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In Everett’s many-worlds interpretation, where quantum measurements are seen as
decoherence events, inexact decoherence may let large worlds mangle the memories of
observers in small worlds, creating a cutoff in observable world measure. I solve a
growth–drift–diffusion–absorption model of such a mangled worlds scenario, and show
that it reproduces the Born probability rule closely, though not exactly. Thus, inexact
decoherence may allow the Born rule to be derived in a many-worlds approach via world
counting, using a finite number of worlds and no new fundamental physics.
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1. Introduction

Traditional quantum mechanics suffers from many ambiguities regarding
quantum measurements. Many-worlds approaches try to resolve these ambi-
guities by seeing most measurements as decoherence processes produced by
standard linear quantum evolution (Everett 1957; DeWitt & Graham 1973). In
such processes, local off-diagonal density matrix elements are often naturally and
dramatically suppressed due to coupling with a large environment (Dowker &
Halliwell 1992).

Unfortunately, the many-worlds approach still suffers from the problem that,
when there are a finite number of worlds, the straightforward way to calculate
probabilities, i.e. counting the fraction of worlds with a given outcome, does not
produce the standard Born probability rule (Kent 1990; Auletta 2000). Some
have tried to resolve this by adding new fundamental physics, such as nonlinear
dynamics in Weissman (1999), or an infinity of minds per quantum state which
diverge via an unknown process in Albert & Loewer (1988). Deutsch (1999) and
Wallace (2005) propose new decision theory axioms, saying in essence that we do
not care about the number of worlds that see an outcome.

This author has proposed a ‘mangled worlds’ variation on the many-worlds
interpretation (Hanson 2003). This variation attempts to resolve the Born rule
problem using only assumptions about the behaviour of standard linear quantum
evolution, assumptions that can, in principle, be checked by theoretical analysis
of common quantum systems. The basic idea is that decoherence is never exact,
and so while decoherence makes off-diagonal terms small relative to a large
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enough world, such terms can be large relative to a small enough world. This
may allow larger worlds to mangle much smaller worlds, either by destroying the
observers in such worlds or by changing them into observers who remember
events from large worlds.1 This world-mangling process is conjectured to be
relatively sudden and thermodynamically irreversible (though mechanically
reversible).

While the basic concept has been outlined, many open questions remain to be
resolved before this proposal can be considered a serious alternative. These
questions include:

(i) Does world-mangling work as conjectured in realistic physical models?
(ii) Are real decoherence rates near the minimum possible, as theory predicts?
(iii) How closely is the Born rule satisfied if mangling goes as conjectured?

This paper addresses only this last question; the other questions remain for
now unresolved. In this paper we ask: assuming that the world-mangling process
is sudden and practically irreversible, how good an approximation is the Born
rule?

This paper addresses this question by finding closed-form solutions of an
explicit growth–drift–diffusion–absorption model of world splitting and man-
gling. This model assumes that there is a range of world sizes (i.e. norms or
measures), where worlds quickly become suddenly and irreversibly mangled, that
this range is small relative to other relevant ranges, and that this range is located
near the world size where half of all measure is in larger worlds.

Given these assumptions, closed-form expressions are given showing exactly
how closely the Born rule is followed. Given plausible parameter values, the Born
rule would be a very good approximation. Thus, most unmangled worlds would
remember having observed frequencies very near that predicted by the Born rule,
even though, in fact, Born frequencies do not apply to the vast majority of
worlds, and even though such frequencies are not observed in the very largest
worlds.
2. Drift–diffusion of all worlds

Within a many-worlds framework, let us start with a single ‘world’ of unit
magnitude (or norm). That is, let us start with a simple quantum state,
describing a system interacting with its environment. Next, let this state undergo
a ‘decoherence event’, a finite duration during which this quantum state
naturally evolves into a state where the system part is described by a nearly
diagonal density matrix. In the many-worlds framework, this new state is
considered to be a set of largely autonomous worlds, one for each diagonal system
element. Finally, let all these worlds continue to undergo more decoherence
events, producing many more worlds describing many more largely autonomous
‘worlds’.

More formally, during each decoherence event e, each pre-existing world i
splits into a set J(i) of resulting child worlds j, each of which gets some fraction

1 Saunders (1993) makes the related suggestion that ‘In evolutionary terms, any computational
capability, if it is to have survival value, will ignore scenarios of small Hilbert-space norm.’
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1621Mangled worlds quantum mechanics
Fji of the original world’s measure or size. That is, if mi is the measure (or size) of
world i, then mjZfjimi, where

P
j2JðiÞFjiZ1. If P(i) is the parent of world i, A(i)

are all its ancestors and r is the root world, then by recursion miZ
Q

j2AðiÞKrFjPðjÞ.

Since we could also write this as the sum lnðmiÞZ
P

j2AðiÞKr lnðFjPðjÞÞ,
the important parameters for our purposes are the variances of the sets
{ln(Fji)}j2J(i). These variances determine how quickly world sizes become
different. If we made the very strong assumption that these variances were
completely independent of the particular world being split, so that FjiZFj and
J(i)ZJ, then there would only be one relevant parameter: the variance of
{ln(Fj)}j2J. Furthermore, after there had been enough decoherence events, the
central limit theorem of statistics would assure us that the resulting set of worlds
will approach a normal distribution over ln(m), which is a log-normal
distribution over measure m.

While this full independence assumption is very strong, there are many weaker
versions of the central limit theorem, versions that require much less than
complete independence of the variances of {ln(Fji)}j2J(i). And many real systems
satisfying far less than complete independence are observed to display nearly
normal distributions. For the purposes of this paper, let us assume enough
independence in the local variances to get a nearly log-normal distribution over
measure m.

Having done this, we can model the distribution of worlds in terms of log size
xZln(m) as normal, with some mean ~x!0 and standard deviation sO0. Since
the total measure of all worlds is conserved, the total number of worlds must be
eK~xKs2=2R1. If there were a constant rate of decoherence events, so that ~xZKvt
and s2Zwt, then vRw/2, and the distribution of worlds over log size x would be

m0ðx; tÞZ
1ffiffiffiffiffiffi
2p

p
s
exp vK

w

2

� �
tK

ðxKvtÞ2

2s2

� �
: ð2:1Þ

The measure held by these worlds would also be normally distributed over x,
with the same standard deviation s, but with a higher mean of x̂Z ~xCs2. These
values ~x and x̂ also indicate the median-sized world and the median measure,
respectively.

For example, after N binary decoherence events where the two possible
outcomes have relative measure pO1/2 and 1Kp, there would be 2N worlds, with
median measure and standard deviation given by

x̂ ZNx̂1 Z
N

2
ðlnðpÞC lnð1KpÞÞ; ð2:2Þ

sZ
ffiffiffiffiffi
N

p
s1 Z

ffiffiffiffiffi
N

p

2
ðlnðpÞKlnð1KpÞÞ; ð2:3Þ

with ~x1Z x̂1Ks21. A constant event rate r would give vZKr~x1 and wZrs21.
To suggest some plausible parameter values, consider that the Earth has about

1050 atoms, and that since its formation the Earth has emitted about 1052

infrared photons, most of which have been absorbed by matter elsewhere in the
universe. If this corresponds to NZ1052 decoherence events, with each event
having only es

2
1 zex̂1 z10, then there would be about 1010

52

worlds describing
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alternative states of the Earth’s 1050 atoms. For a random pair of such worlds,
one world would be about 1010

26

times larger than the other. And most of the
measure would be in worlds that are about 1010

52

times larger than a typical
world.

The distribution m0(x, t) of equation (2.1) solves the linear growth–drift–
diffusion equation

_mZ vðVmCmÞCðw=2ÞðV2mKmÞ; ð2:4Þ
for tO0, given the Dirac delta-function initial condition putting all mass at xZ0,

mðx; 0ÞZ dðxÞ: ð2:5Þ

3. The mangling of worlds

Consider a total physical system that is decomposed into a local system and an
environment, and consider the density matrix describing the system only.
‘Decoherence’ is the name given to the phenomenon, whereby, in the dynamically
relevant basis, interactions between that system and its environment often
quickly suppress the magnitude of the system’s off-diagonal density matrix
terms, relative to its diagonal terms.

Specifically, given two worlds, large ‘L’ and small ‘s’, corresponding to two
diagonal elements of a local system density matrix r, after the decoherence
process has started, we have

jrLsj2%e2ðtÞjrLLjjrssj; ð3:1Þ
where jrabjhhajrabjbi, with the coherence parameter e(t) typically falling at a
rapid exponential rate for many doubling times (Dowker & Halliwell 1992).
However, in the models that have been solved so far, coherence e(t) typically
eventually asymptotes to a small but non-zero level (Unruh & Zurek 1989;
Dowker & Halliwell 1992, 1994; Namiki et al. 1997).

As we have seen above, the relative magnitude between any two random

worlds increases as esZe
ffiffiffiffi
wt

p
, which can reach extremely large magnitudes in

plausible scenarios. As discussed elsewhere (Hanson 2003), if e(t) eventually falls
slower than this rate, then eventually the off-diagonal terms rsL and rLs may
greatly influence the evolution of the smaller diagonal term rss, even though
these off-diagonal terms have little influence on and are mainly driven by the
larger diagonal term rLL. Thus, the evolution of smaller worlds may eventually
be driven by larger worlds, plausibly ‘mangling’ those smaller worlds, i.e. either
destroying their observers or turning them into observers who remember
outcomes from a large world. Remaining observers would thus only remember
the histories of unmangled worlds.

For the purposes of this paper, let us conjecture that large worlds do in fact
mangle small enough worlds, and that world mangling is a sudden, global and
thermodynamically irreversible process. That is, let us assume that mangling
effects on a world go from being detectable to being overwhelming in a relatively
short time period, that the rate at which worlds become mangled as a function of
their size is similar across the configuration space of worlds, and that while
mangling is mechanically reversible, the configurations that produce such
reversals are thermodynamically unlikely. These assumptions have not yet been
Proc. R. Soc. A (2006)
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established as correct, and this paper will not so establish them. Instead, this
paper will simply explore some consequences of these assumptions.

Specifically, let us assume that there is a mangling region in world size, so that
a world that has always remained larger than this region remains unmangled,
and that any world that becomes smaller than this region becomes suddenly and
forevermore mangled. Let us also assume that there have been many decoherence
events, and so the mangling region is narrow relative to the standard deviation in
log world sizes s. Finally, let us assume that since it is the measure of some
worlds that mangles other worlds, this mangling region remains close to the
median measure x̂ that would describe the distribution of all worlds in the
absence of mangling.

If unmangled worlds evolve locally just as all worlds would in the absence of
mangling, and if initially all worlds are unmangled, then the distribution m1(x, t)
of unmangled worlds should satisfy equations (2.4) and (2.5), just as the
distribution m0(x, t) of all worlds does under the no mangling assumption. To
model our assumption of a mangling region narrow compared to s and remaining
close to the median measure x̂ðtÞZðwKvÞt, let us impose on the unmangled
world distribution m1(x, t) the additional boundary condition

mðxbðtÞ; tÞZ 0; ð3:2Þ
for all tR0, where xbðtÞZ x̂ðtÞKe, for eO0. This is an absorbing boundary
condition, which says that every world which reaches the point xb from above
immediately falls out of the distribution of unmangled worlds. We will naturally
limit our attention to xRxb(t).
4. Solving the drift–diffusion model

We want to solve the set of equations (2.4), (2.5) and (3.2). To achieve this, let us
transform from x to a coordinate yZxKxb(t) that moves along with the
absorbing boundary. Let us also factor out the common exponential growth via
mðx; tÞZnðx; tÞeðvKðw=2ÞÞt. Equations (2.4), (2.5) and (3.2) then become

_nðy; tÞZwVnðy; tÞCðw=2ÞV2nðy; tÞ; ð4:1Þ

nðy; 0ÞZ f0ðyÞZ dðyKeÞ; ð4:2Þ

nð0; tÞZ 0: ð4:3Þ
Equation (4.2) gives two initial conditions, one general and one specific to our
problem. Fortunately, Farkas & Fulop (2001) have already solved a closely
related set of equations, regarding drift–diffusion between two absorbing
barriers. Their solutions can be transformed into general solutions of equations
(4.1)–(4.3):

nðy; tÞZ 4

p
eKwt=4Ky

ðN
0
g0ðkÞeKk2wt sinð2kyÞdk; ð4:4Þ

g0ðkÞZ
ðN
0
f0ðyÞey sinð2kyÞdy: ð4:5Þ
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If we put back in the exponential growth, we get solutions to our original
equations of interest, i.e. equations (2.4), (2.5) and (3.2), except in terms of y
instead of x. We find that an initial distribution m1(y, 0)Zd(yKe) of unmangled
worlds evolves into

m1ðy; t; eÞZ
ffiffiffiffiffiffiffiffi
p

8wt

r
eeKyCðvKwÞt exp K

ðyKeÞ2

2wt

� �
Kexp K

ðyCeÞ2

2wt

� �� �
: ð4:6Þ

For wt[e2, a good approximation to this is

m1ðy; t; eÞZ
eeeffiffiffiffiffiffi
2p

p eðvKwÞt

ðwtÞ3=2
y exp KyK

y2

2wt

� �
: ð4:7Þ

We use this approximation from here on.
This density integrates to give a total unmangled world count

W ðt; eÞh
ðN
0
m1ðy; t; eÞdy Z

eee

2
eðvKwÞt

ffiffiffiffiffiffiffiffiffi
2

pwt

r
Kewt=2erfc

ffiffiffiffiffiffi
wt

2

r !" #
: ð4:8Þ

Note that since density m1(y, t; e) is proportional to eKyfmK1, the vast majority
of unmangled worlds have sizes m within a few orders of magnitude of the
mangling boundary. However, since count W(t; e) is proportional to ee, the larger
an initial world is, the more descendants it will produce in the long run. Thus,
the few largest worlds have a disproportionate influence on the final distribution
of worlds.

Note also that if vOw, then the total number of unmangled worlds, which
grows as e(vKw)t, will increase with time, even though it becomes an
exponentially decreasing fraction of the number of all worlds, which grows as
e(vK(w/2))/t. To predict our existence in an unmangled world, the mangled worlds
approach must predict that vRw.
5. Born rule accuracy

We have found distributions of world sizes within a mangled worlds framework.
Let us now evaluate how well this drift, diffusion, growth and mangling process
does at reproducing the Born rule. To do this, we need to express the Born rule in
terms of world distributions.

The Born rule says that the probability of observing a particular experimental
outcome is proportional to the size (or measure) of that outcome. In a simple
many-worlds description of this situation, there would be a single parent world
where the experiment started, and each experimental outcome would then
correspond to one or more child worlds in which that outcome was recorded. In
this context, the Born rule says that the probability that you will find yourself in
a world which is descended from a given experimental outcome is proportional to
the total size (or measure) of the worlds that see that outcome.

To connect world distributions and probabilities, let us assume:
Proc.
Equal probability assumption. Consider a person residing in a particular
world, and wondering what descendant world he will find himself in at
R. Soc. A (2006)
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Proc.
a particular future date. Such a person should assign an equal probability to
finding himself in any of the unmangled descendant worlds at that date, and
a zero probability to finding himself in a mangled world.
Assumptions about worlds being equally probable seem natural and have a
long tradition within the many-worlds approach (e.g. Graham 1973), though
they do not appear to be logically necessary.2 The particular variation used here
embodies an observation selection effect, namely that only people in unmangled
worlds can use their experimental records to test the Born rule.

This equal probability assumption can be consistent with the Born rule if in
the long run the number of unmangled worlds corresponding to each
measurement outcome is proportional to the size (or measure) of that outcome.
That is, if a child world that is a factor F smaller than its parent world produces
a number of descendant unmangled worlds l(F ) proportional to F, then a person
who later finds himself in a random unmangled world would have a chance
proportional to F of being in a world that descended from that particular child
world. Thus, the probability of a measurement outcome would be proportional to
the measure associated with that outcome.

Unfortunately, this l(F )fF condition need not hold for all or even most
initial worlds. Consider an example of radioactive decay. Within a negligible
time period, let an initial world split into one non-decay child world, holding 99%
of the initial measure and millions of small decay child worlds, differentiated by
the exact time and orientation of the decay. The distributions derived above,
such as m1(y, t; e), typically assign to the vast majority of unmangled worlds sizes
between 1% larger and one million times larger than the mangling boundary. Yet
if this mangling boundary is sharp, then for every initial world in this size range,
all of its decay child worlds are mangled, while its single non-decay child world
remains unmangled. Thus, for any such initial world, the equal probability
assumption requires that a person in such a world assign a zero probability to the
possibility of radioactive decay. But the Born rule, and well-established
observation, suggest that one assign a 1% probability to such decay.

This decay analysis, however, has ignored the disproportionate influence of the
few largest worlds. Since we do not know how large a world we are in at the
moment, we must integrate over all possible current world sizes when we
calculate the future number of unmangled worlds corresponding to each
measurement outcome. So that is what we will do in the remainder of this
section. Our careful calculation will go through the following steps.

(i) Start with single unmangled world with size yZ3.
(ii) Let this world’s descendants evolve (i.e. split and mangle) for a duration t1.
(iii) Let each resulting world have a child world of relative size F.
(iv) Track the descendants of these children as they evolve for duration t2.
(v) Count the total descendant unmangled worlds l(F ), checking that l(F )fF.

We will assume that wt2[wt1[e2O1OF.
e claim that the concept of a world is too ambiguous to allow useful equal calculations
ace 2005). Ambiguities in defining the number of worlds containing some outcome seem no
to me than the ambiguities in defining the number of physical states containing an outcome,
e entropy of that outcome.

R. Soc. A (2006)
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Specifically, starting at time tZ0, let a single unmangled world of size yZeO1
(relative to the mangling region at yZ0) evolve into a distribution m1(y; t1; e) at
time t1, where wt2[e2. This is not intended to be the distribution of all worlds,
but rather the distribution of all worlds consistent with the initial conditions of a
given experiment to test the Born rule. It is the result of decoherence events both
during and before the experiment, events that are not counted in the statistics of
the experiment. Given what we know about the experiment, we do not know
which of these worlds we are in, and so we must average over these worlds when
making experimental predictions.

At time t1, let each world with value y1 in m1(y, t1; e) be split into many worlds,
one of which is a factor F!1 smaller, so that it has the value yZy1Cln(F ). Let
each of these factor F worlds then evolve to produce more worlds over a longer
time period t2[t1. For the Born rule to apply exactly, the number of unmangled
worlds descended from factor F worlds at time t2 should go as F. (It would not
contradict observations if the Born rule were violated soon after t1; the key Born
rule data that we want to explain are long-existing historical records of
experiments testing the Born rule.)

With help from MATHEMATICA, the final unmangled world count is found to be

lðF ; t1; t2; eÞh
ðN
0
W ðt2; yÞm1ðyKlnðFÞ; t1; eÞdy; ð5:1Þ

lðF ; t1; t2; eÞZF erfc
KlnðFÞffiffiffiffiffiffiffiffiffiffi

2wt1
p

� �
eee

4
eðvKwÞðt1Ct2Þ

ffiffiffiffiffiffiffiffiffiffiffi
2

pwt2

s
Kewt2=2erfc

ffiffiffiffiffiffiffiffi
wt2
2

r !" #
:

ð5:2Þ
The key thing to note here is that when wt1 is large, the Born rule correction,

gðFÞh 1

F

lðF; t1; t2; eÞ
lð1; t1; t2; eÞ

Z erfc
KlnðFÞffiffiffiffiffiffiffiffiffiffi

2wt1
p

� �
; ð5:3Þ

changes very slowly in the factor F. For example, when wt1Z1010, it requires
a factor of FZeK105 z10K43 000 to get the relative number of worlds to be
g(F )z1/3. The derivative

v

v lnðFÞ
lðFÞ
lð1Þ

� �
ZK

ffiffiffiffiffiffiffiffiffiffiffi
2

pwt1

s
exp

KlnðFÞ2

2wt1

� �
; ð5:4Þ

tells a similar story. Thus, this approach is very nearly consistent with the Born
rule, while leaving open the possibility of small experimentally detectable
deviations from the Born rule.
6. Conclusion

This paper has explored the accuracy of the Born rule under a mangled worlds
scenario. In this scenario, inexact decoherence results in larger worlds suddenly
and irreversibly mangling any worlds that reach a narrow region in world size.
While these assumptions have not yet been established as correct, we have
Proc. R. Soc. A (2006)



1627Mangled worlds quantum mechanics
explored their consequences by creating and solving an explicit growth–drift–
diffusion–absorption model. Closed-form expressions are given showing that this
model reproduces the Born rule closely, but not exactly. This seems to resolve
one of the open questions with the mangled worlds attempt to reconcile the
many-worlds approach with the Born rule without invoking new fundamental
physics or decision theory axioms.
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