRs+1(z

s)∥2 ≤ ∥zs − z∗∥2 ∀s ≥ 0. (23)

Therefore keeping in mind Lemma 4.3 we have

∥QRs+1(z
s)∥2 − ∥zs − z∗∥2 + ∥zs+1 − z∗∥2

≤ ∥zs+1 − z∗∥2 − ∥PRs+1(z
s)− z∗∥2

=
(

zs+1 − PRs+1(z
s)
)T (

zs+1 − z∗ + PRs+1(z
s)− z∗

)

≤
∥

∥zs+1 − PRs+1(z
s)
∥

∥

(

∥zs+1 − z∗∥+ ∥PRs+1(z
s)− z∗∥

)

≤ ∥zs+1 − PRs+1(z
s)∥(∥zs+1 − z∗∥+ ∥zs − z∗∥),

and hence using (20) and (21) we obtain

∥QRs+1(z
s)∥2 ≤ ∥zs − z∗∥2 − ∥zs+1 − z∗∥2 + 2"s(M + ∥z∗∥)

Using the assumption that lims→∞ = z̄ and passing s to the limit we have

lim
s→∞

∥QRs+1(z
s)∥ = 0,

which implies

lim
s→∞

(ks)
−1QRs+1(z

s) = 0 (24)

and from Lemma 4.6b) we have

lim
s→∞

∥zs+1 − PRs+1(z
s)∥ = 0.

The latter limit, in turn, implies that

lim
s→∞

PRs+1(z
s) = PR̄(z̄) = z̄, (25)

where R̄ = diag (r̄i)
m
i=1, and

r̄i =

{

− [ ′′(�si k
s
i ci(x̄))] , 0 < �si < 1, if ȳi > 0

0, if ȳi = 0

Since z̄ is a fixed point of PR̄ we have (I + TR̄)
−1(z̄) = z̄, or (I + TR̄)(z̄) = z̄, or

z̄ + TR̄(z̄) = z̄, or TR̄(z̄) = 0.
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Lemma 4.8. The sequence {zs = (xs, ys)} generated by the modified PPNR method
(8)–(10) satisfies the following conditions

lim
s→∞

∥zs+1 − zs∥ = 0. (26)

Proof. The result follows from Lemma 4.7 and formulas (14) and (15).

Lemma 4.9. Let {ks} be a nondecreasing bounded sequence of positive parameters.
Then the sequence {zs = (xs, ys)} generated by the modified PPNR method (8)–(10)
satisfies the following conditions

a) lim
s→∞

∇xL(x
s, ys) = 0,

b) lim
s→∞

ysi ≥ 0, i = 1, . . . ,m.

c) lim
s→∞

ci(x
s) ≥ 0, i = 1, . . . ,m.

d) lim
s→∞

ci(x
s)ysi = 0, i = 1, . . . ,m,

Proof. Let z̄ = (x̄, ȳ) is any limit point of the sequence {zs}. Without restricting
generality we assume that lims→∞ zs = z̄, otherwise we can consider a converging
subsequence of {zs}.

a) Focusing on the first n components of TRs+1(z
s) from (22) we have immediately

lim
s→∞

∇xL(x
s+1, ys+1) = ∇xL(x̄, ȳ) = 0.

b) Since y0i > 0 and  ′(t) > 0 for any t, we have by (10) ysi > 0 ⇒ ys+1
i > 0,

therefore

lim
s→∞

ysi = ȳi ≥ 0 i = 1, . . . ,m.

c) and d) Let us consider last m components of TRs+1(z
s). From (22) we have

lim
s→∞

− ′′(�si k
s
i ci(x

s+1))ci(x
s+1) = 0, 0 < �si < 1, i = 1, . . . ,m.

Therefore for each 1 ≤ i ≤ m we have either

lim
s→∞

ci(x
s) = ci(x̄) = 0,

or
lim
s→∞

− ′′(�si k
s
i ci(x

s+1)) = 0, 0 < �i < 1.

Let us show that the latter implies

lim
s→∞

ci(x
s) = ci(x̄) ≥ 0.

and
lim
s→∞

ysi = ȳi = 0.

From Property 40 of transformation  (t) follows that

lim
s→∞

− ′′(�si k
s
i ci(x

s+1)) = 0

implies
lim
s→∞

�si k
s
i ci(x

s+1)) = ∞ (27)

Since ksi > 0 and 0 < �si < 1 we have

lim
s→∞

ci(x
s) = ci(x̄) ≥ 0.

Also from 0 < �si < 1 follows lims→∞ ksi = ∞. Boundedness of {ks} implies

lim
s→∞

ys+1
i = 0.
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Therefore for any i = 1, . . . ,m we have either

lim
s→∞

ci(x
s) = 0,

and

lim
s→∞

ysi ≥ 0 (based on alreadyproven b))

or

lim
s→∞

ci(x
s) ≥ 0.

and

lim
s→∞

ysi = 0

Thus c) and d) are proven.

The following theorem takes place.

Theorem 4.10. If assumptions A and B are satisfied and {ks > 0} is a nondecreas-
ing bounded sequence, then any limit point z̄ = (x̄, ȳ) of the sequence {zs = (xs, ys)}
generated by the modified PPNR method (8)–(10) is the primal-dual solution, i.e.
(x̄, ȳ) ∈ X∗ × Y ∗.

Proof. By Lemma 4.9 z̄ = (x̄, ȳ) satisfies the KKT’s optimality conditions (1)-(2).
Therefore for the convex optimization problem P , we have x̄ ∈ X∗ and ȳ ∈ Y ∗, i.e.
z̄ = (x̄, ȳ) is the primal-dual solution.

Remark 1. The convergence of the method (5)–(7) follows from Theorem 4.10.

5. Rate of convergence of the modified PPNR Method. In this section we
prove q-linear rate of convergence of the modified PPNR method (8)–(10) under
standard second-order optimality conditions.

Let us assume that the active constraint set is I∗ = {i : ci(x∗) = 0} = {1, . . . , r}.
We consider the vectors functions cT (x) = (c1(x), . . . , cm(x)), cT(r)(x) = (c1(x),

. . . , cr(x)), and their Jacobians ∇c(x) = J(c(x)) and ∇c(r)(x) = J(c(r)(x)). The
sufficient regularity conditions

rank∇c(r)(x∗) = r, y∗i > 0, i ∈ I∗ (28)

together with the sufficient conditions for the minimum x∗ to be isolated

(∇2
xxL(x

∗, y∗)y, y) ≥ �(y, y), � > 0, ∀y ∕= 0 : ∇c(r)(x∗)y = 0 (29)

comprise the standard second-order optimality conditions.
From the standard second-order optimality conditions follows the existence of a

constant � > 0 :

min {min{y∗i ∣ i = 1, . . . , r}; min{ci(x∗) ∣ i = r + 1, . . . ,m}} = � > 0. (30)

From this point on we assume:

C. The standard second-order optimality conditions (28)–(29) are satisfied.

To establish the rate of convergence we modify the stopping criteria for finding an
inexact unconstrained minimizer. Let {�s} be a positive sequence that

∑∞

s=0 �s <
∞. We consider the modified PPNR method that generates the following sequences

k
s = (ksi = ks(y

s
i )

−1, i = 1, . . . ,m), (31)
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xs+1 : ∥∇xℒ(xs+1, ys,ks) + 1
ks

(x − xs)∥ ≤ min
{

�s,
�s
ks

∥zs+1 − zs∥∞
}

= min
{

�s,
�s
ks

max
{

∥xs+1 − xs∥∞,max1≤i≤m ∣ysi ′(ksi ci(x
s+1))− ysi ∣

}

} (32)

ys+1
i = ysi 

′(ksi ci(x
s+1)), i = 1, . . . ,m, (33)

where for a given vector a ∈ IRp the norm ∥a∥∞ = max1≤i≤p ∣ai∣ and for A : IRq →

IRp the associated matrix norm ∥A∥∞ = max
1≤i≤p

(

q
∑

j=1

∣aij ∣
)

.

Remark 2. The second-order optimality conditions implies the uniqueness of the
primal-dual solution z∗ = (x∗, y∗). The method (31)-(33) satisfies the conditions
of Theorem 4.10 with "s = �s. Therefore the whole primal-dual sequence {zs}
generated by (31)-(33)converges to z∗. Also, there exists s′ such that

�s
ks

∥zs+1 − zs∥∞ ≤ �s

for s ≥ s′ and (32) can be replaced with

xs+1 : ∥∇xℒ(xs+1, ys,ks) + 1
ks

(x− xs)∥ ≤ �s
ks

∥zs+1 − zs∥∞
= �s

ks

max
{

∥xs+1 − xs∥∞,max1≤i≤m ∣ysi ′(ksi ci(x
s+1))− ysi ∣

}

In the rest of the section we will show that the second-order optimality conditions
(28)–(29) imply an asymptotic q-linear rate of convergence of {zs}, i.e. there exists
s0 > 0 and 0 < q < 1 that

∥zs+1 − z∗∥ ≤ q∥zs − z∗∥, ∀s ≥ s0.

We start with the following lemmas.

Lemma 5.1. The sequence {ys(m−r)}, ys(m−r) = (ysi , i = r + 1, . . . ,m) of the La-

grange multipliers that correspond to the passive constraints generated by the proxi-
mal nonlinear rescaling method (31)-(33) converges to y∗(m−r) = 0 with a quadratic

rate, i.e there exist C0 > 0 independent of {zs} and s0 that for s ≥ s0 we have

∥ys+1
(m−r) − y∗(m−r)∥∞ ≤ C0∥ys(m−r) − y∗(m−r)∥2∞ (34)

Proof. Let {zs} be the sequence generated by the proximal nonlinear rescaling
method (31)-(33). By Remark 2 we have lims→∞ zs = z∗. From z → z∗ and
the second-order optimality conditions follows the existence of s0 > 0 such that
ci(x

s) ≥ 0.5� > 0, i = r+1, . . . ,m for s ≥ s0, where � is defined in (30). Therefore
keeping in mind property 20c) of transformation  (t) for i = r + 1, . . . ,m we have

ys+1
i = ysi 

′(ksi ci(x
s+1)) ≤ ysi

a1
ksi ci(x

s+1) + 1
< ysi

a1
ksi ci(x

s+1)

=
a1

ksci(xs+1)
(ysi )

2 ≤ a1
k0ci(xs+1)

(ysi )
2 ≤ 2a1

k0�
(ysi )

2 = C0(y
s
i )

2,

where C0 = 2a1/k0�. Keeping in mind that y∗(m−r) = 0 and the definition of l∞-

norm we have (34).

Let us consider operators T n+r
Rs+1

and Pn+r
Rs+1

: IRn × IRm
+ → IRn × IRr

+, operators

Tm−r
Rs+1

and Pm−r
Rs+1

: IRn × IRm
+ → IRm−r

+ , operator Pn
Rs+1

: IRn × IRm
+ → IRn and
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operator Pm
Rs+1

: IRn × IRm
+ → IRm

+ , obtained by truncating the operators TRs+1 and
PRs+1 :

TRs+1 =

[

T n+r
Rs+1

Tm−r
Rs+1

]

and

PRs+1 =

[

Pn+r
Rs+1

Pm−r
Rs+1

]

=

[

Pn
Rs+1

Pm
Rs+1

]

.

For example, the operator T n+r
Rs+1

is obtained from TRs+1 by considering only first

n+ r components of the latter, while the operator Pm−r
Rs+1

is obtained from PRs+1 by

considering only last m− r components of the latter.

Remark 3. For a particular realization of the method (31)-(33) with (xs+1, ys+1) =
zs+1 = PRs+1(z

s) from Lemma 5.1 we have

∥Pm−r
Rs+1

(zs)− y∗(m−r)∥∞ ≤ C0∥ys(m−r) − y∗(m−r)∥2∞. (35)

Lemma 5.2. If the standard second-order optimality conditions are satisfied, {ks}
is a nondecreasing bounded sequence of positive parameters, the sequence {zs} =
{(xs, ys)} is generated by (31)-(33) then there exists an index s1 and a > 0 inde-
pendent of {zs} such that

∥PRs+1(z
s)− z∗∥∞ ≤ a

ks
∥PRs+1(z

s)− zs∥∞. (36)

holds for all s ≥ s1.

Proof. Consider the operator T n+r : IRn × IRr
+ → IRn × IRr defined by

T n+r(z(n+r)) =

(

∇xL(x, y(r))
−∇y(r)

L(x, y(r))

)

=

(

∇f(x)−∑r

i=1 yi∇ci(x)
c(r)(x)

)

.

First we prove that there exists small enough " > 0 and C1 > 0 such that for all
z(n+r) = (x, y(r)) : ∥z(n+r) − z∗(n+r)∥∞ ≤ " the following inequality holds

∥z(n+r) − z∗(n+r)∥∞ ≤ C1∥T n+r(z(n+r))∥∞. (37)

Let (x∗, y∗) = (x∗, y∗(r), y
∗
(m−r)) is the primal-dual solution. After linearizing

∇xL(x, y(r)) and c(r)(x) at (x
∗, y∗(r)), we obtain

∇xL(x, y(r)) =∇xL(x
∗, y∗(r)) +∇2

xxL(x
∗, y∗(r))(x− x∗)

−∇cT(r)(x∗)(y(r) − y∗(r)) +O(n)∥x− x∗∥2∞,
(38)

c(r)(x) = c(r)(x
∗) +∇c(r)(x∗)(x− x∗) +O(r)∥x− x∗∥2∞, (39)

Keeping in mind K-K-T conditions we can rewrite (38)–(39) in a matrix form
[ ∇2

xxL(x
∗, y∗(r)) −∇cT(r)(x∗)

∇c(r)(x∗) 0

] [

x− x∗

y(r) − y∗(r)

]

(40)

=

[

∇xL(x, y(r)) +O(n)∥x− x∗∥2∞
c(r)(x) +O(r)∥x− x∗∥2∞

]

= T n+r(z(n+r)) +O(n+r)∥z(n+r) − z∗(n+r)∥2∞
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Due to the standard second order optimality conditions the matrix

A(x∗, y∗(r)) =

[ ∇2
xxL(x

∗, y∗(r)) −∇cT(r)(x∗)
∇c(r)(x∗) 0

]

is nonsingular (see [5], p. 231) and there exists N > 0 such that

∥A−1(x∗, y∗(r))∥∞ ≤ N. (41)

Hence from (41) for small enough " > 0 and any z(n+r) = (x, yr) : ∥z(n+r) −
z∗(n+r)∥ ≤ " we have

∥

∥

∥

∥

x− x∗

y(r) − y∗(r)

∥

∥

∥

∥

∞

≤ M
(

∥T n+r(z(n+r))∥∞ +O(n+r)∥z − z∗∥2
)

≤ C1∥T n+r(z(n+r))∥∞,
where C1 = 2N.

Therefore for s1 large enough and any s ≥ s1 we have

∥zs+1
(n+r) − z∗(n+r)∥∞ ≤ C1∥T n+r(zs+1

(n+r))∥∞. (42)

Due to Theorem 4.10, the second-order optimality conditions and Remark 2,
there exists C2 > 0 that for s1 large enough and for all s ≥ s1 we have ∣ci(xs+1)∣ ≤
C2, i = 1, . . . , r and ys+1

i ≥ � > 0 , i = 1, . . . , r (� is defined in (30)). Keeping in
mind Property 40 of transformation  (t), and boundedness of {ks} we have for all
s ≥ s1

0 < b1 ≤ rs+1
i = −

[

 ′′(�si k
s
i ci(x

s+1))
]

≤ b2, i = 1, . . . , r,

0 < �si < 1.
We can assume that for s1 large enough and all s ≥ s1 we have

ys+1
i ≤ ∥T n+r(zs+1

(n+r))∥1.5∞ , i = r + 1, . . . ,m.

otherwise it is easy to show using Lemma 5.1 that {zs} converges to z∗ with a
superlinear rate. We can also assume that for s1 large enough there exists C3 > 0
that for all s ≥ s1 we have ∥∇ci(xs+1)∥∞ ≤ C3, i = r+1, . . . ,m. Therefore we have

∥T n+r(zs+1
(n+r))∥∞ =

∥

∥

∥

∥

∇xL(x
s+1, ys+1

(r) )

c(r)(x
s+1)

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∇xL(x
s+1, ys+1) +

∑m

i=r+1 y
s+1
i ∇ci(xs+1)

c(r)(x
s+1)

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

∥

∇xL(x
s+1, ys+1)

(R
(n+r)
s+1 )−1

(

R
(n+r)
s+1 c(r)(x

s+1)
)

∥

∥

∥

∥

∥

∞

+ ∥
m
∑

i=r+1

ys+1
i ∇ci(xs+1)∥∞

≤ b−1
1 ∥T n+r

Rs+1
(zs+1)∥∞ + C3∥T n+r(zs+1

(n+r))∥
1.5
∞

≤ C4∥T n+r
Rs+1

(zs+1)∥∞
for all s ≥ s1, where C4 = 2b−1

1 .
Therefore keeping in mind (42) we have

∥zs+1
(n+r) − z∗(n+r)∥∞ ≤ C5∥T n+r

Rs+1
(zs+1)∥∞, (43)

where C5 = C1C4.
By replacing zs+1

(n+r) with P
n+r
Rs+1

(zs) and zs+1 with PRs+1(z
s) from (43) we obtain

∥Pn+r
Rs+1

(zs)− z∗(n+r)∥∞ ≤ C5∥T n+r
Rs+1

(PRs+1(z
s))∥∞. (44)
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From the definition of l∞-norm we have

∥T n+r
Rs+1

(PRs+1(z
s))∥∞ ≤ ∥TRs+1(PRs+1(z

s))∥∞ (45)

From Lemma 4.6 b) we have

∥TRs+1(PRs+1(z
s))∥∞ =

1

ks
∥PRs+1(z

s))− zs∥∞. (46)

Therefore combining (44)–(46) we obtain

∥Pn+r
Rs+1

(zs)− z∗(n+r)∥∞ ≤ C5

ks
∥PRs+1(z

s))− zs∥∞. (47)

Let x(z) = Pn
Rs+1

(z). then lims→∞  ′(ksi ci(x(z
s))) = 0, i = r + 1, . . . ,m. There-

fore, keeping in mind the boundedness of {ks}, there exists C6 that for s1 large
enough and for all s ≥ s1 we have

 ′(ksi ci(x(z
s))) ≤ C6

ks
∣ ′(ksi ci(x(z

s)))− 1∣
or

ysi 
′(ksi ci(x(z

s))) ≤ C6

ks
∣ysi ′(ksi ci(x(z

s))) − ysi ∣

for i = r + 1, . . . ,m. Therefore keeping in mind that y∗(m−r) = 0 and the definition

of l∞-norm we have

∥Pm−r
Rs+1

(zs)− y∗(m−r)∥∞ ≤ C6

ks
∥PRs+1(z

s))− zs∥∞. (48)

Finally combining (47) and (48) we obtain for s ≥ s1

∥PRs+1(z
s)− z∗∥∞ ≤ a

ks
∥PRs+1(z

s))− zs∥∞,

where a = max{C5, C6}.

Remark 4. Keeping in mind the relations between l∞ and l2 norm we have

∥PRs+1(z
s)− z∗∥ ≤

√
n+m∥PRs+1(z

s)− z∗∥∞

≤a
√
n+m

ks
∥PRs+1(z

s))− zs∥∞

≤ ā

ks
∥PRs+1(z

s))− zs∥,

(49)

where ā = a
√
n+m.

Now we are ready to establish the q-linear rate of convergence.

Theorem 5.3. If the problem (P) satisfy the standard second order optimality
conditions C, the nondecreasing sequence {ks} is bounded and k0 is large enough
then for the primal-dual sequence {zs} is generated by the PPNR method (31)-(33),
there exist numbers 0 < q < 1 and s̄ such that for s ≥ s̄ the following bound holds

∥zs+1 − z∗∥ ≤ q∥zs − z∗∥. (50)

Proof. The sequence {zs} generated by PPNR method (31)-(33) satisfies the con-
ditions of Lemma 4.4 with "s = �s∥zs+1 − zs∥∞. We remind that lims→∞ "s = 0,
∑

"s <∞. Therefore

∥PRs+1(z
s)−zs+1∥ ≤ �s∥zs+1−zs∥∞ ≤ �s∥zs+1−zs∥ ≤ �s∥zs+1−z∗∥+�s∥zs−z∗∥

(51)
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Invoking Lemma 4.6 c) with z = z∗, z′ = zs we obtain

∥PRs+1(z
s)− z∗∥2 + ∥QRs+1(z

s)∥2 ≤ ∥zs − z∗∥2.
It follows from Lemma 4.6 a) that ∥QRs+1(z

s)∥2 = ∥PRs+1(z
s)− zs∥2, therefore

∥PRs+1(z
s)− z∗∥2 + ∥PRs+1(z

s)− zs∥2 ≤ ∥zs − z∗∥2. (52)

Combining (49) and (52) yields

∥PRs+1(z
s)− z∗∥2 ≤ (ā/ks)

2/(1 + (ā/ks)
2)∥zs − z∗∥2,

or

∥PRs+1(z
s)− z∗∥ ≤ 1∥zs − z∗∥, (53)

where 1 =
√

(ā/ks)2/(1 + (ā/ks)2). Note that taking ks large enough makes 1
small enough.

Therefore combining (51) and (53) and keeping in mind (32) and Lemma 4.4 we
have

∥zs+1 − z∗∥ ≤ ∥zs+1 − PRs+1(z
s)∥+ ∥PRs+1(z

s)− z∗∥
≤ �s∥zs+1 − z∗∥+ �s∥zs − z∗∥+ 1∥zs − z∗∥,

or

∥zs+1 − z∗∥ ≤ �s + 1
1− �s

∥zs − z∗∥.

By taking k0 > 0 large enough for any ks ≥ k0 we obtain 0 < 1 < 1 small enough.
Keeping in mind that �s → 0 from the last formula follows the existence of 0 < q < 1
such that (�s + 1)/(1− �s) ≤ q and formula (50) holds. Moreover, for any given
small enough 0 < q < 1 one can find such kq and sq that (50) holds true for any
ks ≥ kq and s ≥ sq.

6. Concluding remarks. The PPNRmethod (8)-(10) generates a bounded primal-
dual sequence {xs, ys} that any limit point (x̄, ȳ) ∈ X∗ × Y ∗. The results are true
under mild assumptions on the input data. The PPNR method (8)-(10) does not
require solving an unconstrained minimization problems at each step.

However, it may require several steps of an unconstrained minimization method
for finding the primal-dual approximation. Reducing numerical effort for finding
the approximation in (9) is critical for the numerical efficiency of PPNR method
(8)-(10).

One step of the PPNR method (5)-(7) is equivalent to solving for (x, y) the
primal-dual nonlinear system of equations (12)-(13). Application of Newton’s method
for solving the system (12)-(13) leads to the primal-dual PPNR method. Such ap-
proach has proven to be efficient for the NR methods (see [3, 10]). We expect that
the primal-dual PPNR method will reduce the computational effort per step and
at the same time improve the asymptotic convergence rate.
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