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Abstract. Massive amounts of data are generated daily at a rapid rate. As a 
result, the world is faced with unprecedented challenges and opportunities on 
managing the ever-growing data. These challenges are prevalent in time series 
for obvious reasons. Clearly, there is an urgent need for efficient solutions to 
mine large-scale time series databases. One of such data mining tasks is 
periodicity mining. Efficient and effective periodicity mining techniques in big 
data would be useful in cases such as finding animal migration patterns, 
analysis of stock market data for periodicity, and outlier detection in 
electrocardiogram (ECG), analyses of periodic disease outbreak etc. This work 
utilizes the notion of time series motifs for approximate period detection. 
Specifically, we present a novel and simple method to detect periods on time 
series data based on recurrent patterns. Our approach is effective, noise-
resilient, and efficient. Experimental results show that our approach is superior 
compared to a popularly used period detection technique with respect to 
accuracy while requiring much less time and space. 
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1 Introduction 
	
  

	
  
Periodicity is the tendency of a pattern to recur at regular intervals, which are 

referred to as periods. Periodic patterns occur in many natural phenomena or human 
activities. Examples include an employee’s daily work schedule, yearly migration 
pattern of animals, regional sunspot cycle etc. These data can be so large and complex 
that it becomes difficult to process using traditional database management tools or data 
processing applications. Such data is typically referred to as big data. The fact that we 
are in the era of big data cannot be overemphasized especially with the large amount of 
available data from the internet and ubiquitous computing devices that are now parts of 
our everyday lives. Detecting the period in data, big or “not so big”, can provide useful 



	
  
insight on the data, help make better predictions, detect anomalies and improve 
similarity matching [16] among other things. It’s imperative to point out that the focus 
of this work being time series makes it suitable for other kinds of data such as 
multimedia because they can be converted to time series e.g. the extraction of MFCC 
from audio as it is used for one of the datasets in our experiments. Several methods 
have been proposed to detect periods in data. Most of the existing methods are 
particularly suitable for perfect periods, which is hardly the case in most natural 
phenomena. While the related problem of finding the exact period of a time series is a 
simpler one to solve, it may be too restrictive for real-world phenomena. Periods in 
real datasets are typically noisy and incomplete. That is, while the periodic patterns 
exhibit tangible similarity, they may not always be identical and equally distributed. 
These factors warrant robust approximate period detection schemes like our solution 
and it has even been shown that in many applications, approximate solutions are 
sufficient [30]. A robust solution should also be able to detect periods in an efficient 
manner. In general, three types of periodic patterns can be detected in a time series as 
illustrated by Rasheed et al. [1] and they are described as follows: 
 
• a time series exhibits partial periodicity if at least one symbol in addition to at least 

one variable symbol is periodic. For instance, in time series T = wxyz wxxy wxyy 
wxwz, the sequence wx is periodic with period p = 4; and the partial periodic pattern 
wx ** exists in T, where * denotes a variable symbol. 

• a time series exhibits symbol periodicity if at most one symbol is repeated 
periodically. For example, in time series T = xyz xzy xxy xyy, symbol x is periodic 
with period p = 3. We consider this to be a special case of partial periodicity when 
the periodic subsequence has one symbol and argue that a technique that can detect 
subsequence periodicity can detect symbol periodicity. 

• a time series exhibits segment periodicity if an entire pattern is periodic. For 
instance, the time series T = wxyz wxyz wxyz wxyz has a segment period p = 4. The 
periodic segment is wxyz. 

 
Most techniques are suitable for discrete sequences. However, time series are real-
valued data. To adapt the periodicity definitions described above, we need a pre-
processing step that discretizes the real-valued time series into a symbolic 
representation. The standard pre-processing approach is to use SAX (Symbolic 
Aggregate approXimation) [2], a well-known discretization technique, to convert a 
time series into a string or a set of strings [3]. In this work, we propose a novel 
technique to detect periods in time series data by learning the repeated patterns (motifs) 
from data. To the best of our knowledge, this work is the first to use motif discovery as 
a means to period detection in time series.  

A time series motif is a pattern that consists of two or more similar subsequences 
based on some distance threshold [3]. While our approach can work with any motif 
discovery algorithms, in this work we focus on a recently proposed variable-length 



	
  
motif algorithm based on grammar induction called GrammarViz1 [3]. GrammarViz 
consists of two major steps: (1) extracting subsequences via a sliding window 
converting them to strings via SAX; and (2) infers a set of context-free grammar rules 
on the sequence of strings using Sequitur [4]. The grammar rules represent repeated 
patterns in the sequence, each of which can be regarded a time series motif. 
GrammarViz is an ideal basis for our work because of its simplicity, space- and time-
efficiency, and most importantly, its ability to detect variable-length motifs, as these 
properties are transferred to our periodicity detection method.  

In summary, we propose a simple and elegant approximate periodicity detection 
algorithm, Motif-Based Period Detection (MBPD). Our work makes the following 
novel contributions: 
 
• We propose to use time series motif discovery on the string representation as an 

antecedent to approximate periodicity detection on the original time series. 
• Our algorithm is both time- and space-efficient, and is suitable for streaming data. 
• We introduce a simple ranking method for the most significant period. 
• We extended GrammarViz and implemented the periodicity visualization feature 

that allows users to navigate and sort the detected periods. 
• We conducted experiments to compare the performance of our technique against 

other popular techniques on synthetic and real datasets. 
 
The rest of the paper is organized as follows. Section 2 discusses related work while 
section 3 outlines preliminaries. We describe our approach in Section 4. Section 5 
describes the experiments performed. We conclude with limitations of our approach 
and make recommendations for improvement as future work in Section 6. 

	
  

2 Related Work 
 

Existing periodicity detection methods can be categorized based on a number of 
factors [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 24, 25]. These factors include parameter 
dependency, the type of periodicity detected, the span of periodicity detected and the 
domain in which the periodicity is detected. Some methods require the specification 
of the period value [12, 13, 14]. This is not ideal as the detection of the period value is 
in itself a task worthy of due consideration. Some of these methods detect only 
symbol periodicity [8, 26]. Yang et al. [9, 24] proposed a linear time distance-based 
technique for discovering the potential periods in a time series. However, their method 
fails to detect some valid periods because only adjacent intervals are considered. 
Rasheed at al. [1] proposed an algorithm to detect periodicity in time series using 
suffix trees. The time requirement for their proposed method can rise to the order of 
O(n3). Most algorithms detect only a subset of the types of periodicity (symbol, 
sequence or segment) mentioned earlier. The method proposed by Han et al. in [7] 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Although not explicitly named in the paper, the authors refer to it as GrammarViz on their 
website: http://www.cs.gmu.edu/~jessica/GrammarViz.html 

	
  



	
  
detects only segment periodicity. Certain techniques [12, 13], which are based on 
another technique, ParPer [14], are suitable for detecting sequence periodicity in time 
series. ParPer makes use of peculiar properties e.g. apriori property related to 
sequence periodicity in a time series for periodicity detection. Most of the 
aforementioned techniques suffer from noise sensitivity. WARP [11] was developed 
to be noise resilient but it detects only segment periodicity. Few techniques [12, 14] 
detect subsection periodicity while most are meant for full-cycle periodicity detection. 

  Periodicity detection algorithms can also be classified into time domain and 
frequency domain methods. Time domain methods are based on autocorrelation 
functions while frequency domain methods are based on spectral density functions. 
The premise for using time domain methods is that the autocorrelation function of a 
periodic data has the same period as the data with peaks obtained at time t=0, period 
T, and multiples of T. Time domain methods are suitable for sinusoidal signals and 
they are not noise resilient. Frequency domain methods, on the other hand, decompose 
signals into constituent frequency components. The result of frequency domain 
methods is a power spectral density with impulses determined by the corresponding 
Fourier coefficients. These Fourier coefficients can be extracted to create a 
periodogram [17]. 

  Autocorrelation and Fourier Transforms are two of the most popular periodicity 
detection techniques [15]. Autocorrelation is able to detect short and long periods, but 
creates difficulty in identifying the true period due to the fact that the multiples of the 
true period will have the same power as the true period.  On the other hand, Fourier 
transforms suffer from a number of problems: spectral leakage, which causes a lot of 
false positives in the periodogram, and poor estimation of long periods due to issues 
with low frequency regions or sparseness in data [18]. Some methods combine both 
autocorrelation and Fourier transforms [6, 16].  

Our method is able to detect the most significant period in a dataset without 
requiring the period value as a parameter and this is done in the time domain. Our 
method also detects the different types of periodicity.  

 

3 Preliminaries 
 

In this section we define periodicity, approximate periodicity and the problem 
addressed in this work.  
 
Definition 1. Let S = t0, t1…tn-1 be a string representation of a time series with length 
of n, i.e. |S| = n. S is said to be periodic if S(t) = S(t+p), where t ∈ N, t ≥ 0, t < n-p, T 
is a subsequence of S such that, T= t0, t1…tp-1, |T| = p, p ≥ 1 and p ≤ n/2. The smallest 
such subsequence T is called the period of S. If no such period T can be found in S, S 
is said to be aperiodic. For example, if S = wxywxywxy, the period T=wxy, p=3. 
For clarity, we do not consider the substring of length (m*p) to be a period of S for 
any m such that m ≠ 1.  
 
Definition 2. Let S be n-long string over alphabet Σ. Let r be an error function defined 
on strings. S is called periodic with k error on T if there exists a string T over Σ, such 
that r(S, T) = k i.e. r evaluate the error of assuming T is the period of S. The string T 



	
  
that evaluates to smallest such k is called the approximate period of S. For example, 
let S = wxywxywxy, r(S, A)  ≥ r(S, B) where A = wxy occurring at positions 0, 3 and 
6, and B = wxy occurring at positions 0 and 6, A and B are candidate periods, A is the 
approximate period of S otherwise referred to as the most significant period of S. 
 
Problem Definition. Given a string function r, and String S of length n over alphabet 
compute the approximate period T under the function r. 
 
3.2   Motif Discovery 

 
Time series motifs are repeated similar patterns. We argue that detecting the frequent 
patterns could serve as an antecedent to periodicity detection. Many algorithms have 
been proposed to find motifs in time series data [3, 19, 20, 21, 22]. In this work, we 
focus on GrammarViz, a fast, approximate variable-length motif discovery algorithm 
based on grammar induction [3]. The factors we considered in choosing a motif 
discovery method for this work include efficiency with respect to space and time, the 
ability to detect the motifs in a streaming fashion, the ability to detect variable length 
motifs, the ability to detect periodicity in string representation of time series, and 
simplicity. GrammarViz utilizes Sequitur [4], a context-free grammar induction 
technique, to derive rules considered to be motifs from string representation of time 
series. These motifs are mapped back to the original time series to show their 
occurrences. A benefit derived from the ability to work on string representation is the 
fact that the technique is applicable to many kinds of data whose dimensionality can 
be reduced by discretization to string symbols. GrammarViz is the first time series 
motif discovery algorithm that can detect variable-length motifs in an effective and 
efficient manner, and it is able to do so in a streaming fashion. The authors of 
GrammarViz also created a visualization tool for clarity and easy navigation of the 
produced results. GrammarViz achieves variable-length motif discovery as a result of 
numerosity reduction, thus making MBPD suitable for cases where a periodic pattern 
may occur with variable lengths in a time series. 

 

4 Our Approach 
 
The fundament premise of our approach is to first discover the motifs in the time 
series with high efficiency and effectiveness and then detect the most periodic motif.  
 

Algorithm 1: Motif-Based Period Detection 
INPUT:  String S of length n over alphabet Σ. 
OUTPUT:  The approximate period of S, T. 
1.   /* Find the rule/motif objects M = {m1, m2, . . . md} from GrammarViz algorithm */ 
2.   M = grammarViz(S); 
3.   /* Compute periods and errors for each motif, return the one with the smallest error*/ 
4.   m1 = periodicity(m1); 
5.   p1 = m1.getPeriod(); 
6.   r1 = m1.getError();  



	
  
7.   rMin = r1   // store the minimum error in rMin 
8.   for each mi ∈ M do 
9.       mi = periodicity(mi); 
10.     pi = mi.getPeriod(); 
11.     ri = mi.getError();  
12.     if (ri < rMin) 
13.         approxP = pi; 
14.         rMin = ri; 
15. end for 
16. return approxP; 

 
Algorithm 1 shows the pseudocode for the MBPD algorithm. The motif objects 
returned in Line 2 are stored along with the start and stop positions of each occurrence 
in the time series. We consider only periods that occur at least 3 times in a time series 
for this work since anything less has a higher probability of being a false positive but 
it’s trivial to modify the algorithm to detect periods that occur twice if desired. Lines 
3-7 and the loop from Lines 8-14 computes the period of each motif, the error (our r 
function from definition 2) defined by the standard deviation of the intervals of all 
occurrences and the approximate period. The period of each motif is calculated as the 
mean of intervals (between the start positions of two consecutive occurrences) of all 
occurrences in the time series. Both computations of the approximate period and error 
are done on the original time series after the derived string motifs are mapped back to 
the original time series. The approximate period of the time series is the period 
corresponding to the lowest error. The periodicity function called on Lines 4 and 9 of 
algorithm 1 is shown in algorithm 2.  

The efficiency of MBPD largely depends on the efficiency of GrammarViz (Line 
2), which has Sequitur at its core. GrammarViz has linear time and space complexity. 
As a result, the time complexity of MBPD is O(n*k) for a time series of size n, where 
k is the average number of instances for each motif rule produced by Sequitur. The 
space complexity is still O(n) because the memory space needed for variables used in 
algorithms 1 and 2 are negligible. Compared to most existing methods for time series 
periodicity detection, MBPD has a competitive space and time complexity. 
 

Algorithm 2. Periodicity Algorithm 
INPUT:  Motif M with start positions A = {a1, a2, . . . ab} for all b occurrences 
OUTPUT:  Motif M with the period and error set respectively 
1.   sum_Interval = 0, sqd = 0; 
2.   for each ai ∈ A do 
3.      sum_Intervals = sum_Intervals + ai - ai-1;  
4.   end for 
5.   M.period = sum_Intervals/(b-1); 
6.   for each ai ∈ A do 
7.       sqd = sqd + ((ai - ai-1 - M.period) ^ 2);  
8.   end for  
9.   M.error = (sqd/(b-1)) ^ 0.5; 
10. return M; 

 
 



	
  
 

5 Experiment 
 

In this section we evaluate MBPD on synthetic, pseudo-synthetic and real datasets. 
Our periodicity detection and visualization software is an extension of GrammarViz. 
More details about the visualization tool and the GrammarViz algorithm in line 2 of 
algorithm 1 can be found in [3]. Experiments were performed on a 2.7GHz, Intel Core 
i7, MAC OS X version 10.7.5 with 8GB memory. 

Fig. 1 is a snapshot of the visualization tool showing the approximate periodicity 
detected in an ECG dataset in the data display section of the figure. Other periods can 
be viewed by navigating the list of rules in the sequitur grammar section of the figure. 
 

  
 

Fig. 1. Snapshot of MBPD visualization tool detecting periodicity in ECG dataset. 
 

We compare our method with Fast Fourier Transform (FFT). The frequency with the 
highest spectral power from FFT of the dataset is converted into time domain and 
considered as the most significant period. FFT is chosen for its suitability for real-
valued datasets. 
    It is worth mentioning that while we considered other state-of-the-art techniques 
such as STNR [1], WARP [11], and the probability-based method in [18] for 
comparison, we found that they are not suitable for our purpose for the following 
reasons other than their unsuitableness for real values. WARP caused an out of 
memory exception for the large datasets (65636 data points) used in our experiments 
and returned unintuitive results for most of the other datasets e.g. 515 (43 years) for 
the Zürich sunspot dataset whereas the proper period for the dataset is 132 (11 years). 
The out of memory exception is most probably due to WARP’s O(m2) space 
complexity for a time series of size m.; STNR on the other hand returns many 
candidate periods even with the pruning techniques suggested, which deviates from 



	
  
our goal of finding the most significant period. Finally the method proposed in [18] is 
meant for binary sequences representation of Boolean-type observations and not real-
valued sequences. 
 

6.2 Datasets 
 

We used 12 datasets of various periodicity, noises, and lengths in our experimental 
evaluation. We ensured the length of each dataset is a power of 2 to avoid introducing 
bias by padding the dataset with zeros in order to use FFT for comparison. A subplot of 
all 12 datasets is shown in Figure 2. Figures 3 and 4 show the periodicity detected in 2 
of the datasets used in our experiments. 
 

 
 

Fig. 2. A subplot of all 12 datasets used for experiments 
 

  
 

Fig. 3. Snapshot of MBPD visualization tool detecting periodicity in S_ONE dataset. 
  

 
 

Fig. 4. Snapshot of MBPD visualization tool detecting periodicity in MFCC dataset. 



	
  
Synthetic datasets. We created 6 synthetic datasets with various properties that could 
affect performance.  
 
• S_ONE: 65636 points to depict perfect segment periodicity by repeating 10000 

points 7 times except for the last 4364 points.  
• S_TWO: 65636 points to depict perfect segment periodicity by repeating 10000 

points 7 times and except for the last 4364 points. 
• S_THREE: 65636 points to demonstrate sensitivity to noise by introducing noise in 

the form of insertion, deletion and replacement into S_ONE, 10% each. 
• S_FOUR: 65636 points to demonstrate sensitivity to noise by introducing noise in 

the form of insertion, deletion and replacement into S_TWO, 10% each. 
• S_FIVE: 65636 points to depict subsequence periodicity by repeating a portion of 

the repeated 10000 points in S_ONE and leaving the remaining as variable points. 
• S_SIX: 65636 points to depict subsequence periodicity by repeating a portion of the 

repeated 10000 points in S_TWO and leaving the remaining as variable points. 
 

Real datasets. We used 5 real datasets. 
 
• ECG: 4096 points of ECG (electrocardiogram) data 
• POWER: 16384 points of power consumption data 
• MFCC: 262144 points of MFCC (Mel-Frequency Cepstral Coefficients) extracted 

from Rufous-collared Sparrow bird song which can be found at http://www.xeno-
canto.org/120810 

• SOLAR: 8192 points of solar data 
• SUNSPOT: 2048 points of sunspots on Zürich.  
 
Pseudo-Real dataset (P_REAL). This dataset has 512 points. We use this dataset to 
depict periodicity detection in a short dataset. It's a sea surface temperature dataset for 
North Atlantic Ocean (simulated data for 1000 years) with 10-year moving average 
smoothing. 

 
6.3 Results 
 
We evaluated the performance of our method against FFT with respect to the ranking 
error rates on both the synthetic and real datasets as shown in Table 1. In Table 2, we 
show the error rates of the period value detected on the synthetic datasets.  
Ranking error rate is computed by dividing the rank position, i (starting from zero) of 
the most significant period by the size of the time series e.g. if the candidate periods 
returned by MBPD are 3, 4, 7 and 9 in that order when ranked and 4 is the most 
significant period, the ranking error rate of MBPD for this dataset is ¼ (0.2500). Error 
rate of the period values is computed as follows in equation 1: 
 

Error rate of period  =   𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅  𝒗𝒂𝒍𝒖𝒆  –  𝑨𝒄𝒕𝒖𝒂𝒍  𝒗𝒂𝒍𝒖𝒆
𝑨𝒄𝒕𝒖𝒂𝒍  𝒗𝒂𝒍𝒖𝒆                                          

      (1) 
 

Since we do not know the exact periods in the real datasets, we did not evaluate the 
error rate of the period values. Table 3 contains the periods detected on the real 



	
  
datasets as well as the expected range of values. As shown in Table 1 and Table 2, 
MBPD ranks the most significant period better and detects the period more accurately 
than FFT. Since we are concerned with the most significant period, an improper 
ranking otherwise referred to as false dismissal experienced by using FFT is 
undesirable. Even though we do not know the exact period for the real datasets, the 
visualization tool helps by allowing us to visualize the results, e.g. the highlighted 
patterns in Figures 1, 3, and 4.  

 
Table 1. Ranking error rate on synthetic and real datasets. 

 
Datasets MBPD FFT 
S_ONE 0.0000 0.0000 
S_TWO 0.0000 0.0000 
S_THREE 0.0000 0.0000 
S_FOUR 0.0000 0.0000 
S_FIVE 0.0000 0.0000 
S_SIX 0.0000 0.0000 
P_REAL 0.0000 0.0000 
ECG 0.0000 0.0002 
POWER 0.0000 0.0001 
MFCC 0.0000 - 
SOLAR 0.0000 0.0001 
SUNSPOT 0.0000 0.0005 

 
Table 2. Period error rate on synthetic datasets. 

 
Datasets MBPD FFT 
S_ONE 0.0000 0.0637 
S_TWO 0.0000 0.0637 
S_THREE 0.0009 0.0637 
S_FOUR 0.0011 0.0637 
S_FIVE 0.0000 0.0637 
S_SIX 0.0000 0.0923 

 
Table 3. Period values on real datasets. 

 
Datasets MBPD FFT EXPECTED 

VALUES 
P_REAL 77.00 85.33 75 - 85 
ECG 290.80 292.57 290 - 295 
SOLAR 870.60 910.22 870 - 875 
MFCC 36340 - 36000 - 36500 
POWER 328.98 334.37 325 - 330 
SUNSPOT 135.85 136.53 132 - 137 

 
 



	
  
For some of the real datasets, we have some prior knowledge on what to expect for 
the periodicity. The Zürich sunspot data, for example, is known to have a period of 
about 11 years (132 months) as described in [28]. All three techniques produced 
reasonable approximations for the dataset. The MFCC data is extracted from a bird 
song, which has a period between 30K - 40K when visualized in the software and 
listened to meticulously. As seen in table 3, all 3 techniques performed competitively 
on 4 of the real datasets but only MBPD detected the period in the MFCC extraction. 
This also makes MBPD stand out as a superior technique. We did not record the 
period and ranking error rate for FFT on the MFCC dataset because the 10 most 
significant periods (3.33, 4.00, 3.33, 4.00, 2.86, 2.86, 2.86, 3.33, 3.34, 4.00) were 
spurious altogether and we don’t know which of them should be selected for 
evaluation as they are all far from the expected period. We consider only the first 10 
coefficients in this work because the first 10 coefficients are known to contain 
approximately 90% of the energy [29]. We attribute the poor result of FFT to the 
known issue of FFT regarding the low frequency regions which translates to issues in 
detecting long periods as is the case with the MFCC dataset (35000 - 36000).  

 
7 Conclusion and Future Work 
 
We present an approximate periodicity detection scheme in this work. We evaluated 
our approach against popular techniques on synthetic and real datasets. Our technique 
is highly competitive with respect to efficiency and effectiveness as well as being 
robust to noise. We also utilized a visualization tool for this work. Even though the 
intention is to detect the most significant approximate period in the dataset, our 
visualization tool permits the navigation of other periods. As future work, we would 
like to extend the work to detect the exact or at least approximate span of the periods 
detected in addition to detecting the periodic pattern with high confidence. As this 
work seeks to motivate the use of motif discovery as an antecedent to periodicity 
detection, we do not claim that GrammarViz is the best choice of algorithm for motif 
discovery. Since GrammarViz is an approximate motif discovery algorithm, it may 
not find all of the motifs, which in turn may impact the quality of periods detected by 
our algorithm. We believe that using a better grammar induction algorithm or, more 
generally, a more aggressive motif discovery technique as an antecedent could 
enhance the performance of MBPD. Nevertheless, the benefit of finding variable-
length patterns and the ability to do so efficiently as permitted by GrammarViz is 
highly desirable and beneficial to our algorithm.  
 
References 
 
1. Rasheed, F., Al-Shalalfa, M. and Alhajj, R. (2011). Efficient Periodicity Mining in Time 

Series Databases Using Suffix Trees. In TKDE.  
2. J. Lin, E. Keogh, S. Lonardi, and B. Chiu. (2003). A Symbolic Representation of Time 

Series, with Implications for Streaming Algorithms. Workshop on Research Issues in 
DMKD 

3. Y. Li, J. Lin, and T. Oates. (2012). Visualizing variable-length time series motifs. In SDM. 
4. C.G. Nevill-Manning and I.H. Witten. (1997). Identifying Hierarchical Structure in 



	
  
Sequences: A linear-time algorithm. In Journal of Artificial Intelligence Research. 

5. A. Amir, E. Eisenberg, and A. Elmagarmid. (2010). Approximate Periodicity. In ISAAC. 
6. C. Berberidis, W. Aref, M. Atallah, I. Vlahavas, and A. Elmagarmid. (2002). Multiple and 

Partial Periodicity Mining in Time Series Databases. In ECAI. 
7. J. Han, W. Gong, and Y. Yin. (1998). Mining Segment-Wise Periodic Patterns in Time 

Related Databases. In KDD. 
8. S. Ma and J. Hellerstein. (2001). Mining Partially Periodic Event Patterns with Unknown 

Periods. In ICDE. 
9. J. Yang, W. Wang, and P. Yu. (2002). Mining Partial Periodic Patterns with Gap Penalties. 

In ICDM 
10. M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid. (2005). Periodicity Detection in Time 

Series Databases. In ICDE. 
11. M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid. (2005). WARP: Time Warping for 

Periodicity Detection. In ICDM. 
12. C. Sheng, W. Hsu, and M. L. Lee. (2006). Mining Dense Periodic Patterns in Time Series 

Data. In ICDE. 
13. C. Sheng, W. Hsu, and M.L. Lee. (2005). Efficient Mining of Dense Periodic Patterns in 

Time Series. Technical report, Nat’l Univ. of Singapore. 
14.  J. Han, Y. Yin, and G. Dong. (1999). Efficient Mining of Partial Periodic Patterns in Time 

Series Database. In ICDE. 
15. M. B. Priestley. Spectral Analysis and Time Series. (1981). London: Academic Press. 
16. Vlachos M, Yu PS and Castelli V. (2005). On periodicity detection and structural periodic 

similarity. In SDM. 
17. P. Stoica and R. L. Moses. (1997). Introduction to spectral analysis. Prentice-Hall, Upper 

Saddle River, NJ. 
18. Zhenhui Li, Jingjing Wang and Jiawei Han. (2012). Mining Event Periodicity from 

Incomplete Observations. In KDD. 
19. H. T. Lam, N. D. Pham, and T. Calders. (2011). Online discovery of top-k similar motifs in 

time series data. SIAM Conference on Data Mining. In SDM. 
20. J. Lin, E. Keogh, S. Lonardi, and P. Patel. (2002). Finding motifs in time series. In Proc. of 

2nd Workshop on Temporal Data Mining at KDD. 
21. A. Mueen and E. J. Keogh. (2010). Online discovery and maintenance of time series motifs. 

In KDD. 
22. P. Nunthanid, V. Niennattrakul, and C. Ratanamahatana. (2011). Discovery of variable 

length time series motif. In ECTICON. 
23. W. F. Smyth. (2007). Computing Periodicities in Strings — A New Approach. In 

Proceedings of the 16th Australasian Workshop on Combinatorial Algorithms. 
24. Yang J, Wang W and Yu PS. (2000). Mining asynchronous periodic patterns in time series 

data. In KDD. 
25. M. Elfeky, W. Aref, and A. Elmagarmid. (2004). Using convolution to mine obscure 

periodic patterns in one pass. In EDBT. 
26. J. D. Scargle. (1982). Studies in astronomical time series analysis. II - statistical aspects of 

spectral analysis of unevenly spaced data. In Astrophysical Journal. 
27. https://jmotif.googlecode.com 
28. http://solarscience.msfc.nasa.gov/SunspotCycle.shtml 
29. Vlachos M (2005). A Practical Time-Series Tutorial with Matlab. In PKDD	
  
30. S. Arora. (2003). Approximation Schemes for NP-hard Geometric Optimization Problems: 

A Survey. In Math Prog. 


