
Computational Optimization and Applications 14, 55–74 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Modified Barrier-Augmented Lagrangian Method
for Constrained Minimization

D. GOLDFARB∗
Columbia University, Dept. of IEOR, New York, NY, USA

R. POLYAK†

George Mason University, Dept. of OR, Fairfax, VA, USA

K. SCHEINBERG‡

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

I. YUZEFOVICH
Haifa University, Dept. of Mathematical Sciences, Haifa, Israel

Received April 3, 1996; Revised May 12, 1998; Accepted May 18, 1998

Abstract. We present and analyze an interior-exterior augmented Lagrangian method for solving constrained op-
timization problems with both inequality and equality constraints. This method, the modified barrier—augmented
Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods.
It is based on the MBAL function, which treats inequality constraints with a modified barrier term and equalities
with an augmented Lagrangian term. The MBAL method alternatively minimizes the MBAL function in the pri-
mal space and updates the Lagrange multipliers. For a large enough fixed barrier-penalty parameter the MBAL
method is shown to convergeQ-linearly under the standard second-order optimality conditions.Q-superlinear
convergence can be achieved by increasing the barrier-penalty parameter after each Lagrange multiplier update.
We consider a dual problem that is based on the MBAL function. We prove a basic duality theorem for it and show
that it has several important properties that fail to hold for the dual based on the classical Lagrangian.

1. Introduction

In this paper we develop a new method for solving constrained nonlinear optimization prob-
lems involving both inequality and equality constraints. Our method, the modified barrier—
augmented Lagrangian (MBAL) method, is a combination of the augmented Lagrangian
method for equality constraints of Hestenes [10] and Powell [14] and the modified barrier
function (MBF) method of Polyak [12]. Variants of the latter method have been considered
by Breitfeld and Shanno [4] and Conn et al. [5]. Since the modified barrier function can
be viewed as an interior augmented Lagrangian, the MBAL method can be viewed as an
interior-exterior augmented Lagrangian method.
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The idea of combining a barrier function and a penalty function approach to solve con-
strained optimization problems with both inequality and equality constraints was suggested
nearly thirty years ago by Fiacco and McCormick ([18]). Their interior-exterior method
uses a classical barrier function to treat the inequality constraints and a penalty function
to treat the equalities. In their approach the barrier-penalty parameter is the only means
by which the computational process can be controlled. Therefore to guarantee convergence
this parameter has to be increased to infinity, which leads to numerical problems due to the
ill-conditioning of the Hessian of the barrier-penalty function.

The MBAL function used in the MBAL method eliminates major drawbacks of the
barrier-penalty function while retaining its best features. In contrast with the barrier-penalty
function, the MBAL function exists at the solution and inherits the smoothness of the
objective and constraint functions in a neighborhood of that solution. Under standard second-
order optimality conditions the MBAL function has a unique global minimizer for any vector
of positive Lagrange multipliers for the inequality constraints and any vector of Lagrange
multipliers for the equality constraints when the barrier-penalty parameter is large enough.
The dual function based on the MBAL function is smooth and the dual problem based on
it has several important properties.

Finally, the MBAL method convergesQ-linearly for a fixed barrier-penalty parameter at a
rate that can be made as fast as desired by using a large enough value for the fixed parameter.
Since this parameter does not have to be increased to infinity to ensure convergence as in
the classical barrier-penalty approach the condition number of the Hessian of the MBAL
function remains bounded allowing Newton’s method to be applicable for minimizing the
MBAL function in a larger region.Q-superlinear convergence can be achieved by choosing
a sequence of penalty-barrier parameters tending to infinity.

Although the augmented Lagrangian method was originally designed for problems with
equality constraints, it was extended to handle inequality constraints by Rockafellar [15].
This extention has been well studied and shares many of the positive qualities of the MBAL
method (e.g., see Chapter 5 in [3]); however the augmented Lagrangian for inequality
constraints is differentiable only once even if the objective and constraint functions possess
higher differentiability. It is also possible to extend the modified barrier function method to
handle equality constraints by replacing each equality by two inequalities. This approach
not only increases the number of constraints but also, more importantly, introduces an
ill-conditioned barrier for the equalities; hence it is not recommended.

The main contribution of this paper is the demonstration that the MBAL method has a
rate of convergence that is up toQ-superlinear like the augmented Lagrangian and modified
barrier function methods, using proof techniques similar to those used in [3] and [12]. The
MBAL method converges globaly in the dual space. It converges globaly in the primal space
if global unconstrained optimization is performed on every iteration. Another contribution
is the development of some duality results based on the MBAL function.

Our paper is organized as follows. In the next section the general nonlinear programming
problem and the basic assumptions under which our convergence results hold are stated.
The MBAL function, on which our method is based, is introduced in Section 3. We describe
the MBAL method in Section 4 and present convergence and rate of convergence results
for it and discuss some aspects concerning the practical implementation of the method in
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Section 5. Proofs of the main results presented in Section 5 are given in Section 6. Duality
results based on the MBAL function are discussed in Section 7. An appendix containing
two technical lemmas concludes the paper.

2. Problem statement and basic assumptions

In this paper we consider the following general nonlinear programming problem:

minimize f0(x)

s.t. fi (x) ≥ 0 i = 1, . . . , p,

gj (x) = 0 j = 1, . . . ,q,
(1)

wherex ∈ Rn, and we assume thatf0, f1, . . . , f p andg1, . . . , gq areC2 functions from
Rn→ R.

The classical Lagrangian for this problem is:

L(x, u, v) = f0(x)− uT f (x)− vT g(x),

whereu ∈ Rp
+, v ∈ Rq and f (x) = ( f1(x), . . . , f p(x)) andg(x) = (g1(x), . . . , gq(x)) are

column vectors.Rp
+ denotes the nonnegative orthant ofRp, andRp

++ its interior.
Let x∗ be a strict local minimum of problem (1) andI ∗ = {i : fi (x∗) = 0} = {1, . . . , r }

be the set of indices of the inequality constraints that are active at that point. Throughout
this paper we assume that the standard second-order sufficient conditions for an isolated
local minimum hold atx∗, namely:

• C1. The gradients∇ fi (x∗), i = 1, . . . , r and∇gj (x∗), j = 1, . . . ,q arelinearly inde-
pendent; hence, there exists a unique Lagrange multiplier vectorw∗ = (u∗, v∗)∈Rp

+ ×
Rq such that:

∇x L(x∗, u∗, v∗) = ∇ f0(x
∗)−

p∑
i=1

u∗i ∇ fi (x
∗)−

q∑
j=1

v∗j∇gj (x
∗) = 0. (2)

• C2. The Hessian of the LagrangianL(x, u, v) with respect tox at (x∗, u∗, v∗),

∇2
xxL(x∗, u∗, v∗) = ∇2 f0(x

∗)−
p∑

i=1

u∗i ∇2 fi (x
∗)−

q∑
j=1

v∗j∇2gj (x
∗),

is positive definiteon the affine subspace tangent to the feasible set atx∗; i.e.,

yT∇2
xxL(x∗, u∗, v∗)y > 0, (3)

for all y ∈ Y ⊂ Rn, where

Y = {y : yT∇ fi (x
∗) = 0, i = 1, . . . , r, yT∇gj (x

∗) = 0, j = 1, . . . ,q}.
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• C3. Strong complementary slacknessholds for the inequality constraints; i.e.

u∗i fi (x
∗) = 0, i = 1, . . . , p (4)

u∗i > 0, i = 1, . . . , r ; fi (x
∗) > 0, i = r + 1, . . . , p. (5)

3. The modified barrier-augmented Lagrangian function

We define the modified barrier—augmented Lagrangian functionF(x, u, v, k): Rn×Rp
+×

Rq × R++ → R by the formula:

F(x, u, v, k) =


f0(x) − k−1

p∑
i=1

ui ln(k fi (x)+ 1)

−
q∑

j=1

v j gj (x)+ k/2
q∑

j=1

g2
j (x), if x ∈ intÄk

∞, if x 6∈ intÄk,

whereÄk={x : fi (x) ≥ −k−1, i = 1, . . . , p}. F(x, u, v, k) contains modified barrier terms
for the inequality constraints in (1) and augmented Lagrangian terms for the equality con-
straints in (1). If the complementary slackness condition (4) holds at the point(x∗, u∗, v∗),
then for anyk > 0:

(P1) F(x∗, u∗, v∗, k) = f0(x
∗),

(P2) ∇x F(x∗, u∗, v∗, k)

= ∇ f0(x
∗)−

p∑
i=1

u∗i
k fi (x∗)+ 1

∇ fi (x
∗)−

q∑
j=1

(v∗j − kgj (x
∗))∇g(x∗)

= ∇ f0(x
∗)−

p∑
i=1

u∗i ∇ fi (x
∗)−

q∑
j=1

v∗j∇gj (x
∗) = 0,

(P3) ∇2
xxF(x∗, u∗, v∗, k)

= ∇2
xxL(x∗, u∗, v∗)+ k∇ f T (x∗)U ∗∇ f (x∗)+ k∇gT (x∗)∇g(x∗).

Here∇ f (x) and∇g(x) are the Jacobian matrices of the vector functionsf andg respec-
tively, andU ∗ is a diagonal matrix with diagonal entriesu∗i , i = 1, . . . , p.

In contrast with the classical barrier-penalty function, the MBAL function is defined
at x∗ and has the same order of smoothness as the functionsfi (x), i = 1, . . . , p, and
gj (x), j = 1, . . . ,q in a neighborhood of(x∗, u∗, v∗). Moreover, from property P3, and
Lemma A.1 in the Appendix, we have

Theorem 3.1. Suppose that the second-order optimality conditionsC1–C3hold at x∗.
Then there exists a k0 > 0 such that, for every k≥ k0, the matrix∇2

xxF(x∗, u∗, v∗, k) is
positive definite; i.e., F(x, u∗, v∗, k) is strongly convex at x∗.
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4. The modified barrier-augmented Lagrangian method

If the second-order sufficient conditions C1–C3 hold at a solutionx∗ to problem (1), it
follows from properties P1–P3 and Theorem 3.1 that to solve problem (1)—i.e., to find a
global minimizerx∗—one need only find the unconstrained minimum of the smooth strongly
convex functionF(x, u∗, v∗, k) in a neighborhood ofx∗, for k > 0, fixed but large enough.

We shall show that, if the vector of Lagrange multipliersw = (u, v) ∈ Rp
++ × Rq is

close enough tow∗ = (u∗, v∗),
x̂ = x̂(u, v, k) = argmin{F(x, u, v, k) | x ∈ Rn}

is a good approximation tox∗. It turns out that the minimizer̂x can be used to improve the
approximationw = (u, v) to the optimal Lagrange multipliersw∗ = (u∗, v∗) provided that
the fixed penalty-barrier parameterk> 0 is sufficiently large. Consequently, by alternatively
minimizing F(x, u, v, k) and updating the Lagrange multipliers(u, v), we are able to solve
problem (1) starting fromanyinitial point (x, w), x ∈ intÄk andw ≡ (u, v) ∈ Rp

++ ×Rq,
for a choice of the penalty-barrier parameterk that is large enough; i.e., we have a globally
convergent method.

Let us consider this in more detail. Assuming that the unconstrained minimizerx̂ =
x̂(u, v, k) exists, we have

∇x F(x̂, u, v, k)

= ∇ f0(x̂)−
p∑

i=1

ui

(k fi (x̂)+ 1)
∇ fi (x̂)−

q∑
j=1

(v j − kgj (x̂))∇gj (x̂) = 0. (6)

After defining new Lagrange multipliers by the formulas

ûi = ui

k fi (x̂)+ 1
, i = 1, . . . , p, (7)

v̂ j = v j − kgj (x̂), l = 1, . . . ,q, (8)

we can rewrite (6) as

∇x F(x̂, û, v̂, k) = ∇ f0(x̂)−
p∑

i=1

ûi∇ fi (x̂)−
q∑

j=1

v̂ j∇gj (x̂)

= ∇x L(x̂, û, v̂) = 0. (9)

Therefore, the unconstrained minimizerx̂ of F(x, u, v, k) is a stationary point of the
classical LagrangianL(x, û, v̂). In the convex casêx is the minimizer of this Lagrangian.

Let ŵ(u, v, k) = (û, v̂) = ŵ. First, ŵ(w∗, k) = w∗ for any fixedk > 0; i.e.,w∗ is a
fixed point of the mappingw→ ŵ(w, k). Second, it will be shown later that

‖ŵ − w∗‖ ≤ Ck−1‖w − w∗‖ (10)

and

‖x̂ − x∗‖ ≤ Ck−1‖w − w∗‖, (11)
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whereC > 0 is independent ofk > 0. Here and throughout the paper the norm‖·‖ denotes
the l∞-norm‖·‖∞. In other words, by finding an unconstrained minimizer for the MBAL
function F(x, w, k) in x and updating the Lagrange multipliers we can shrink the distance
between(x, w) and(x∗, w∗) by a factor that can be made arbitrarily small by increasing
the barrier-penalty parameterk > 0.

The above reasoning gives rise to what we call the MBAL method, whoses-th iteration is:

Given a penalty parameter ks > 0 and estimates(xs, us, vs) of (x∗, u∗, v∗), where
us ∈ Rp

++, vs ∈ Rq and xs ∈ intÄk, compute

xs+1 = argmin{F(x, us, vs, ks) : x ∈ Rn}, (12)

us+1
i = us

i

ks fi (xs+1)+ 1
, i = 1, . . . , p, (13)

vs+1
j = vs

j − ksgj (x
s+1), j = 1, . . . ,q. (14)

In the next section we prove that the MBAL method with a fixed barrier-penalty parameter
ks converges linearly whenever the second-order optimality conditions are fulfilled and
ks > 0 is large enough. Although this result holds for fixedks, and ill-conditioning of the
Hessian∇2

xxF(x, w, ks) is less of a problem asxs→ x∗ in this case, it is useful in practice
to increase theks from step to step to obtain superlinear convergence. However, one has to
be careful to make sure that the current primal minimizerxs+1 lies inÄks+1. One way to get
around this difficulty is to replace the logarithmic barrier term by a quadratic barrier when
the argument of the barrier term is smaller than some given value (e.g., see [2]). A truncated
modified barrier method incorporating this approach has been used successfully to solve
large-scale truss-topology design problems (see [1] and [2]) and encouraging numerical
results have been reported recently by Breitfeld and Shanno [4] and by Nash et al. [11]
for different versions of this method. Alternative ways of controlling the increase inks and
obtaining a good rate of convergence for shifted barriers are described in [5].

We now introduce some notation, that is used in the rest of the paper. Leta andbbe vectors
in Rp. ThenaTb denotes the usual scalar product.ab denotes the vector with components
ai bi , a/b or ab−1 denotes the vector with componentsai /bi and ln(a) denotes the vector
with components ln(ai ). That is, we denote the componentwise operations on vectors as if
the vectors are scalars. We also usea(r ) anda(p−r ) to denote the vectors that consist of the
first r and the lastp− r components, respectively, of the vectora, ande to denote a vector
of ones of appropriate dimension.

5. Convergence results

In the proof of our main theorems we need‖w−w
∗‖

k to be small, and hence we require the
neighborhood ofw∗ ≡ (u∗, v∗) to depend onk. Therefore, for a givenδ > 0 andk0 > 0,
we define the following set

D(w∗, δ, k0) = {(w, k) = (u, v, k) : ‖w−w∗‖ ≤ δk, u(r ) > 0, u(p−r ) ≥ 0, k ≥ k0},
which is a truncated cone. We can now state our main results.
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Theorem 5.1. Suppose that conditionsC1–C3hold at a strict local minimum x∗ of prob-
lem (1). Then there exist k0 > 0 and δ > 0 such that for any triple(u, v, k) = (w, k) ∈
D(w∗, δ, k0, ), with ‖w‖ bounded, the following statements are true:

• F(x, u, v, k) has a unique minimizer̂x ≡ x̂(u, v, k) with respect to x within some open
ball centered at x∗; i.e.,

∇x F(x̂, u, v, k) = 0

and F(x, u, v, k) is strongly convex in a neighborhood ofx̂.
• For the triple (x̂, û, v̂) : û = u(k f (x̂) + 1)−1, v̂ = v − kg(x̂) the following estimates

hold

‖x̂ − x∗‖ ≤ C

k
‖w − w∗‖,

(15)

‖ŵ − w∗‖ ≤ C

k
‖w − w∗‖,

whereŵ = (û, v̂) and C> 0 is independent of k.

To prove the global convergence of the MBAL method we require the following addi-
tional assumption:

A1. There exists ak0 > 0 such that, for all fixedu ≥ 0 andv and all finiteα, the level sets

Lα(u, v, k0) = {x ∈ Rn | F(x, u, v, k0) ≤ α}

are bounded.

Theorem 5.2. Suppose that conditionsC1–C3hold at a (global) solution x∗ to prob-
lem (1) and assumptionA1 holds. Then there is a k0 > 0 large enough so that for any
triple (u, v, k) ∈ D(w∗, σ, k0) the vectorx̂ in Theorem5.1 is the global minimizer of
F(x, u, v, k).

Proofs of the above results are given in the next section. First, however, we discuss
Assumption A1 and show that it is not unduly restrictive and consider some of the important
consequences and extensions of these results.

It is easy to verify that Assumption A1 is satisfied in the following cases given that
f0, f1, . . . , f p andg1, . . . , gq areC2 functions fromRn to R.

(i) Problem (1) is a convex programming problem (i.e.,f0(x) and− fi (x), i = 1, . . . , p,
are convex functions andgj , j = 1, . . . ,q, are linear functions) whose set of optimal
solutions is bounded.

(ii) There exists ak0 such that the setÄk0 is compact.
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(iii) There exists ak0 > 0 andτ > 0 such that

max
{

max
1≤i≤p

{
fi (x) | x ∈ Äk0

}} ≤ τ
and f0(x) is bounded below onÄk0.

The above cases demonstrate that Assumption A1 is likely to be satisfied by most non-
linear programming problems that arise in practice. It also follows from this assump-
tion that, for allk ≥ k0 and any fixedu∈Rp

+ andv ∈Rq and all finiteα, the level sets
Lα(u, v, k) are bounded. To prove this we note that it follows from the mean value formula
ln(1+ t) = t/(1+ τ), whereτ is some scalar between 0 andt , that ln(1+ t) ≥ t/(1+ t)
for all t > −1. Hence

d

dk
F(x, u, v, k) = 1

k2

p∑
i=1

ui [ln(k fi (x)+ 1)− k fi (x)/(k fi (x)+ 1)]

+ 1

2

q∑
j=1

g2
j (x) ≥ 0,

which implies that for allk ≥ k0, F(x, u, v, k) ≥ F(x, u, v, k0) and Lα(u, v, k)⊆
Lα(u, v, k0).

Theorems 5.1 and 5.2 have several important consequences which we now discuss.
The MBAL method reduces the solution of problem (1) to a sequence of unconstrained

minimization problems. Moreover, even though problem (1) is nonconvex, Theorem 5.1
shows that these unconstrained minimization problems are smooth and the MBAL function
is strongly convex in a neighborhood of each unconstrained minimizer as long as the standard
second-order optimality conditions are satisfied and the finite barrier-penalty parameterk
is chosen large enough.

A strong point of the MBAL method as stated by (12)–(14) is that it determines a global
minimizerx∗ of problem (1). However, this requires finding the unconstrained global mini-
mizer of the MBAL function on each iteration, which is a weakness because this function is
not, in general, convex. After the first iteration, this global minimization is not that difficult
if a large enough barrier-penalty parameter is chosen, since by Theorem 5.1,xs, the global
minimizer found on the last iteration, is then close tox∗ and hence, toxs+1, and the MBAL
function is strongly convex in a neighborhood ofxs+1.

It is easy to see from Theorems 5.1 and 5.2 that if the MBAL method starts at(u0, v0, k0)

∈ D(w∗, δ, k0), then all iterates(us, vs, ks) ∈ D(w∗, δ, k0) andws remains bounded as
long asks is chosen so thatC/ks ≤ 1. Thus, one has complete freedom in choosing the
initial estimatesu0 ∈ Rp

++ andv0 ∈ Rq of the optimal Lagrange multipliersu∗ andv∗;
i.e., the MBAL method is globally convergent, assuming that the solution to problem (1)
is unique. However, if the initial estimatesu0 andv0 are far fromu∗ andv∗, one must pay
the price of using suitably large barrier-penalty parametersks.

If the parametersks remain finite, it follows from Theorems 5.1 and 5.2 that the MBAL
method converges at least Q-linearly. A superlinear rate of convergence for the MBAL
method is achieved if the sequence of barrier-penalty parameters{ks} is chosen so that
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lims→∞ ks = ∞. The price paid for this, however, is that the subproblems that need to be
solved become increasingly ill-conditioned as in the classical penalty-barrier method.

Instead of a single barrier-penalty parameterk, one can choose a barrier parameter for
each inequality constraint and a penalty parameter for each equality constraint, i.e., instead
of the MBAL function, one can consider the function

F(x, u, v, K ) = f0(x)−
p∑

i=1

k−1
i ui ln(ki fi (x)+ 1)−

q∑
j=1

v j gj (x)+
q∑

j=1

κ j

2
g2

j (x),

whereK = (k1, . . . , kp, κ1, . . . , κq). All basic results of Theorems 3.1, 5.1 and 5.2 remain
valid as long as min{ki , κ j } = k ≥ k0 andk0 is large enough.

We note that simple bound constraints on the variables,ai ≤ xi ≤ bi , i = 1, . . . ,n are
handled by the MBAL method just like any other inequality constraints, in contrast with
approaches like the one proposed in [5] that treat them in a special manner. Interestingly,
such constraints have the effect of adding positive diagonal terms

dj = k
[
u(1)j (k(bj − xj )+ 1)−2+ u(2)j (k(xj − aj )+ 1)−2

]
to the Hessian of the MBAL function increasing its positive definiteness, whereu(1)j and
u(2)j are the positive Lagrange multipliers corresponding to thej th upper and lower bounds,
respectively.

Suppose that in each iteration of the MBAL method (12)–(14) the global minimization of
the MBAL function is replaced by a local minimization. It then follows from Theorem 5.1
that such a local version of the MBAL method will be convergent to a strict local minimum
x∗ of problem (1), provided that the local minimizersxs+1 of F(x, us, vs, ks) computed by
the method are those local minimizers ofF(x, us, vs, ks) that are closest tox∗. Fortunately,
this will usually happen if the unconstrained minimization routine that is used to compute
xs+1 is a descent method that is started from the previous local minimizerxs. If on the other
hand, the local minimizersxs+1 are not in the neighborhood of the same local minimizerx∗

after some iteration, then our convergence analysis does not apply. Similar remarks apply
to “global” MBAL method if problem (1) has multiple solutions.

The MBAL method (12)–(14) involves finding the global unconstrained minimizerx̂ of
the MBAL function on each iteration. As this requires an infinite number of operations in
general, the “pure” MBAL method is not practical. Rather, only an approximationx̄ to the
exact minimizerx̂ can be computed in practice. Analogous remarks apply to the “local”
version of the MBAL method wherêx is a local unconstrained minimizer of the MBAL
function andx̄ is an approximation tôx. If x̄ is required to satisfy, for someγ > 0, the
inequality

‖∇x F(x̄, u, v, k)‖ ≤ γ k−1‖(k f (x̄)+ 1)−1u− u‖ + γ ‖g(x̄)‖, (16)

then an analog of Theorem 5.1 withx̂ replaced byx̄, ŵ by w̄ (computed usinḡx) andC
by C(1+ γ ) can be proved. In particular, using arguments similar to those used to prove
Theorem 5 in [12] and Lemma 2 in [13], the following assertion can be proved.
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Assertion 5.3. If the assumptions of Theorem5.1 are satisfied then there exists anx̄
within some open ball computed at x∗ that satisfies(16)and

‖x̄ − x∗‖ ≤ C(1+ γ )
k

‖w − w∗‖,

‖w̄ − w∗‖ ≤ C(1+ γ )
k

‖w − w∗‖.

6. Proof of Theorems 5.1 and 5.2

Before we prove the Theorem 5.1 let us consider the main ideas behind our proof. One can
rewrite (6)–(8) as the following system of equations forx̂, û(r ) andv̂:

∇ f0(x̂)−
r∑

i=1

ûi∇ fi (x̂)−
q∑

j=1

v̂ j∇gj (x̂)− h
(
x̂, u(p−r ), k

) = 0, (17)

where

û(r ) = u
(
k f(r )(x̂)+ er

)−1
, (18)

v̂ = v − kg(x̂), (19)

and

h
(
x̂, u(p−r ), k

) = p∑
i=r+1

ui (k fi (x̂)+ 1)−1∇ fi (x̂). (20)

It is easy to see that̂x = x∗, û(r ) = u∗(r ) andv̂ = v∗ satisfy this system for anyk > 0 and
û(p−r ) = u∗(p−r ). Moreover, fork0 large enough we shall show that for any triple(u, v, k) =
(w, k) ∈ D(w∗, δ, k0) one can obtain the solution̂x = x̂(u, v, k), û(r ) = û(r )(u, v, k)
and v̂ = v̂(u, v, k) to the system (17)–(19). Taking into account the smoothness of this
solution as a function of(w, k)= (u, v, k), we can compute its Jacobian and prove under the
second-order optimality conditions C1–C3 that, for any fixedk ≥ k0, there existsC > 0,
independent ofk, such that

max
{‖∇w x̂(w, k)‖, ∥∥∇wû(r )(w, k)

∥∥, ‖∇wv̂(w, k)‖} ≤ C, (21)

for any(w, k) ∈ D(w∗, δ, k0). Sincex∗ = x̂(w∗, k), u∗(r ) = û(r )(w∗, k) andv∗ = v̂(w∗, k),
we can then bound‖x̂ − x∗‖, ‖û(r ) − u∗(r )‖ and‖v̂ − v∗‖ in terms of‖w − w∗‖. We then
show thatF(x, u, v, k) is strongly convex at̂x.

Proof of Theorem 5.1: First we have to prove thatF(x, u, v, k) has a local minimizer
x̂ whenever(w, k) ∈ D(w∗, δ, k0). For convenience let us shift the neighborhood ofw∗

to an appropriate neighborhood of the origin in the dual space by introducing the vector
t = (tu, tv) = (w − w∗)k−1, where

tu = (u− u∗)k−1 and tv = (v − v∗)k−1. (22)
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Then in terms oft , the vector of updated Lagrange multipliers corresponding to the active
constraintsû(r ) = (ktu(r ) + u∗(r ))(k f(r )(x̂) + er )

−1. Therefore,k−1(ktu(r ) + u∗(r ))(k f(r )(x) +
er )
−1 − k−1û(r ) = 0. Keeping in mind thatu∗(p−r ) = 0, the updated Lagrange multipliers

corresponding to the passive constraints

û(p−r )
(
x, tu

(p−r ), k
) = ktu(p−r )

(
k f(p−r )(x)+ e(p−r )

)−1
. (23)

Let us also define

h
(
x, tu

(p−r ), k
) = p∑

i=r+1

ûi
(
x, tu

i , k
)∇ fi (x) = k

p∑
i=r+1

tu
i (k fi (x)+ 1)−1∇ fi (x).

It is clear that the vector-functionh(x, tu
(p−r ), k) is smooth up to second-order and

h(x∗, 0, k) = 0, ∇xh(x∗, 0, k) = 0n×n,

∇û(r )h(x
∗, 0, k) = 0n×r , ∇v̂h(x∗, 0, k) = 0n×q.

For k > 0, consider the mapping8k(x, û(r ), v̂, t) : Rn+r+p+2q → Rn+r+q:

8k
(
x, û(r ), v̂, t

) =

∇ f0(x)−∇ f(r )(x)T û(r ) −∇g(x)T v̂ − h

(
x, tu

(p−r ), k
)

k−1
(
ktu(r ) + u∗(r )

)(
k f(r )(x)+ er

)−1− k−1û(r )

k−1(ktv + v∗)− g(x)− k−1v̂


corresponding to the system of Eqs. (17)–(19). We now show that8k(·) satisfies the con-
ditions of the implicit function theorem and apply that theorem to obtain estimates of the
proximity of (x̂, û, v̂) to (x∗, u∗, v∗).

From condition C1 and the formulas for the Lagrange multiplier updates,

8k
(
x∗, u∗(r ), v

∗, 0
) = 0.

The Jacobian of8k(x, û(r ), v̂, t) with respect to(x, û(r ), v̂), at (x, û(r ), v̂, t)= (x∗, u∗(r ),
v∗, 0),

∇8k ≡ ∇(x,û(r ),v̂)
(
8k
(
x∗, u∗(r ), v

∗, 0
))

=


∇2

xxL(x∗, u∗, v∗) −∇x f T
(r )(x

∗) −∇xgT (x∗)

−U ∗(r )∇x f(r )(x∗) −k−1I r 0r×q

−∇xg(x∗) 0q×r −k−1I q

 , (24)

whereU ∗(r ) = diag(u∗i )
r
i=1.

Fork = ∞ this matrix is nonsingular. This can be proved by trivially extending Lemma
1.27 in [3]. Thus, fork large enough∇8k is nonsingular and there exists a scalarρ > 0
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independent ofk ≥ k0 such that‖∇8−1
k ‖ ≤ ρ. Consequently, it follows from the second

implicit function theorem ([3], p. 12) applied to the system8k(x, û(r ), v̂, t) = 0 that there
exist smooth vector-functionsx(t), û(r )(t) andv̂(t) such thatx(0) = x∗, û(r )(0) = u∗(r ) and
v̂(0) = v∗, and in the neighborhoodS(δ) = {(t) : ‖t‖ ≤ δ} andk ≥ k0),

8k
(
x(t), û(r )(t), v̂(t), t

) ≡ 0. (25)

Therefore, forx(·) ≡ x(t) we obtain from the firstn equations of (25)

∇x F(x(·)), û, v̂, k) = ∇ f0(x(·))−
p∑

i=1

ûi (·)∇ fi (x(·))−
q∑

j=1

v̂ j (·)∇gj (x(·)) = 0;

(26)

i.e., x(·) is a stationary point of the MBAL function. Before we show thatx(·) is a strict
local minimum of this function, we first prove the validity the estimates (15).

Let û(p−r )(t, k) = ûp−r (x(t, k), tu
(p−r ), k) andα = min{ fi (x∗) : r + 1 ≤ i ≤ p}. Since

as t → 0, x(t) → x∗, fi (x(t)) → fi (x∗) ≥ α > 0, i = r + 1, . . . , p, it follows that
fi (x(t)) ≥ α/2 for i = r + 1, . . . , p and anyt ∈ S(δ) for δ > 0 small enough. Hence,
from (23) and the definition oft(p−r ), we have

û(p−r )(·) ≤
u(p−r ) − u∗(p−r )

kα/2

or, sinceu∗(p−r ) = 0,

∥∥û(p−r )(·)− u∗(p−r )

∥∥= ∥∥û(p−r )(·)
∥∥ ≤ 2α−1k−1

∥∥u(p−r ) − u∗(p−r )

∥∥. (27)

From the implicit function theorem we have att = 0

∇t
(
x(t), û(r )(t), v̂(t)

)∣∣
t=0 = −∇8−1

k ∇t8k
(
x∗, u∗(r ), v

∗, t
)∣∣

t=0.

Hence, fort close enough to 0 it follows from the bound on∇8k (see (24) and the discussion
below (24)), that∥∥(x(t), û(r )(t), v̂(t))− (x∗, u∗, v∗)∥∥≤ 1/ρ

∥∥8k
(
x∗, u∗(r ), v

∗, t
)−8k

(
x∗, u∗(r ), v

∗, 0
)∥∥

(28)

This estimate can also be derived from an extension of the implicit function theorem given
in [7].

From the definition of8k

‖8k(x
∗, u∗, v∗, t)−8k(x

∗, u∗, v∗, 0)‖ ≤ ∥∥h(x∗, t(p−r ), k
)∥∥+ ‖tu‖ + ‖tv‖, (29)
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where

∥∥h
(
x∗, t(p−r ), k

)∥∥ = k

∥∥∥∥∥ p∑
i=r+1

tu
i (k fi (x)+ 1)−1∇ fi (x

∗)

∥∥∥∥∥
≤
∥∥∥∥∥ p∑

i=r+1

(ui − u∗i )
αk

∇ fi (x
∗)

∥∥∥∥∥ ≤ C1

k

∥∥u(p−r ) − u∗(p−r )

∥∥ (30)

for some constantC1.
Recalling the definition (22) oftu andtv and combining (27)–(31) we conclude that, for

k large enough, there exists a constantC, independent ofk such that

‖x̂ − x∗‖ = ‖x̂(w, k)− x∗‖ ≤ C

k
‖w − w∗‖,

(31)
‖ŵ − w∗‖ = ‖ŵ(w, k)− w∗‖ ≤ C

k
‖w − w∗‖,

From (26) it follows that̂x is a stationary point ofF(x, u, v, k). To show that it is a local
minimum we now prove thatF(x, u, v, k) is strongly convex in a neighborhood ofx̂.

∇2
xxF(x̂, u, v, k) = ∇2 f0(x̂)−

p∑
i=1

ûi∇2 fi (x̂)+ k∇ f (x̂)TÛ D̂−1∇ f (x̂)

−
q∑

j=1

v̂ j∇2gj (x̂)+ k∇gj (x̂)
T∇gj (x̂)

= ∇2
xxL(x̂, û, v̂)+ k∇ f (x̂)TÛ D̂−1∇ f (x̂)+ k∇g(x̂)T∇g(x̂),

whereÛ = diag[ui (k fi (x̂)+ 1)−1] p
1 , D̂ = diag[(k fi (x̂)+ 1)] p

1 . Consider thei th diagonal
element ofÛ D̂−1, where 1≤ i ≤ r . For all (w, k) ∈ D(w∗, δ, k0), k0 > 0 large enough,
andδ > 0 small enough, it follows from the Lipschitz property of theC2 function fi (x), in
any bounded neighborhood ofx∗, from the fact thatfi (x∗) = 0 and from (31) that

k fi (x̂) ≤ k( fi (x̂)− fi (x
∗)) ≤ kMi ‖x̂ − x∗‖ ≤ Mi C‖w − w∗‖,

whereMi is a Lipschitz constant forfi (x). Sincew is in a compact set,k fi (x̂) + 1 is
bounded independent ofk; hence, for sufficiently largek0 > 0 and sufficiently smallδ > 0,
it follows from (31) and the fact thatu∗i > 0 thatûi (k fi (x̂)+ 1)−1 ≥ µi > 0, whereµi is
independent ofk. Also from (31) we have

∇2
xxL(x̂, û, v̂) ∼= ∇2

xxL(x∗, u∗, v∗), ∇ f (x̂) ∼= ∇ f (x∗), and ∇g(x̂) ∼= ∇g(x∗).

Therefore,

∇2
xxF(x̂, u, v, k)

∼= ∇2
xxL(x∗, u∗, v∗)+ k∇ f (x∗)TÛ D̂−1∇ f (x∗)+ k∇g(x∗)∇g(x∗)T ,
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and it then follows from optimality condition C2 and a lemma of Debreu [6; p. 296] (see
also Lemma 3 in [9]), that there existsk0 > 0 large enough, such that for allk ≥ k0,
∇2

xxF(x̂, u, v, k) is positive definite; i.e.,F(x, u, v, k) is strongly convex at̂x, for x̂ in a
neighborhood ofx∗. Hencex̂ is a local minimum ofF(x, u, v, k). 2

Proof of Theorem 5.2: Since from Theorem 5.1,̂x is the minimizer ofF(x, u, v, k) in a
neighborhood ofx∗ andg(x∗) = 0, f (x∗) ≥ 0 andu ≥ 0,

F(x̂, u, v, k) ≤ F(x∗, u, v, k)

= f0(x
∗)− k−1uT ln(k f (x∗)+ e)− vT g(x∗)+ k

2
‖g(x∗)‖22 ≤ f0(x

∗). (32)

Now suppose that there exists a vectorx̃ ∈ Rn and a number̃λ > 0 such that

F(x̃, u, v, k) ≤ F(x̂, u, v, k)− λ̃.
Then from (32) and the definition ofF(x, u, v, k), x̃ ∈ Äk, and we obtain

F(x̃, u, v, k) = f0(x̃)− k−1
p∑

i=1

ui ln(k fi (x̃)+ 1)− vT g(x̃)+ k

2
‖g(x̃)‖22

≤ f0(x
∗)− λ̃.

Hence

f0(x̃) ≤ f0(x
∗)+ k−1

∑
i : fi (x̃)>0

ui ln(k fi (x̃)+ 1)+ vT g(x̃)− k

2
‖g(x̃)‖22− λ̃

= f0(x
∗)+ k−1

∑
i : fi (x̃)>0

ui ln(k fi (x̃)+ 1)− λ̃− 1

2

∥∥∥∥√kg(x̃)− v√
k

∥∥∥∥2

2

+ 1

2k
‖v‖22. (33)

From the boundedness ofu andv (recall thatw is bounded), Assumption A1 (recall that
the level setL f0(x∗)(u, v, k) ⊆ L f0(x∗)(u, v, k0)) and the continuity offi , i = 1, . . . , p, we
have that

k−1
∑

i : fi (x̃)>0

ui ln(k fi (x̃)+ 1) = O(k−1 ln k)

and

1

2k
‖v‖22 = O(k−1).

Hence from (33)

f0(x̃) ≤ f0(x
∗)− λ̃+ O(k−1 ln k)+ O(k−1)− 1

2
‖
√

kg(x̃)− v√
k
‖22

≤ f0(x
∗)− λ̃+ O(k−1 ln k)+ O(k−1). (34)
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Therefore fork > 0 large enough

f0(x̃) ≤ f0(x
∗)− λ̃

2
. (35)

We show now that for largek > 0, x̃ has to be “close” to the feasible region of problem
(1). Indeed, from the first inequality in (34) and Assumption A1 we have that

1

2

∥∥∥∥√kg(x̃)− v√
k

∥∥∥∥2

2

≤ f0(x
∗)− f0+ O(k−1)+ O(k−1 ln k),

where f0 = inf{ f0(x) | x ∈ L f0(x∗)(u, v, k0)} > −∞. Hence‖√kg(x̃)− v√
k
‖22 is bounded

from above, which implies that

‖g(x̃)‖22 ≤ O(k−1).

Let Ǟk = {x : fi (x) ≥ −k−1, i = 1, . . . , p, |gj (x)| ≤ O(k−
1
2 ), j = 1, . . . ,q}. Then

x̃ ∈ Ǟk by the above reasoning and the fact that‖ · ‖2 ≥ ‖ · ‖∞. Hence

f0(x̃) ≥ min{ f0(x) : x ∈ Ǟk}.
By the nondegeneracy assumptions C2–C3 and Theorem 6 of [[8], p. 34], which quantifies
how a local minimum of problem (1) and its objective value change when that problem is
slightly perturbed, and recalling thatx∗ is a global minimum of problem (1) we obtain

f0(x̃) ≥ f0(x
∗)− k−1

r∑
i=1

u∗i − k−
1
2

q∑
j=1

v∗j .

Therefore, fork ≥ k0 andk0 > 0 large enough we have

f0(x̃) ≥ f0(x
∗)− λ̃

4
,

which contradicts (35). This completes the proof of the theorem. 2

7. Dual problems

While the classical Lagrangian is of great importance in constrained optimization, it has
well known drawbacks. First, its unconstrained minimum may fail to exist even for optimal
Lagrange multipliers and even when the second-order optimality conditions are fulfilled.
Second, the dual function that is based on it is, in general, not smooth even if the functions
from which it is formed are smooth.

We show in this section that these basic drawbacks are eliminated by using the MBAL
function. Moreover, the dual problem based on this function has some important properties
that the dual problem based on the classical Lagrangian lacks. The results below are gene-
ralization of results by Rockafellar in [16] for problems with both equality and inequality
constraints.
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The dual function and the dual problem based on the classical Lagrangian for problem
(1) are, respectively,

ψ(w) = ψ(u, v) = inf
x∈Rn

L(x, u, v) (36)

and

w∗ = (u∗, v∗) = argmax{ψ(u, v) | u ∈ Rp
+, v ∈ Rq}. (37)

Consider now the dual function and the dual problem corresponding to the MBAL func-
tion F(x, u, v, k):

φk(w) = φk(u, v) = inf
x∈Rn

F(x, u, v, k) (38)

and

w∗ = argmax{φk(w) |w ∈ Rp
+ × Rq}. (39)

Both dual functionsψ(w) andφk(w) are concave and both dual problems (37) and (39)
are convex programming problems. However strong duality only holds in general for the
“augmented” dual problem (39). Before proving this we first state and prove a result about
the continuous differentiability ofφk(w).

Lemma 7.1. If AssumptionA1 holds, then there exists a k0 > 0 and δ > 0 such that
φk(w) is twice continuously differentiable in D(w∗, δ, k0).

Proof: Clearly,φk(w) is concave for everyk> 0. Ifw ∈ D(w∗, δ, k0) then by Theorems 5.1
and 5.2,F(x, u, v, k)has a unique minimizer̂x ≡ x̂(w, k)and is strongly convex in a neigh-
borhood ofx̂. Therefore,φk(w) = minx∈Rn F(x, w, k) = F(x̂(w, k), w, k) is smooth and
∇wφk(w) = ∇w x̂(·)∇x F(x̂, w, k)+∇wF(x̂, w, k). Moreover, fork ≥ k0

x̂(w∗, k) = x∗.

Since∇x F(x, w, k) = 0 atx = x̂(w, k) it follows that

∇wφk(w) = ∇wF(x̂, w, k) = −[k−1(ln(k f (x̂(·))+ 1)T , g(x̂(·))]T .

and

∇2
wwφk(·) = ∇w x̂(·)∇2

xwF(·). (40)

By differentiating∇x F(x̂, w, k) = 0, with respect tow we obtain

∇w x̂(·) = −∇2
wx F(x̂(·), w, k) · (∇2

xxF(x̂(·), w, k))−1
,
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which when substituted into (40) yields

∇2
wwφk(·) = −∇2

wx F(·)(∇2
xxF(x̂(·), w, k))−1∇2

xwF(·). (41)

Note that∇2
xxF(·)−1 exists becauseF(x, w, k) is strongly convex in a neighborhood ofx̂.

Finally,

∇2
xwF(·) = ∇2

wx F(·)T = −[∇ f (x̂(·))T D̂, ∇g(x̂(·))T ]. (42)

2

It is well known that for nonconvex optimization the basic duality theorem of convex
programming is not true. However, for the dual problem based on the MBAL function, if
the second-order sufficient conditions hold, then the basic duality theorem remains true
and the second-order sufficient conditions are satisfied for the dual problem. The following
theorem, which is an analog of Theorem 4 in [12], is a statement of these facts.

Theorem 7.2. Under the second-order sufficient conditionsC1–C3and AssumptionA1,
there exists k0 > 0, such that for any k≥ k0 the following statements are true:
(i) The existence of a solution x∗ to the primal problem(1) guarantees that the dual

problem(39) has a solutionw∗ = (u∗, v∗) and that

f0(x
∗) = φk(u

∗, v∗).

(ii) The second-order sufficient conditions are satisfied for the dual problem(39).
(iii) (x∗, w∗) = (x∗, u∗, v∗) is a solution to the primal and dual problems(1) and(39) if

and only if it is a saddle point of F(x, w, k); i.e.,

F(x, w∗, k) ≥ F(x∗, w∗, k) ≥ F(x∗, w, k), ∀x ∈ Rn, w ∈ Rp
+ × Rq.

Proof: Our proof of parts (i) and (ii) are similar to the proof of Theorem 3 in [12].

(i) Due to C1 there exists aw∗ = (u∗, v∗) ∈ Rp
+ ×Rq such that the Karush-Kuhn-Tucker

conditions hold. Let us prove thatw∗ is the solution of the dual problem (39). First,
note that (39) is a convex programming problem since dual functionφk(w) is concave.
Also φk(w) is smooth and

∇wφk(w
∗)

= −[

r︷ ︸︸ ︷
0, . . . ,0, k−1 ln(k fr+1(x

∗)+ 1), . . . , k−1 ln(k fp(x
∗)+ 1),

q︷ ︸︸ ︷
0, . . . ,0],

or

u∗i > 0⇒ ∂ui φk(w
∗) = 0, i = 1, . . . , r,

u∗i = 0⇒ ∂ui φk(w
∗) < 0, i = r + 1, . . . , p,

∂v j φk(w
∗) = 0, j = 1, . . . ,q.
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In other words, the optimality conditions for the convex program (39) are satisfied at
w = w∗ = (u∗, v∗), thereforeφk(w

∗) = max{φk(w) |w ∈ Rp
+ × Rq}, and

φk(w
∗) = infx F(x, w∗, k) = F(x∗, w∗, k) = f0(x

∗).

(ii) Consider the classical Lagrangian

L(w, λ, k) = φk(w)−
p∑

i=1

λi ui

for the dual problem (39). Then

∇2
wwL(w, λ, k) = ∇2

wwφk(w) (43)

and the affine subspace tangent to the set of feasible dual solutions atw∗ = (u∗, v∗)
is Y = {y ∈ Rp

+ × Rq : (yr+1 = yr+2 = . . . = yp = 0)}. Using condition C1 and
formulas (41), (42) and (43) and by employing considerations similar to those, which
has been used to prove Theorem 3 in [12] one can show that fork ≥ k0 andk0 large
enough,

yT∇2
wwL(w∗, λ∗, k)y < 0, ∀y ∈ Y.

The gradientsei = (0, . . . ,0, 1, 0, . . . ,0), i = r + 1, . . . , p of the active constraints
for the dual problem are linearly independent and corresponding Lagrange multipliers
λ∗i = k−1 ln(k fi (x∗) + 1) > 0, i = r + 1, . . . , p. Consequently, this proves that the
second-order sufficient conditions are satisfied for the dual problem (39).

(iii) Suppose that(x∗, w∗) is a solution to the primal-dual pair of problems (1) and (39).
Then from Theorem 5.2 it immediately follows that

F(x, w∗, k) ≥ F(x∗, w∗, k) ∀x ∈ Rn.

Now gi (x∗) = 0, i = 1, . . . ,q, and ln(k fi (x∗) + 1) = 0, i = 1, . . . , r . Therefore,
replacingv∗ by anyv ∈ Rq andu∗(r ) by anyu(r ) ∈ Rr

+ does not changeF(x∗, w∗, k).
Also, since ln(k fi (x∗)+ 1) > 0, i = r + 1, . . . , p, F(x∗, w∗, k) does not increase if
u∗(p−r ) = 0 is replaced by anyu(p−r ) ∈ Rp−r

+ . Thus we have that

F(x∗, w∗, k) ≥ F(x∗, w, k) ∀w ∈ Rp
+ × Rq,

which concludes our proof that the primal-dual solution(x∗, w∗) is a saddle point of
F(x, w, k).

Now suppose(x∗, w∗) is a saddle point ofF(x, w, k) and fi (x∗) < 0 for somei .
Let ū = (u∗1, . . . ,u

∗
i−1, u

∗
i + ε, u∗i+1, . . . ,u

∗
p), for someε > 0, andv̄ = v∗. Then

clearly, F(x∗, w∗, k) < F(x∗, w̄, k), which contradicts our assumption that(x∗, w∗)
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is a saddle point. Assume now that for somei , gi (x∗) 6= 0. Let ū = u∗ andv̄ = v∗
except that̄vi = v∗i + ε if gi (x∗) > 0 andv̄i = v∗i − ε if gi (x∗) < 0. Then again
F(x∗, w∗, k) < F(x∗, w̄, k), and we have a contradiction. Hence, we conclude that
x∗ is feasible for the primal problem.

Assume that for somei , fi (x∗) > 0 andu∗i > 0, and letū = (u∗1, . . . ,u∗i−1, u
∗
i − ε,

u∗i+1, . . . ,u
∗
p), for u∗i > ε > 0, andv̄ = v∗. AgainF(x∗, w∗, k) < F(x∗, w̄, k), which

contradicts our assumption that(x∗, w∗) is a saddle point.u∗i fi (x∗) = 0, i = 1, . . . , p
and it follows from the dual feasibility ofw∗ that for anyx feasible for the primal
problem,

f0(x) ≥ f0(x)− k−1
p∑

i=1

u∗i ln(k fi (x)+ 1)−
q∑

j=1

v∗j gj (x)+ k/2
q∑

j=1

g2
j (x)

= F(x, w∗, k) ≥ F(x∗, w∗, k) = f0(x
∗).

Hencex∗ solves the primal problem (1) andw∗ solves the dual problem (39). 2
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