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Abstract

A world product time series covering two million years is well fit by either a sum of four

exponentials, or a constant elasticity of substitution (CES) combination of three exponential

growth modes: “hunting,” “farming,” and “industry.” The CES parameters suggest that farming

substituted for hunting, while industry complemented farming, making the industrial revolution

a smoother transition. Each mode grew world product by a factor of a few hundred, and grew

a hundred times faster than its predecessor. This weakly suggests that within the next century

a new mode might appear with a doubling time measured in days, not years.
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Introduction

Many have argued that current U.S. stock prices are much higher than can be justified by reasonable

profit forecasts based on empirical models derived from the recorded history of the U.S. economy

(Shiller, 2000). While it might be theoretically possible for the economy to suddenly switch to a

fundamentally new mode with much higher corporate profits, our experience with the U.S. economy

offers little evidence that a mode switch of this magnitude has happened anytime in the last century

or so (Barro & Sala-i-Martin, 1995), though we may be able to understand smaller changes in stock

prices in terms of milder fluctuations in profit trends (Barsky & De Long, 1993).

The arguments against high current U.S. stock prices are thus largely empirical, in contrast

with the theoretical nature of the (typically informal) arguments offered in support of investor

optimism. These empirical arguments, however, are based primarily on the last century or so of

economic experience. Could empirical forecasts based on a longer term history of economic growth

offer more support for the rationality of high stock prices? To address this question, this paper

will take an empirical approach to modeling very long term data on economic growth, with an eye

toward inferring the chances for very large changes in economic growth modes.

In order to empirically model very long term economic history, we need one or more very long

term time series, and we need to choose one or more functional forms to use in modeling those time

series.

Most attempts to formally model long term human history have focused on population time

series, as population estimates have been offered going back many thousands of years, and such

time series have been considered to be the most reliable long term series available. Also, for

most of human history population seems to have reasonably reflected most fundamental changes,

including areas colonized, capital accumulated, and technologies adopted. This seems to be because

new productive abilities have mainly resulted in larger populations under Malthusian conditions of

near-subsistence per capita consumption.

Nearly constant per capita consumption, however, implies that reasonable estimates of total
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consumption can be obtained from reasonable estimates of population. We thus have reasonable

estimates of world product up until about 1500, when per capita product began to rise. Economic

historians have also provided us with reasonable estimates for world product over the past century

or so (Maddison, 1995). So all that has stood in the way of a full long term world product time

series was to fill in the gap from roughly 1500 to 1850.

Recently economic historian Brad De Long has cleverly used a simple empirical Malthusian

relation to fill this gap, and has thus created a world product time series ranging from one million

B.C. to today (De Long, 1998). His estimates for before 10,000 B.C., however, are based on forty

year old speculations (Deevey, 1960). This paper will therefore replace those old speculations with

recent published estimates going back to two million B.C. (Hawks, Hunley, Lee, & Wolpoff, 2000).

This paper will then attempt to empirically model that time series with a few simple functional

forms. After considering models of gradually accelerating growth, which have been the most popular

in formal models of long term population growth, we will turn to attempting to formalize the more

common informal descriptions of history as a sequence of growth modes. And since exponential

growth is the most common formal description of short term growth, we will consider modeling

long term world product history as a sequence of exponential growth modes.

The simplest sequence of exponentials is a sum of exponentials, and we will find that a sum

of four exponential modes fits the data with less than a 2% average error, which is less than the

average uncertainty in the estimates. One of these modes, however, appears to be there just to allow

a more gradual transition between two other modes than a simple sum of exponentials will allow.

So we will then try a constant elasticity of substitution (CES) form for combining exponentials,

which can allow a transition to be smooth or sudden by varying a single parameter. We will find

that a CES combination of three exponential modes also fits the data with less than a 2% average

error.

After describing these models, and discussing their interpretation, we will then use them to

consider when we might see a transition to yet another mode of economic growth, and how fast

growth might then be. It seems quite unreasonable to expect an infinite series of faster and faster
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growth modes, since that leads to an infinite world product in finite time. But it may be reasonable

to wonder if a world that has so far seen at least three distinct growth modes might see yet one

more growth mode.

The Data

Economic historians have reasonable estimates for world product over the last century or so, while

other historians have reasonable estimates for world population over the last ten thousand years,

and cruder estimates for the two million years before that. Until a few centuries ago, per-capita

consumption was typically near subsistence levels, making it easy to infer world product from world

population. Thus the obstacle to having a full long term world product time series has been to get

reasonable estimates for the intermediate period, from roughly 1500 to 1850.

Recently, economic historian Brad De Long found a simple linear relation between world pop-

ulation growth rates and per capita product, a relation which seems valid at the low values of

per capita product observed from roughly 1850 to 1950 (De Long, 1998). This linear relation has

allowed him to created world product estimates for the missing intermediate period, and thus to

create a world product time series ranging from one million B.C. to today.

De Long developed several time series based on alternative assumptions, and this paper uses his

preferred world product series. The only change made here is to substitute more recent estimates for

population prior to 10,000 B.C. De Long continued the use by Kremer (Kremer, 1993) of population

estimates from McEvedy and Jones (McEvedy & Jones, 1978) going back to 10 thousand B.C., and

of three population estimates from Deevey (Deevey, 1960) for 25 thousand B.C., 300 thousand B.C.

and one million B.C.

Deevey’s estimates, however, were never published in a peer-reviewed journal, cite no other

sources, and are now forty years old. The data set used here excises Deevey’s forty year old estimates

and instead substitutes two more recent population estimates. Hawks and coauthors (Hawks et al.,

2000) estimate a “population bottleneck” of about ten thousand at about two million B.C., and

4



that we “cannot reject exponential growth from” then until ten thousand B.C. Consistent with

that conclusion, they also accept a Weiss (Weiss, 1984) population estimate of about half a million

between one million B.C. and 500 thousand B.C., which I’ve coded as at 750 thousand B.C.1

The resulting world product time series has 54 data points, is graphed in Figure 1, and is

listed in the appendix. In Figure 1, world product is described in units of an equivalent number of

humans at a subsistence consumption level.2 Time is described by the number of years before the

somewhat arbitrary date of 2050. This data is also graphed later in Figure 2, which shows world

product growth rates versus levels, displaying each step between data points as a horizontal line.

This graph looks noisier, because growth rates are noisier, but it has the virtue of avoiding the

arbitrary choice of a reference date like 2050.3

Choosing a Functional Form

What functional form should we use to model our world product time series? Simple exponential

growth is probably the most popular general model for describing positive quantities that grow in

time by many orders of magnitude, as both population and world product have. It is, for example,

widely used to model the last half century of economic growth (Barro & Sala-i-Martin, 1995) and

1These estimates are based on a “multi-regional” model of human evolution (Relethford, 1998). An alternative
“out of Africa” model posits a similar population bottleneck at roughly 200 thousand B.C. (Rogers & Jorde, 1995;
Ingman, Kaessmann, Paabo, & Gyllensten, 2000). The multi-regional model is based more heavily on non-genetic
fossil evidence. Genetic evidence may well estimate the number of our direct ancestors alive on a given date, but non-
genetic fossils seem better estimates of the size of the economy or ecological niche occupied by our direct ancestors and
their very close relatives on that date. Further footnotes will, however, mention how the alternative model changes
this paper’s estimates.

2Specifically, “subsistence” is $80 1990 “International” dollars, which is the ratio of De Long’s preferred world
product and population estimates for one million B.C. This per capita product has been assigned to my substitute
dates of two million B.C. and 750 thousand B.C., and retained De Long’s estimates for all other dates.

3In the analysis which follows, we will occasionally compare world product growth since two million B.C. to the
earlier exponential growth of maximum brain size. Maximum animal mass and relative brain size have both grown
roughly exponentially since the Cambrian explosion about 550 million years ago, when animals first appeared in large
numbers in the fossil record. The mass of the currently largest animal doubled roughly every 70 million years, while
maximum brain volume relative to body volume (raised to the 2/3 power) has doubled roughly every 50 million years
(Russell, 1983). (More details on the details of brain size history are given by Jerison (Jerison, 1991).) Together
these estimates suggest that maximum animal brain size has doubled roughly every 34 million years over the last 550
million years (for a total of about 16 doublings). For comparison, the exponential decay rate of Marine genera over
this period was a half-life of about 23 million years (Valen, 1973; Newman & Sibani, 1999).
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the last few centuries of growth in scientific literature (de Solla Price, 1963). Simple variations on

exponential growth, such as linear trends in growth rates, have been particularly popular in making

short term population forecasts (Lee, 1990), but seem clearly inadequate for longer term forecasts.

Variations on logistic growth have also long been popular in estimating various population trends

(Meyer & Ausubel, 1999), but also seem clearly inadequate for modeling very long term population

trends (Cohen, 1995).

Many researchers have had more empirical success explicitly modeling long term population

histories with functions that describe accelerating change. The first such efforts used simple hyper-

bolics (von Foerster, Mora, & Amiot, 1960), and soon became infamous warnings against taking

one’s model too literally, since they predicted an infinite human population in the early twenty first

century.

More recent related efforts (Kremer, 1993; Kapitza, 1996; Johansen & Sornette, 2000) have all

included corrections which could describe a recent or upcoming slowdown and other complexities,

mostly to allow growth to today be approaching fundamental limits, and hence a final end to

accelerating growth.

Some authors have also informally summarized world history as continually accelerating change,

but the more common informal summary is of human history as a sequence of specific growth modes.

History has, for example, been described as the slow expansion of hunter-gatherers, followed by

faster growth following the domestication of plants and animals, followed by even faster growth

with commerce, science, and industry (Cipolla, 1967).

Simple exponential growth is a very common model for describing particular historical periods.

It is, for example, widely used to model the last half century of world economic growth (Barro &

Sala-i-Martin, 1995). Since historical periods tend to be described as exponential growth, formal

models of transitions between periods tend to be models of transitions between exponential growth

asymptotes. Many have modeled the industrial revolution this way (Marvin Goodfriend, 1995;

Hansen & Prescott, 1998; Jones, 1999; Steinmann, Prskawetz, & Feichtinger, 1998; Galor & Weil,

2000; Lucas, 2000). At least one earlier transition, to cities, has also been modeled this way
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(Marvin Goodfriend, 1995). And possible current or upcoming transitions, such as due to computers

or the internet, have also been modeled this way (Helpman, 1998).

Given all this, it seems natural to formally model the long term history of humanity as a sequence

of exponential growth modes. Yet to my knowledge no one has done this. Some authors seem to

have come close, by drawing exponential curves suggestively next to data on log-log graphs of

population growth (Deevey, 1960; Kates, 1996; Livi-Bacci, 1997). (Some of these authors, however,

do not seem to have realized that it could be simple exponentials they were drawing, and instead

of “exponential growth followed by a period of approximate stability” (Kates, 1996).)

One author did more explicitly consider and reject a sum of exponentials model for world

population history, though without any explicit model fitting or test (Cohen, 1995). (Another

author considered a sum of two exponentials, one of which was decreasing (Lee, 1988).) In this

paper we thus take on the neglected task of more formally modeling long term human history as a

sequence of exponential growth modes. In particular, we consider such a model of world product

history.

Once we have chosen to model history as a sequence of exponential modes, there still remains the

question of how we should mathematically model transitions between exponential growth modes.

We will first try a simple sum of exponentials, and then try to replace this sum with a CES (constant

elasticity of substitution) form. Such a form allows each transition to be sudden or gradual,

depending on a single free parameter per transition. We will end up with a model describing the

three classic economic growth modes, which we might call hunting, farming, and industry.

A Sum of Exponentials Model

Apparently, no one has yet tried to formally model long-term growth as a sequence of exponentially

growing modes. This paper thus attempts to do so for world product. One very simple model of a

sequence of growth modes is a sum of exponentials, which for n modes we will write as Y (t) = Yn(t),

where Y0(t) = 0, and for i from 1 to n,
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Yi(t) = Yi−1(t) + Mi(t),

Mi(t) = ci 2t/τi .

The parameter τi is the doubling time of mode i. If data consists of pairs (tj , Yj), a min-square-error

of logs method searches for model parameters of a function Y (t) that minimize

∑

j

(log(Y (tj))− log(Yj))2.

Applying this method to my data, the best fit sum of four exponential terms gives an eyeball-

pleasing fit, and a (root mean square) average percentage error of 1.8%. This is about the same

magnitude as the smallest uncertainty or “indifference range” attributed to the population estimates

that this data is based in part on, which is about 2% (McEvedy & Jones, 1978).

Figure 1 compares this model with the data, and indicates that the main errors seem to be due

to unmodeled fluctuations with a period of roughly 500-1500 years. Figure 1 also shows the best

fit hyperbolic model,4

Y (t) = c(T − t)−α,

which has a power of α = 1.46, goes to infinity at T = 2004, and has a much inferior average

percentage error of 9.6%. (Using three terms instead of four in the sum of exponentials model also

gives a visibly much worse fit.)

For each term, Table 1 lists a mode description, doubling time5, the factor by which the doubling

4The best fit “log-periodic model,” of the form Y (t) = c(T − t)−α(1+ b cos(ω ln(T − t)+φ)) (Johansen & Sornette,
2000), has a power of α = 1.48, goes to infinity at T = 2005, and has an average percentage error of 7.4%.

5Under the “out of Africa” theory, the hunting mode began ten times more recently, at 200 thousand B.C.
Substituting this estimate for the two multi-regional estimates would reduce the hunting doubling time, increase the
hunting doubling time factor, and reduce the farming doubling time factor, all by a factor of ten. All other entries
would remain unchanged.
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Growth Doubling Date Began Doubling World Product
Mode Time (years) To Dominate Time Factor Factor
Hunting 230,000 2,000,000 B.C. 149? 406
Farming 860 4700 B.C. 267 178
?? 58 1730 A.D. 14.9 8.9
Industry 15 1903 A.D. 3.8 > 78

Table 1: Sum of Exponentials Growth Modes

time accelerated between terms, and a “date began to dominate,” defined as the di that solves

Mi(di) = Mi−1(di).

(The questionable doubling time factor for the hunting mode comes from comparing it to the

previous growth rate of animal brains, as discussed in the footnotes.6) Table 1 also gives a world

product factor, defined as

Yi(di+1)/Yi−1(di),

which says how much world product increased due to each term.

CES-Combined Exponentials

While most of the modes in the above model seem to have a familiar interpretation, the second

to last mode, the one with a 58 year doubling time, seems more difficult to interpret. We might

consider it to represent a commercial revolution, distinct from the later industrial revolution. But

visibly, it seems to just be there to allow the model to describe a slower and smoother transition

than a simple sum of exponentials will allow between the modes before and after it.

6For reference, an additional row of Table 1 describing the earlier brain size growth mode would have entries:
34,000,000, 550,000,000 B.C., ??, and “67,000.” The last entry is the total increase of brain size, which isn’t directly
comparable to the other rows since it is not an increase in world product.

9



Growth Doubling Date Began Doubling World Product Transition
Mode Time (year) To Dominate Time Factor Factor CES Power
Hunting 224,000 2,000,000 B.C. 153? 480 ?
Farming 909 4860 B.C. 247 190 2.4
Industry 6.3 2020 A.D. 145 > 590 0.094

Table 2: CES-combined Exponentials Growth Modes

To more directly model the possibility of a slow versus fast transitions between modes, we can

combine terms not with a sum, but instead with a constant elasticity of substitution (CES) form

(Barro & Sala-i-Martin, 1995), as in

Yi(t) = (Yi−1(t)ai + Mi(t)ai)1/ai .

When the CES power is ai = 1, this is x + y, the previous case. When ai = 0, this is proportional

to
√
(Yi−1Mi), which for exponential terms essentially makes an infinitely slow transition. When

ai is positive infinity, this is max(Yi−1,Mi), with an infinitely fast transition. Other positive values

of ai allow for other intermediate speeds of transition.

If we now fit such a CES combination of three exponential terms to our data, again using the

min square error of logs method, we get an eyeball-pleasing fit, and an average percentage error

of 1.7%. This model is described7 in Table 2, and compared to the data in Figures 1 and 2. This

model has the same number of free parameters as the four-term sum of exponentials model, and a

modestly smaller total squared error of logs.

Note that the industry mode will not begin to dominate until 2020, has a doubling time which is

half of what we have observed over the last half century, and is already responsible for a larger world

product factor than either of the previous two modes. The very low transition power allows a new

mode to have a strong influence long before it officially dominates, and predicts a mid-transition

7An additional row describing the earlier brain size growth mode would have the same entries as before, and the
“out of Africa” theory would change the same entries by a factor of ten.
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growth rate of about half of the new mode growth rate.

Interpreting the Modes

By describing world product history as either a sum or CES-combination of exponentials, one seems

to essentially be saying that among the thousands of large and important changes that the world

economy has seen, only a handful are fundamentally big news. Other changes are either “small,”

at least in the big picture, or such that a change of broadly similar economic magnitude and timing

was largely predetermined by the fundamental economic forces at play. Typically, the economy is

dominated by one particular mode of economic growth, which produces a roughly constant growth

rate.

While there are often economic processes which grow exponentially at a rate much faster than

that of the economy as a whole, such processes almost always slow down as they become limited

by the size of the total economy. Very rarely, however, a faster process reforms the economy

so fundamentally that overall economic growth rate accelerates to track this new process. The

economy might then be thought of as composed of an old sector and a new sector, a new sector

which continues to grow at its same speed even when it comes to dominate the economy.

Following this line of interpretation, the simple sum of exponentials model seems to assume that

during each transition, the “new” and “old” economies co-exist but do not influence each other. In

contrast, the CES-combination form seems to describe interactions between modes. Modes might

complement each other (0 < a < 1), making for a more gradual transition, or substitute for each

other (a > 1), making for a sharper transition.

The large transition centered around 5000 B.C. (but surely begin thousands of years earlier) is

naturally interpreted as the transition to from “hunting” to “farming” (both broadly construed).

Populations relying on food from the domestication of plants and animals seem to have grown

exponentially for several millennia before this transition date, nicely fitting a simple interpretation of

co-existing new and old economies (Diamond, 1997). In the CES model, the power estimate for the
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farming transition suggests that farming mostly substituted for hunting, rather than complementing

it. Because the data is poor, this suggestion can only be weak. But it does make sense, given that

hunting and farming economic modes competed for the use of both land and labor.8

The recent “industrial revolution” transition has a CES power describing a much more gradual

transition, suggesting less substitution and more complementarity between the old and new eco-

nomic growth modes. If we interpreted the old and new modes relatively literally as “farming”

and “industry”, this makes some sense, in that improved farming technology has freed workers for

industry while improved industry technology has often transferred to farming technology.

Such a literal interpretation, however, is argued against by the CES model estimate that we will

not “officially” transition to the new mode until 2020, in the sense of having the new contribution to

the world economy exceed the old part. For this to make sense, much of our non-farming economy

needs to be interpreted as still dominated by the “old” growth mode.

The form of our model suggests that the new growth mode might be found in small quantities

well before it has a noticeable effect on total growth rates, and that what distinguishes this new

economy inside the old one is that it is growing rapidly, at a rate closely related to what will

become the new total economic growth rate. We might thus better understand what distinguishes

the current “new” and “old” growth modes by looking for processes which doubled before the

transition at a rate similar to the modeled new rates of 6 or 15 years.

Some interesting candidates are found in measures of scientific progress. The number of scientific

journals has doubled steadily about every 15 years since about 1750, even though the world product

doubling time in 1750 was around a century. (From about 1650 to 1750 both journals and scientific

societies doubled roughly every 30 years.) Narrower measures of progress grow slower, while broader

measures grow faster. For example, the number of “important” discoveries has doubled every 20

years, while the number of U.S. engineers has doubled every 10 years (de Solla Price, 1963).

8Maximum brain size does not translate very directly into world product, but the long roughly steady growth in
maximum brain size has been mentioned in this paper because it may be the relevant growth mode prior to the early
spread of the human population. Product growth in an economy of human-like creatures seems to have awaited the
evolution of a land-based animal with hands, a large enough brain, and perhaps other unknown prerequisites.
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This rough coincidence in timing and doubling times suggests, though only weakly, that a

new “scientific” evolution and diffusion of knowledge via a subject-specific network of articulate

specialists is fundamental to the new industry growth mode. Perhaps the diffusion of seeds and

artifacts via a simpler more spatial network of less specialized people is fundamental to the farming

mode. If so, the new 15 year doubling time of the sum of exponentials model suggests that published

papers are close to the fundamental unit of growth, while the 6 year doubling time of the CES model

suggests that a very broad measure of “scientific”-like activity is closer to the fundamental unit of

growth.

How can we make sense of the basic idea of the world economy repeatedly switching to new

growth modes? That is, if the economy is capable of faster growth modes, what prevented them

from happening earlier? Among the many models mentioned before of transitions between historical

economic growth modes, perhaps the simplest postulate minimum scale effects, so that a new growth

mode will not occur in economies below a certain size, density, or technology level. A stochastic

variation on this is to make the number of attempts or chances to discover and transition to a new

growth mode be proportional to the current scale of the economy. This variation also predicts that

a transition will occur at roughly the time when the economy reaches some predetermined scale.

Such models could interpret the roughly stair-step shape of Figure 2 somewhat literally. The lip

of each step would describe a new mode which would not be realized until world product, moving

along the x-axis, reached the base of that step.

Could It Happen Again?

Current U.S. stock prices seem to be much higher than can be justified by the expectation that the

U.S. economy will continue much as it has for the last century (Shiller, 2000). If speculators are

rational, it seems that they must be assigning a substantial probability to the possibility of a large

change in the economy, such as a fall in the risk-premium investors demand, a fall in the real risk of

corporate profits, a rise in the share of income taken by corporate profits, or a rise in real economic

13



growth rates. It is this last possibility, of a large rise in economic growth rates, that seems to be

offered some support by the empirical analysis of very long term economic growth.

If one takes seriously the idea of long-term economic history as a sequence of exponential growth

modes, one might naturally wonder if a world economy that seems to have so far seen at least three

dramatic transitions to much faster growth modes will see yet another such transition. One pair

of authors, Ausubel and Meyer, did informally “speculate on a fourth [Deevey-like] ‘information’

pulse starting now that would enable another order-of-magnitude rise” in population. But they

took the idea no further (Ausubel & Meyer, 1994).

Are there ways an economy can grow fast that will not be possible until the world economy

reaches a threshold in size, density, or the price of some key technology? While it is certainly

possible that the economy is approaching fundamental limits to economic growth rates or levels, so

that no faster modes are possible, we should also consider the other possibility.

To use our models to estimate how soon the world economy might jump again to a faster growth

mode, and how much faster that mode might be, we must make some assumptions about what it

is that is similar across past and future modes and mode transitions. The apparent regularities

in Figure 2 suggest one approach. They suggest that we treat multiples of world product and

growth rates as similar across growth modes. More precisely, if we assume that at each transition

new values of the doubling time factor and world product factor are drawn again from the same

constant-in-time distributions for these parameters, then previous values of these parameters offer

“sample” estimates of future parameter values.

In the sum of four exponentials model, if the current mode were to last through as large a world

product factor as one of the previous three growth modes, it would last until one of the sample

dates of 1963, 2032, or 2066. If the next doubling time factor were the same as one of the last three

values, the next doubling time would be either would be .05, 1, or 4 years.9

Table 3 describes sample forecasts based on the CES model (which the author prefers). It

9If the next mode were like the brain growth mode, it would start in 2162 and have a doubling time of 0.1 years.
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Growth Doubling Time New Doubling World Product New Date New Date
Mode (DT) Factor Time (days) (WP) Factor from WP from DT
Hunting 153? 14.9? 480 1996 2075
Farming 247 9.3 190 1976 2067
Industry 145 15.8 > 590

Table 3: Using the CES Model to Forecast The New Mode

includes sample forecasts of the next economic doubling time, and two kinds of estimates of the

next transition date.10 The world product method expects that the world product factor, as

previously defined, of the current mode will be similar to that of the previous modes. The doubling

time method instead expects to see a similar value for

(di+1 − di)/τi,

which is the number of doubling times during the period when a mode is dominant. Since the

“current” mode does not even start to dominate until 2020, the doubling time method naturally

gives later date estimates.

The estimates of the new doubling time offer what seems to be a remarkably precise estimate

of an amazingly fast growth rate. One is tempted to immediately reject such rapid growth as too

preposterous to consider, until one remembers how preposterous it would have seemed to forecast

the previous two transitions that did in fact occur.

The robustness of these forecasts can be examined by considering what these types of models

would have predicted using only the data up to 1900. From 1900 to 2000, world product increased

by a factor of 37. The best fit four term sum of exponentials model forecasts that a factor of 35

increase, while the best fit three term CES model forecasts a factor of 22 increase. The main reason

for the CES model failure here is estimating a transition date of about 2060, instead of the 2020

date suggested by the larger dataset. Other parameter estimates were in much closer agreement.

10Another row corresponding to a brain growth mode would give sample dates of 2072 and 2120. Using the out of
Africa population estimate would change the new doubling time estimates from 14.9?,9.3,15.8 to 1.49?,93,15.8.
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2039 2040 2041 2042 2043 2044 2045 2046 2047
6.1% 6.1% 6.6% 8.0% 14% 41% 147% 476% 1023%

Table 4: New Transition Scenario, Instantaneous Annual Growth Rates

For example, the up-to-1900 CES estimate of the new doubling time is 6.4 years, very close to

the up-to-2000 estimate of 6.3 years. Timing estimates thus seem less reliable than growth rate

estimates.

Table 4, Figure 3 and Figure 4 show how a new transition might look, if the new mode had a 15

day doubling time and the same strong complementarity with our current mode that our current

mode had with the previous mode, and if the new mode first started to have a noticeable effect on

growth rates in 2041. (Transitions starting at any other date would look very similar.)

Table 4 makes it clear that in this scenario, the new mode has an enormous effect on economic

growth rates very soon after it has any noticeable effect on growth rates. If this growth mode

did not hit limits to slow it down, then by 2047, i.e., within six years of becoming noticeable, the

economy would then grow by a larger factor than it had from two million B.C. until 2040.

This is thus not at all a reasonable model for describing the recent small but noticeable increase

in U.S. economic growth rates that some now attribute to a “new industrial revolution.” Thus

if stock prices are now high in anticipation of a transition to a new growth mode, it must be in

anticipation of a much smaller change in growth rates, of a change that has not yet detectably

changed growth rates, or of a much more gradual transition between growth modes.

In summary, if one takes seriously the model of economic growth as a series of exponential

growth modes, and if relative change parameters of a new transition are likely to be similar to such

parameters describing old transitions, then it seems hard to escape the conclusion that the world

economy could see a very dramatic change within the next century, to a new economic growth

mode with a doubling time of roughly two weeks or less.

While it is hard to see in much detail how the world economy could possibly grow that fast, it

is at least suggestive that computer hardware costs have in fact been consistently falling for many
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decades at a doubling time of one to two years (Moravec, 1998; Kurzweil, 1999). Several observers

have predicted a transition to a dramatically new economic mode where computers substitute for

most human labor, perhaps not long after the raw computational ability of a desktop computer

matches the computational ability of a human brain, around 2025 (Moravec, 1998; Kurzweil, 1999).

Simple formal models have even been developed suggesting that adding robots to very standard

growth models can allow growth rates to naturally increase by a factor of ten, a hundred, or even

more (Hanson, 1998). Others have speculated that even faster growth rates are possible with

mature nanotechnology.

If the next mode had a “slow” doubling time of two years, and if it lasted through twenty

doubling times, longer than any mode seen so far, it would still last only forty years. After that,

it is not clear how many more even faster growth modes are possible before hitting fundamental

limits. But it is hard to see how such fundamental limits would not be reached within a few decades

at most.

Conclusion

Many people have tried to make sense of very long term time series estimating human population.

Some have explicitly modeled this history as steadily accelerating growth, while others have more

informally described it as a sequence of growth modes. And exponential growth is by far the most

common formal model of shorter term growth. Meanwhile, Brad De Long has recently constructed

long term world product estimates from recent world product estimates and older population esti-

mates.

This paper has thus attempted the neglected task of more formally describing long term world

product growth as a sequence of exponential growth modes. We have found that a time series

of world product over the last two million years can be comfortably described as either as a sum

of four exponentials, or as a CES-combination of three exponentials. But the CES model seems

preferable on theoretical grounds, which can be thought of as describing the three modes of “hunt-
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ing,” “farming,” and “industry,” broadly construed. (An earlier period of exponential growth in

brain sizes may be the relevant previous growth mode.)

In the CES-combination model, there is a sharp transition between hunting and farming, and a

smooth transition between farming and industry. These can be interpreted as due to the interaction

between hunting and farming being more one of substitution, relative to a more complementary

relation between farming and industry. The rough timing and doubling time coincidence between

industry and measures of scientific progress weakly suggests that scientific-like creation and diffusion

of knowledge might be a key to the current growth mode.

Since there seem to be some rough regularities regarding how much the economy grows between

transitions, and how much faster each new growth mode is, this paper has also considered what

these regularities suggest about when we might see yet another transition to a much faster mode,

if such faster modes are possible. The suggestion is fantastic, namely of a transition to a doubling

time of two weeks or less sometime within roughly the next century.

One might think this suggestion too fantastic to consider, were it not for the fact that similar

predictions before previous transitions would have seemed similarly fantastic. We should also keep

in mind that investors in U.S. stocks seem to be betting that a large change in the nature of the

economy is likely soon. They may well be wrong, but this paper shows that the empirical case

against such expectations is not as clear as one might expect from empirical analyzes looking at

the last century or so. From a purely empirical point of view, very large changes are actually to be

expected within the next century.
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Data Appendix

Year Product Year Product Year Product Year Product

-2,000,000 10,000 1 231,000,000 1300 401,000,000 1930 28,200,000,000

-750,000 500,000 14 219,000,000 1340 506,000,000 1940 37,500,000,000

-10,000 4,630,000 200 232,000,000 1400 562,000,000 1950 51,000,000,000

-5000 6,380,000 350 224,000,000 1500 733,000,000 1955 67,900,000,000

-4000 9,630,000 400 231,000,000 1600 963,000,000 1960 85,700,000,000

-3000 19,900,000 500 249,000,000 1650 1,022,000,000 1965 114,000,000,000

-2000 37,800,000 600 261,000,000 1700 1,248,000,000 1970 151,700,000,000

-1600 54,500,000 700 293,000,000 1750 1,606,000,000 1975 189,400,000,000

-1000 79,400,000 800 319,000,000 1800 2,190,000,000 1980 235,000,000,000

-800 121,500,000 900 396,000,000 1850 4,500,000,000 1985 281,000,000,000

-500 171,500,000 1000 441,000,000 1875 7,100,000,000 1990 344,000,000,000

-400 200,000,000 1100 495,000,000 1900 13,790,000,000 1995 421,000,000,000

-200 213,000,000 1200 468,000,000 1920 21,700,000,000 2000 513,000,000,000

1250 445,000,000 1925 26,300,000,000
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