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Abstract

Distributing authority among autonomous agents can induce inconsistency costs if
the agents act as if they disagree. If we define an agent’s “marginal beliefs” to be the
odds at which it is willing to make bets, we find that a betting market can induce
agents to act as if they almost agree, not only with respect to the bets they offer but
also other actions they take. In a particular “Mars mining” scenario, I explicitly show
how utility maximizing agents, who are autonomous and hence distrust each other, can
discover a common consensus and take concrete physical actions as if they agreed with
that consensus, lowering costs to the group as a whole. Though limited, the approach
has also has many unexplored possibilities.

A previous version of this paper was presented at the IJCAI-91 Workshop on Reasoning in
Adversarial Domains

(This version is missing some cites and the graphics.)



1 Introduction

Most distributed AI systems, such as [4], distribute processing, action, and knowledge but
not authority [?]. Distributed authority, where autonomous agents can choose whether or
not to cooperate, is often treated as an unfortunate feature of a problem domain, some-
times unavoidable but to be avoided when possible. But in fact, distributed authority offers
enough advantages that we might consider including it even when we could choose to force
all the agents in our system to cooperate. When agents treat each other skeptically, agent
boundaries provide firewalls against stupidity, so that faulty inferences need not be propa-
gated beyond these boundaries. Distributed authority also allows a diversity of competing
humans and human organizations to participate in the system design, with each group con-
tributing their own agents. Poorly designed agents should be out-competed, and hence
reflected less and less in total system performance. Possible disadvantages of distributed
authority include the overhead for agents to reason about suspecting and negotiating with
each other, and the costs of inconsistency, which are the focus of this paper.

That inconsistency is to be avoided, all else being equal, is a standard conclusion of
both logical and decision theoretic models of “rational” agents. For example, we expect
you probably would not reach your personal goals as efficiently if you acted with one set of
beliefs during even hours of the day, and another set of beliefs during odd hours, rather than
some intermediate set of beliefs during all hours. Or imagine we built a computer agent
containing a vision module and a motor control module, each of which held beliefs about
the type and location of nearby objects. Unless communication and processing costs were
prohibitive, we would want these two modules to share information, so that they came to
roughly agree about what objects were nearby. Yes, sometimes we might want our agent’s
reasoning to split into different “disagreeing” components, each exploring a different possible
hypothetical world. But when our agent takes external actions, we prefer these actions to
be based on a single consistent set of beliefs; it won’t do to have the vision system carefully
studying an obstacle dead ahead that the motor system doesn’t believe in.

Inconsistency can also cost in a multi-agent system. Imagine that we want to solve a
particular problem, and can choose between implementing a centralized system, where a
central authority manages inference across the whole system, and a decentralized system,
where autonomous agents can each choose their own beliefs and actions. The centralized
system could in principle maintain consistency across all its subsystems. But if these sub-
systems were instead autonomous, they might distrust each other, and so be reluctant to
share information and suspicious of what they are told. If these distrusting agents acted
on different beliefs, each based on less information, they might perform worse than the
centralized alternative.

The purpose of this paper is point out a simple and general mechanism which can
often, at a modest cost per question, largely eliminate costs of inconsistency in systems
with distributed authority. This mechanism is purely voluntary, and requires only the
communication of bits. It is already known to the economics community [8], and is here
reformulated for an AI audience. While market-based, it is not subsumed by other market-
based approaches to distributed computation, such as bidding for needed resources [9] or
selling services [10].

The proposed mechanism should induce autonomous agents to share information, allow
them to trust what is so shared, and induce them to act as if they (almost) agree with a
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set of explicit consensus beliefs. The mechanism does not, however, require that the agents
actually come to agree (as in [12]), or that they explicitly agree to act in accordance with
either a group plan or any explicit function of what each agent claims to believe (as in [1, 5]).
Each disagreeing agent wants to participate in the mechanism; if the system designers had
not introduced the mechanism the agents would want to do so themselves. The mechanism
does require that the agents be able to state a specific claim about which they disagree, and
that this claim be a matter of fact which might be resolved to everyone’s satisfaction with
sufficient time and effort.

In this paper I describe a concrete situation in which the inconsistency problem arises,
propose how to deal with the problem in this context, describe an implementation and
simulation of this solution, and then return to a general discussion of the limitations and
promise of the mechanism.

2 The Mars Mining Problem

Imagine we work at the Mars Mining company, whose purpose in life is to pick up gold
nuggets which are conveniently strewn across the plains of Mars. Since human labor is
expensive, we naturally turn to robots. Each day we transport a group of robots to a new
location and release the robots to forage in the area, and bring back their loads to the
temporary shelter.

A straightforward approach to this problem would create a central controller to manage
each group of robots. But let us instead consider a system design which, in addition to
distributing action and knowledge, also distributes authority. Each robot is programmed
by a different team on earth, is paid for the gold it brings back to the shelter each day,
and must pay for expenses like fuel and robot maintenance. This approach allows a great
diversity of robot strategies to be tried, but risks situations like the one illustrated in Figure
1.

Figure 1: Mars mining scenario

Group Delta found a rich area of nuggets one afternoon. But soon afterward,
Robot J , scavenging off on a distant hill, radios to the others that he sees a dust
storm coming. If he is right, then robots close to the shelter should run for it, to
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avoid the risk of damage during the storm. But they hesitate. Is there really a
dust storm, or is Robot J trying to trick his competition out of the gold? What
should the robots believe? Should they stay or run?

Figure 2 shows a distribution of ten robots, labeled A though J , each a different distance
from the shelter and each with a different private degree of belief in the storm (the result
of some unspecified reasoning). If these robots act independently and are equal in all other
respects, then whether they run for shelter or not should just be a function of these two
parameters. The two shaded regions in Figure 2 distinguish such agents who should run
from those who should stay (as determined by an explicit model described in section 5).
Robots close to shelter who believe in the storm should run, while close robots who don’t
believe shouldn’t bother. Distant robots should stay no matter what their beliefs, as their
chance of escaping the storm by running is much less. Robots B, D, and G should clearly
run, and I and J have a slight preference to run.

If we had instead built our Mars mining system around a central controller, it might
have forced the system to follow a single set of beliefs. Since the central belief would be
followed by all robots, all other possible beliefs would be irrelevant. For example, a central
belief in a 47% chance of storm, as shown in Figure 3, would imply a decision boundary of
about 880 meters1. All robots closer than 880m (A, B, C, D, and E) would run, and the
others would stay.

The cost of inconsistency shows itself in situations, like in Figure 2, where a closer
autonomous robot like A stays and a further robot like G runs. If these robots could just
trade their beliefs, the system as a whole would be better off. The system would have no
less chance of finding gold, and a greater chance of avoiding storm damage. If the agents
acted as if they agreed, this would not happen.

3 Apparent Beliefs

What does it mean to say that a certain mechanism can make agents “act as if they agree”
even when they “really” disagree? Imagine that autonomous agents can maintain a certain
level of privacy, hiding internal data structures and financial holdings from prying eyes,
and encrypting selected communication. Then the agents “act as if they almost agree” if
external observers, trying to infer each agent’s beliefs from its observable actions, find those
actions consistent with the agents having very similar beliefs 2.

How might external observers attempt such inference? In the example above, if we
knew everything about an agent except its belief in the storm, we could infer something
about that belief from whether it ran or stayed. But in general, such action data is sparse,
underconstraining the inference to beliefs, and indirect, since each action can be influenced
by thousands of beliefs.

A more direct and flexible way to probe an agent’s beliefs on a particular question is
to offer to bet with them on the question. In financial lingo, this is called “buying or

1The regions of figures 2 and 3 are slightly different because the central planner can pool assets, and so
is less risk-adverse about harm to individual robots.

2While a high level of mechanism activity might let one infer that there must be some substantial
disagreements somewhere, the agents still “act as if they almost agree” if observers can’t figure out who
disagrees and on which side.
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selling a contingent asset”. A “bank” trusted by both parties could issue script like “Worth
$1 IfStorm” and “Worth $1 IfNotStorm”, and buy or sell pairs like these for exactly $1.
If the base asset, here $1, can be considered “riskless”, and an agent were risk-neutral
or had no stake in the question (utility the same whether the claim is true or false) and
faithfully followed the axioms of standard decision theory, then the agent’s real belief would
lie somewhere between the price at which it is willing to buy and sell small amounts of assets
contingent on that claim [7].

Of course it is is not computationally possible to exactly follow these axioms; more
realistic agents often have stakes in questions and are inconsistent. But because private
communication and finances allows agents to make bets in secret, external observers will
find it difficult to infer that the agent’s net stake in a question is much different from anyone
else’s. Instead, we can simply define an agent’s “marginal belief” in a claim to be somewhere
between the mentioned buy and sell prices. If an agent is willing to buy “$1 IfStorm” for
$0.38, and sell it for $0.40, we say that its marginal belief in the storm is between 38% and
40%. When these buy/sell price ranges collapse to a point, we say have learned the agent’s
marginal belief exactly; otherwise we have made a coarser measurement. When the buy/sell
ranges of different agents overlap, we say they “appear to agree”; when they almost overlap,
they “almost appear to agree”.

It turns out that if an agent reveals marginal beliefs that violate the standard probability
axioms, then any other agent who notices that violation can use it to make a riskless profit,
valuable no matter which claims are vindicated. Thus agents should try to avoid easily
detectable violations. And, because risk and net stake influences both ordinary and betting
actions in the same way, marginal beliefs will also be revealed in ordinary actions, such as
whether the robots run or stay. Thus we can more generally declare an agent’s marginal
beliefs to be those that come closest to implying all of that agent’s small actions3, not just
betting actions, under either the no-stakes or the risk-neutral assumption within an ideal
decision theory analysis.

4 Betting Markets

Imagine that an external observer, attempting to discover robot A’s belief in the storm,
approaches A and offers to buy “$1 IfStorm”. If A thinks the chance of a storm is 10%, and
is alone, then we might expect it to sell “$1 IfStorm” to the observer for near $0.10, thereby
revealing it’s belief. But if there is another robot, say B, publicly offering to buy this asset
for $0.38, A will not sell it to the observer for $0.10 – he’d rather get $0.38 from B. In
general, if agents can bet with each other, we would expect them to do so until they do not
want to bet anymore, at which point their buy/sell ranges should overlap. At this point an
observer could not then tell that their marginal beliefs disagreed – they would appear to
agree [?]!

Of course if the agent’s offer ranges are wide, we can’t say we really knew much about
their beliefs. But for a small cost one can introduce a simple automatic “broker” on a
question, and thereby induce the agents to offer narrow price ranges. Such a broker is
simply an agent who always has open buy and sell offers, with a very narrow spread between

3It is not clear whether large actions, those affecting a significant fraction of an agent’s wealth, could
allow true beliefs to be glimpsed behind the veil of marginal beliefs.
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the buy and sell price, and a simple safe algorithm for changing those offers as a function
of previous sales [2]. Other agents should then find little risk and a potential profit from
offering ranges overlapping with and not much wider than the broker’s range; they could
turn around and sell any unwanted assets to the broker at a profit.

The finite cost of completing a transaction limits how narrow the broker can make its
offer ranges, and together with finite communication delays might allow observer to find
small discrepancies between market (i.e., broker) and individual marginal beliefs. But such
discrepancies can be small since the basic limiting cost is that of sending bits to describe
the transaction; all trading can be done electronically, since even money can be sent in bits
[3].

Betting markets may make agents appear to agree regarding their betting actions, it
why should they appear to agree regarding other actions, like whether the robots in the
example above should stay or run from the storm? Because bets can be used as insurance.
If without bets a risk-adverse robot would stay, not believing much in the storm, then if she
bets enough against the storm she may find it in her interest to run anyway as insurance.
If she runs she wins in either case; otherwise all her eggs are in one basket.

If there is enough interest (intrinsic stakes or disagreements) in a question, agents should
volunteer to be brokers, as there is money to be made doing so. It is easier for agents to deal
with central markets than to search for compatible traders, and most agents would prefer to
just take the market price, rather than choose prices they are willing to make offers at. The
broker makes money on each “round trip”, a buy followed by a sell or vice-versa, and only
loses money when he accumulates a net stake on either side of the issue. The simplest broker
strategy is to offer prices as a monotonic function of the broker’s net stake, i.e., keep making
whatever customers are buying more expensive. Competition between brokers should keep
the price spreads narrow, and prevent the system from having a single point of failure.

5 Simulation

To demonstrate that this approach can feasibly coordinate simple agents with limited infor-
mation and computational abilities in a reasonable time, the Mars mining scenario described
above was implemented in a short Commonlisp program.

At the beginning of the simulation, each robot had the beliefs and distances specified in
Figure 2, and would have chosen the actions implied there in the absence of interaction with
the other robots. Instead, a broker posted buy and sell offers, and each robot then repeatedly
decided whether their expected utility would be better if they bet some small amount on
either side and/or changed their mind about whether to run or stay. The simulation stopped
when no one wanted to trade anymore. At that point all the robots acted as if they agreed
with the market consensus of 47%, as shown in Figure 3. Not only did they all offer the
same betting odds, but everyone who the consensus says should run ran, and those who the
consensus says should stay stayed. No matter what the “real” chance of a storm is, this
result turns out to be clearly better (higher expected utility) for the system as a whole than
if the robots had acted on their initial inclinations. To make the scenario concrete, a variety
of arbitrary choices were made. However, I made no search in a space of possible choices to
find nice results – all choices are the initial arbitrary choices.

The simulation details are as follows. The agent beliefs and distances are those given in
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Figures 2 and 3. Each agent initially has assets consisting of $1000 cash, robot hardware
worth $1000, the value of the gold that agent expects to pick up if it doesn’t run, and
initially zero conditional assets (betting contracts). Without a storm there is a 35% chance
to find $1 worth of gold, a 40% chance of $10, a 20% chance of $100, and a 5% chance to
find $1000. With a storm each dollar amount increases by 10% 4. If there is a storm and a
robot stays, they are sure to be caught in it. But if they run their chances of evading the
storm are exp(−distance/1000m), decreasing with distance. If an agent gets caught in the
storm, there is a 20% chance of passing unscathed, a 60% chance of suffering 30% damage
to the robot hardware, and a 20% chance of needing to replace the hardware5.

Each robot maximizes expected utility, with utility being the logarithm of an agent’s
total net worth. Robots consider the current market price as relevant information about
whether there will be a storm; they heuristically compute their degree of belief in the storm
as a weighted combination of what their private information suggests (weighted 70%), and
what the market suggests. This heuristic ignores the price history and the information
contained in whether other robots are running to shelter.

Each robot repeatedly cycled through three steps: sending in orders to trade, receiving
a reply with the new market price, and computing new orders. To deal with the fact that
prices can change during the cycle, each agent sends in multiple orders, each conditional
on what the current market price will be when the order arrives. The total cycle takes a
random time delay, averaging around 7msec but more for more distant agents.

There is one broker, who initially offers to buy up to $10 of IfStorm at a price of 49%,
i.e., $0.49 per “$1 IfStorm”, and sell it at 51%. The broker initially offered the same prices
for IfNotStorm. If someone bought $5 of IfNotStorm, the prices would remain valid for up
to the remaining $5. When the offer was depleted, the price on IfNotStorm would rise to
50 − 52%, and the prices on IfStorm would drop to 48 − 50%. If another $10 worth were
bought, the price would continue on to 51−53%, etc. If $10 of IfStorm were bought instead,
however, the price would go back up to where it started, and the market maker would have
made a clear profit of $0.10.

Figure 5 shows the buy and sell prices as a function of time (in units of simulated
seconds). The broker started with assets of $122.50 6, lost about half that as the price
changed quickly in the first 0.1 time unit, and then profited steadily as the price changed
more slowly, with final assets over $190. Figure 7 shows the stakes held by each player,
which, like each agent’s beliefs, which is private information not available to the other
players. Tick marks indicate when a player changed its mind about whether to run or stay.

Since the final market price of IfStorm was 46 − 48%, 47% was used as the central
belief for calculating the central plan. To avoid a full combinatorial analysis of all possible
events, the central run/stay advice was approximated as what an individual would do if
they believed the consensus and had the full cash of the group available to reduce risk. This
neglected small effects like being able to share the risks associated with how much gold each
agent will collect. At 47% the resulting run/stay cutoff was 876m.

To evaluate whether the system as a whole was better off after betting, I calculated
4Similar results come without this feature
5This is not “death”; they just have to buy a new “body”.
6The broker could have risked only $12.25 by offering only $1 at each price. In the absence of competing

brokers offering a better deal, he would have made about the same profit, but trading might have taken ten
times longer.
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a total expected utility before and after betting, by summing the expected utility of each
robot. I calculated this for different possible values of the “true” probability of a storm,
and it turns out that no matter what this probability is, the post-betting situation is better
than the pre-betting one. This way of calculating total utility is crude, but conservative; it
penalizes the final situation for betting risks imposed on agents, without rewarding it for
the fact that disagreeing agents each expect to win on average.

While this “betting helps” result should be typical, one can construct situations in which
the pre-betting situation is better. If there were only robots A, B, C, E, F , and H , with
a consensus price of 14%, and the “true” probability of a storm were 37H should run. In
this case a divergence of opinion is better, since then at least some of the agents (on his
own, B will run) will do the right thing. This scenario is unusual in that everyone with a
belief lower than the consensus should do the same as the consensus says, namely to stay;
only beliefs substantially higher than the consensus indicate that one should take a different
action, namely to run. More typically, acting on beliefs even farther from ”true” than the
consensus should cause even more harm.

Without a model of how beliefs come to be distributed it is hard to say much about
how good the consensus belief is, compared to the individual beliefs, as an estimate of some
“true” appropriate belief. The fact that acting on the consensus is better in this “random”
situation, and that it takes some work to come up with a similar counter example, offers at
least some support for the speculation that it is better on average for system to act as if
they agree with such a consensus.

6 Discussion

Having seen the mechanism work in a particular context we are now in a better position
to understand its limitations. It requires that agents can express and communicate a com-
mon claim to bet on, that there potentially be enough eventual convergence of opinion to
uncontroversially settle a bet7. If agents can influence the claim bet on, then there can be
“moral hazard” with beliefs conditional on who has bet how much. Agent’s need to care
what happens at the future time when they think they will be vindicated, and interest in a
question should last much longer than the communication delays. And the agent’s (or some
external observer’s) interest in the question must be enough to overcome the basic costs
[6] of sending messages, carefully working a resolvable claim, and having agents create and
search indexes of possibly relevant claims. While it may be in the interest of each agent
to act as if they almost agree with the consensus, this does not mean it will always be
computationally feasible to do so.

On the other hand, the basic mechanism has many unexplored possibilities. In the sce-
nario above, a smarter broker could have used technical trading techniques to dramatically
sped the convergence to consensus. An external user could induce the agent’s to answer a
question of interest by subsidizing a simple broker who gives away assets to whoever moves
the price in the direction of its final resting place. The market prices represent a consensus
which autonomous agents with different knowledge could observe and update in parallel, and
thus be a “blackboard” [11] for distrusting agents. All logical and conditional statements
combining the claims available to bet on imply specific trading strategies which should make

7Methods for dealing with this and other problems are discussed in [?]
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money if those combinations are correct, without exposing such traders to risk regarding
other issues. For example, a Bayes network work could be computed by having separate
agents each trade on the local constraints expressed by each link in the network. Agents who
do not think they know something special about some particular subject can just take the
market price as information, setting their personal belief to be that of the consensus. Profits
available from arbitrage allow the total system to be more consistent than any individual
can afford to be, even in the presence of large numbers of irrational participants.

In conclusion, adversarial agents need not incur the full costs of inconsistency in the pres-
ence of a mechanism which makes them act as if they almost agree, even though they really
disagree with and distrust each other. Betting markets provide such a mechanism. Simple
heuristics allow computationally limited agents to use this mechanism, as demonstrated by
the “Mars mining” simulation described. The approach has some clear limitations, but
seems a promising area for exploration.
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