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Abstract.  Prediction markets produce crowdsourced probabilistic forecasts through 
a market mechanism in which forecasters buy and sell securities that pay off when 
events occur.  Prices in a prediction market can be interpreted as consensus probabil-
ities for the corresponding events.  There is strong empirical evidence that aggregate 
forecasts tend to be more accurate than individual forecasts, and that prediction mar-
kets are among the most accurate aggregation methods.  Combinatorial prediction 
markets allow forecasts not only on base events, but also on conditional events (e.g., 
“A if B”) and/or Boolean combinations of events.  Economic theory suggests that 
the greater expressivity of combinatorial prediction markets should improve accura-
cy by capturing dependencies among related questions.  This paper describes the 
DAGGRE combinatorial prediction market and reports on an experimental study to 
compare combinatorial and traditional prediction markets.  The experiment 
challenged participants to solve a “whodunit” murder mystery by using a prediction 
market to arrive at group consensus probabilities for characteristics of the murderer, 
and to update these consensus probabilities as clues were revealed.  A Bayesian 
network was used to generate the “ground truth” scenario and to provide “gold 
standard" probabilistic predictions.  The experiment compared predictions using an 
ordinary flat prediction market with predictions using a combinatorial market.  
Evaluation metrics include accuracy of participants’ predictions and the magnitude 
of market updates.  The murder mystery scenario provided a more concrete, realistic, 
intuitive, believable, and dynamic environment than previous empirical work on 
combinatorial prediction markets. 

1. Crowdsourcing, predictions, and combinatorial markets 

Forecasting future events is important to business, national security, and society in 
general.  Despite decades of research and immense resources dedicated to developing 
forecasting methods, getting better forecasts has proven elusive.  Traditionally, forecast-
ing has relied on judgments of a few experts. Measured on predictive accuracy, experts 
repeatedly disappoint, even when compared to simple statistical models like “no change” 



or linear models with equal or even random weights [1-6]. Furthermore, the data required 
for statistical models may be unavailable or inadequate.  Recently, crowdsourcing has 
been shown to improve on the judgments of individual experts, or small groups of experts.  

Common practice in crowdsourcing is to average the judgments of a large group of in-
dividuals who have some knowledge of the problem [7].  Theory suggests that giving 
more weight to better forecasters should outperform a simple average, but in practice 
simple averaging has been surprisingly hard to beat. Recently, however, prediction mar-
kets have been shown to improve accuracy not only over individual or small groups of 
experts, but also over simple averaging [8-9]. A prediction market allows forecasters to 
aggregate information into a consensus probability distribution by purchasing assets that 
pay off contingent on an event of interest. Since the resources available to make predic-
tions are limited, forecasters self-select to make forecasts for which they have the most 
information. Over time, the market gives greater weight to more successful forecasters. 
More accurate forecasters acquire greater resources with which to make further predic-
tions; less accurate forecasters will lack the resources to have much influence on the con-
sensus probabilities.   

We are especially interested in the problem of forecasting many interrelated variables. 
For such problems, graphical models such as Bayesian networks provide a principled 
approach to modeling dependencies among variables. Pennock and Wellman [10] sug-
gested the use of graphical models for belief aggregation.  A combinatorial prediction 
market [8-11] increases the expressivity of an ordinary prediction market by allowing 
conditional forecasts (e.g., the probability of B given A is p) and/or Boolean combinations 
of events (e.g., the probability of B and A is q).  Theory suggests that this greater expres-
sivity, if appropriately captured in market prices, should give rise to more accurate fore-
casts.  This is almost trivially true on joint forecasts, but should also hold for marginal 
forecasts when knowledge is distributed among participants and communication is primar-
ily through the market.  It should be particularly apparent if knowledge of correlations and 
knowledge of facts is held by different participants who communicate primarily via the 
market. 

Specifying dependencies among forecasts using a graphical probability model allows 
tractable computation of a joint probability distribution among a large number of interde-
pendent questions.  If asset prices are set using a logarithmic market scoring rule (LMSR), 
then the assets can be factorized in a similar manner to probabilities, giving rise to similar-
ly efficient algorithms for managing forecasters’ assets [12].   

For nearly two years the DAGGRE project [13-14] ran a public LMSR prediction mar-
ket for geopolitical forecasting. The focus was on forecasting world events: usually ques-
tions with extended time horizons and significant irreducible uncertainty. These are the 
types of questions that have historically been the most vexing to intelligence analysts, 
economists and others. The DAGGRE market opened in October of 2011 as part of 
IARPA’s Aggregate Contingent Estimation (ACE) program. The initial DAGGRE market 
was an ordinary (“flat”) prediction market. In October of 2012, we launched a combinato-
rial prediction market. The market allowed users to forecast a question conditional on 
assumed values of another question. At any given time, there were on the order of 100 



questions active on the market.  Over time, some questions were removed as their out-
comes became known, and new questions were added.    Participants in the market were 
recruited from email solicitations, articles on blogs and newspapers, and personal recruit-
ing at professional events. Participants received a small financial incentive for participat-
ing.  Because of program restrictions, compensation did not depend on forecast accuracy, 
but the most accurate forecasters were recognized publicly on the DAGGRE site and 
listed on the leaderboard. Over the 20 months the market was open, more than 3000 par-
ticipants contributed at least one forecast, with an average of about 150 forecasters per 
week.  The market ran just over 400 total questions, about 200 of which were shared with 
four other teams in the IARPA-funded tournament.  

Probability forecasts for the shared evaluation questions were reported daily to IARPA.  
When the outcome of an evaluation question became known, the question was scored by 
averaging the daily Brier score [15] over the period of time the target question was active. 
This approach has the benefit of rewarding forecasts that trend toward the correct outcome 
early during the period of time the question is being forecast. Forecasts were evaluated 
against a baseline system employing a uniformly weighted linear average of forecasts. 
Although early DAGGRE results were unreliable due to software issues, from February 
2012 through May 2013, the DAGGRE market accuracy was about 38% greater than the 
baseline system.   Accuracy was about the same before and after the launch of the combi-
natorial feature; however, usage of the combinatorial capability was low. About 10% of 
the users ever used the combinatorial feature, and only about 5% of the forecasts condi-
tioned on another question. The DAGGRE prediction market closed in June of 2013 and 
will reopen in Fall 2013 with a change in focus to science and technology forecasting. 

As a large-scale field study, the DAGGRE geopolitical market was not well suited to 
controlled experimentation. In this paper, we report a smaller-scale study that compares 
groups making the same predictions with the same information, one group using an ordi-
nary flat market and the other using a combinatorial market. 

 

2. Scope of the Experiment 
The goal of the experiment was to investigate the effects on prediction market forecasts 

of allowing users to specify conditional probability links between questions. An experi-
mental study [8] showed improved predictions with a combinatorial market, but on styl-
ized forecasting problems with little face validity.  The present experiment was designed 
to evaluate evidence and generate forecasts in a more concrete, realistic, intuitive, 
believable, and dynamic environment than previous work.  Additionally, the experiment 
simulated the sequential nature of the flow of information in a prediction market. 

 

3. Experimental design 
Using the actual DAGGRE market and real-world questions would have provided the 

most concrete, realistic, and believable environment, but using the actual market would 



cause experimental design challenges that could not easily be overcome.  We therefore 
chose a “murder mystery” scenario to: 

• Provide a concrete, realistic, intuitive, and believable, environment, in which 
relationships are based on statistical evidence familiar to the participants, e.g. men 
tend to be taller than women and people who wear bifocals tend to be older;   

• Provide a common understanding of the basic relationships between the questions 
and clues upon which the belief structure (Bayes nets) could be built ; 

• Use the same questions in a counterbalanced design; 
• Control the delivery of information, providing clues sequentially (as in real predic-

tion markets) and control the level of “expert” knowledge of the participants; 
• Provide correct “gold standard” beliefs; and 
• Control of the timing and order of the clues and outcomes of the questions, ensur-

ing similar problems for different experimental runs. 
 
The independent variables were:  

• Market - the type of market, combinatorial or flat;  
• Market Order - the order in which each type of market was used by the partic-

ipants, combinatorial first or flat first.   
 
The primary focus was on the effects of the Market variable.  The Market Order varia-

ble allows analysis of interactions among the data due to learning effects.  Each partici-
pant made predictions using both the combinatorial and flat markets.   

In order to simulate the variation in levels of knowledge typical in prediction markets, 
different information concerning the relationships among the market questions and clues 
was distributed to the participants.  In each session, each participant received conditional 
probability tables relating the market questions to each other and five of the ten condition-
al probability tables relating the clues (evidence) to the market questions.  The conditional 
probability tables represented the expertise of each participant since the participants with a 
given table had the most accurate knowledge of the relationships between a specific clue 
and the market questions.  Participants who didn’t have access to specific tables had to 
rely on their general knowledge and the response of the market (including comments) to 
estimate the relationships between clues and questions. 

The primary dependent variable was the accuracy of the predictions.  For experiments 
on information aggregation, a common criterion is the ability to calculate ideal rational 
predictions given individual information and given the sum of all individual information.  
This ability allows us to define a mechanism’s accuracy as the distance between an ideal 
distribution and the actual probability distribution produced by the mechanism.  The 
measure of the accuracy of the predictions in each market was the Brier score.  The Brier 
score is a proper scoring rule – that is, a forecaster minimizes his or her expected Brier 
score by accurately stating his/her true probability.  The Brier score is often used as a 
measure to grade forecasts (Stevenson, et al. 2008).  The Brier score is defined as 
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where N is the number of questions, R is the number of possible outcomes for each ques-
tion,  fqs is the probability forecast for outcome s of question q, and oqs is an indicator (1 if 
yes; 0 if no) for whether the actual outcome for question q was s.  Clearly, forecasts that 
predict the correct outcome with higher probabilities will result in lower Brier scores. The 
Brier score is a proper scoring rule, meaning that if outcomes are randomly generated 
according to a “gold standard” probability distribution, the Brier score is optimized by a 
forecaster who reports this “gold standard” distribution. 

Also important in analyzing the participants’ predictions in the expected Brier score, 
also known as the Brier prediction error.  The expected Brier score is defined as 
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where !!"
!"is the “gold standard” probability of a possible outcome.  For our experiment, 

fqs
G is the probability obtained from the Bayesian network used to generate the evidence, 

conditioned on the evidence that the forecaster has seen so far.  The expected Brier score 
is measure of the inherent uncertainty in the problem – the best forecast that could be 
made given available evidence. 

The experiment was conducted in sessions consisting of two paired trials designed so 
that each participant made predictions using both the combinatorial and flat markets.  In 
each trial, the participants made predictions for five identical questions relating to charac-
teristics of suspects in a “murder mystery.”  In the first trial of each session, half of the 
participants used an instance of the DAGGRE combinatorial market (Group A) and the 
remaining half used an instance of the DAGGRE flat market (Group B).   In the second 
trial, each participant used the type of market he or she had not used on the first trial.  In 
each trial, the instructions, training, market questions, and clue types were identical.  Two 
scenarios – a series of clues and murderer characteristics, representing a specific murder 
scenario – were selected, one for each of the two trials.  Each scenario used the same clues 
and murderer characteristics, but differed in the assigned values (e.g., female wearing 
heels vs. male wearing flats) and the order in which the clues were presented.  The scenar-
ios were constructed to be similar enough that effects due to scenario would be minimal. 

Two sessions of the experiment have been conducted to date.  The first session was 
conducted as part of the DAGGRE spring workshop in California for DAGGRE geopolit-
ical market participants.  Workshop attendees were all interested in geopolitical prediction 
markets, and ranged from novice to highly experienced.  The second session was conduct-
ed at George Mason University using primarily third-year systems engineering students as 
participants.  All GMU participants had passed a course in probability, and were consid-



ered to have the requisite critical thinking skills to understand quickly the functioning of 
the DAGGRE prediction markets.  We wanted all participants to be familiar with the 
market, to reduce extraneous variation.  All participants were given training such that they 
felt comfortable using both the flat and the combinatorial markets prior to beginning the 
experimental trials.  

In order to provide the “gold standard” against which the participants’ predictions 
could be compared, Bayesian networks representing the relationships between the market 
questions and clues were developed.  The full Bayes net (Figure 1) was used as the basis 
for the relationships between market questions (in blue) and clues (in tan).  The flat Bayes 
net (Figure 2) was obtained by removing links between market variables and setting their 
distributions to the marginal distributions obtained from the full Bayes net. The flat Bayes 
net was adopted as the “gold standard” for the non-combinatorial condition.  Essentially, 
the combinatorial market and the flat market have identical market questions, clue types, 
and relationships between questions and clue types, but in the flat market the participants 
are unable to specify relationships between the market questions.  The relationships 
among the market questions and the clue types were defined for the participants in condi-
tional probability tables. 

 
Figure 1: Combinatorial (Full) Bayes net 

 



 
 

 
Figure 2: Flat Bayes net 

 
Market questions and clues were chosen to be intuitive, plausibly related to a murder 

mystery, and related to each other (to provide a valid test of a combinatorial prediction 
market).  The relationships between physical clues were based on statistical evidence in 
the population of the US.  For example, men are on average taller and heavier than wom-
en; shoe size is correlated with height.  The strength of the relationships was exaggerated 
over the actual correlations in the U.S. population.  This reflects the stereotypical nature 
of typical murder mysteries, and helped to ensure strong correlations among clues and 
market questions.   

Once the relationships among the questions and clue types were established in the full 
Bayes net, the Bayes net was sampled to generate 100 simulated individuals who, accord-
ing to the scenarios, were attendees at the New Year’s eve party where the murder oc-
curred.  Participants were told that the murderer was one of these 100 suspects. Table 1 



contains examples of the characteristics for each clue type and market question associated 
with each case (attendee).    

Because “gold standard” predictions were required for a baseline against which the par-
ticipants’ predictions could be evaluated, after the 100 individuals were simulated, the 
marginal and conditional probabilities both the full and flat Bayes nets were replaced with 
actual frequencies taken from the simulated guest list for the party.  These frequencies are 
reflected in Figures 1 and 2, and were used to generate the “gold standard” predictions for 
the series of clues in each case. 

 

 
Table 1:  Partial Attendee Characteristic Table 

Of the 100 cases, two were selected as murderers, one for each of the two experimental 
trials.  The differences between the Brier scores for the flat and full BNs, the differences 
expected Brier scores for the flat and full BNs, and the relative probability of each occur-
rence of each cases were used to select ten candidate cases.  The candidate cases were 
those that: 

• Had relatively large differences in the Brier scores; 
• Had relatively large differences in the expected Brier scores; 
• Had a variety of characteristics for clue types and outcomes for market ques-

tions; and 
• Were above average in their probability of occurrence. 

Larger differences in the Brier and Expected Brier scores indicated that there should be 
differences between the “gold standard” predictions and would provide opportunities for 
the participants to generate differences predictions in the combinatorial and flat markets. 
Cases with higher than average probability of occurrence were selected as representative 
of typical cases.   

Once the candidate cases were selected, simulations using permutations of the ordering 
of clues were generated to evaluate the difference between the full and flat Bayes net 
“gold standard” predictions over time.  The two cases used in the experiment and the 
ordering of the clues were chosen from those with larger average differences in Brier 
scores over time.  Based on data gathered during a pilot test, the timing of the clues was 
established such that individuals would have sufficient time to analyze the impact of the 
clues and enter any updates to the market predictions.   

At the beginning of the experiment, each group (combinatorial and flat) was sub-
divided into two subgroups, each of which was seated at a separate table.  Each subgroup 
received marginal and conditional probability tables for the market variables, as well as 
conditional probability tables for a subset of the clues. Participants were given time to 

Guest Scent
Hair-
Dyed

Hair-
Length

Shoe-
Type Strength

Glasses-
Function

-
Attitude Motive

Footprint
Depth

Shoe-
Size

-
Gender Weight Height -Age

Relation?
ship

1 MSK NAT BCS FLT STR NON NUT EXT MOD MED M MED TAL ELD ASO
2 FLR DYD SHD ATH STR BIF NUT EXT DEP SML F HVY SHT MAT FOR
3 NON NAT BCS FLT WEK FRS FRN EXT MOD LRG M MED TAL MAT FOR
4 MSK NAT SHD ATH AVG NON HST MNY SHL MED M HVY TAL MAT CMP
5 NON NAT SHD FLT STR NON HST EXT MOD LRG M MED TAL YNG FOR



enter information from the probability tables into the market.  Figure 3 shows a screenshot 
of the interface used by participants to enter probabilities. The screen shows an assess-
ment of the probability that the murder was a friend or relative, business associate, com-
petitor, or employee of the victim.  Participants see the current probability and a chart 
showing the history of probability values since the start of the experiment. Participants 
can use the “+” and “-“ buttons to raise or lower the probability values. The interface also 
shows their expected score if each of the outcomes occurs. On the left-hand side of the 
screen, we see the current question highlighted in blue. The top part of the screen shows 
assumptions. In the combinatorial condition, participants can drag other questions up into 
the assumption area and select an assumed value. In this case, the participant is assuming 
that the murderer is young; thus the probabilities shown to the right are conditional proba-
bilities of relationship of the murder to the victim, given that the murderer was young. 

Only those in the combinatorial condition could enter information about relationships 
among market questions. Dragging questions into the  assumptions area was disabled in 
the flat condition. All participants could enter marginal probabilities.  After about ten 
minutes, clues were handed out at intervals of a few minutes. Near the end of the experi-
ment, as a way to keep up interest in the game, the guest list was handed out and subjects 
were challenged to identify the murderer.  At this point, participants had enough to identi-
fy the murderer with certainty.  

 
Figure 3: DAGGRE Prediction Market User Interface 

 



4. Results and observations 
The first clue was introduced about ten minutes after the probability tables were dis-

tributed.  During those ten minutes, participants could use the market to establish the 
initial marginal and conditional probabilities for the market questions.  Figure 4 compares 
the time series of Brier scores for combinatorial and flat prediction markets starting from 
the time the first clue was distributed. The figure also shows the Brier scores for the full 
and flat Bayesian networks. Those in the combo condition made more edits, reflecting 
extra effort to correlate the market questions.  Those in the flat market could not express 
those correlations in the market. Since the full Bayesian network represents all the availa-
ble information, theoretically, on average it should have the lowest Brier score for a repre-
sentative case drawn from the Bayes net.  The flat Bayes net, since it does not capture the 
relationships among the market questions, should not as accurately predict the outcomes 
of the market questions.  Indeed, in Figure 4, the Brier scores for predictions from the flat 
Bayes net are always greater than those from the full Bayes net.  

 

 
Figure 4:  Comparison of Brier Scores 

Figure 5 is similar to Figure 4, but compares expected Brier scores. These figures can 
be divided into regions in which the amount of information available to the participants 
differed.  Prior to the lists of attendee characteristics being distributed (before the green 
vertical lines in the figures) the participants had available only the information contained 
in the clues and in the conditional probability tables.  This information was reflected in the 



Bayes nets used to construct the scenarios and clues.  Near the end of the experiment, to 
keep up interest, a list of party guests and their characteristics was distributed. At this 
point, the participants had access to information not captured in the Bayes nets, and this 
information was sufficient to identify the murderer with certainty before the clues resolv-
ing the questions were distributed.  Therefore, our analysis stops when the guest list was 
distributed 
 

 
Figure 5:  Comparison of Expected Brier Scores 

As can be seen in the figures, there was a lot of noise in the markets -- compared to the 
Bayes nets, and no clear tendency.  Indeed, it is hard to tell from inspection which curve 
had the lower time-averaged Brier score.  Table 2 summarizes the the average Brier scores 
for the flat and combinatorial markets in each trial and compares them to the correspond-
ing difference in the “gold standard” Brier scores obtained from the flat and full Bayes 
nets.  In three of the trials, the average Brier scores from the combinatorial markets were 
lower than those from the flat markets indicating that, on average, the predictions made in 
the combinatorial market were more accurate than those made in the flat markets.  The 
exception to this was GMU Trial 1 in which the average flat market predictions were 



more accurate.  As expected, in three of the four trials, the average difference between the 
flat and combo participants’ scores were less than those from the corresponding Bayes 
nets, indicating that on average the participants had not integrated all the available 
knowledge into their predictions.  There was an exception to this trend also; in CA trial 2 
the difference between the participants’ Brier scores was greater than that between the 
Bayes net scores.  Inspecting Figure 4, it appears that the CA trial 2 combo participants 
were overconfident: their combinatorial Brier scores were below those of the full Bayes 
net, indicating that their predictions were stronger than they “should” have been with the 
information available; however, this overconfidence may have been warranted by the 
knowledge that they were participating in an experiment. 

!
Bayes&Net&Average&&

Difference!
Participants’&Average&&

Difference!

CA!Trial!1! 0.1085! 0.0993!

CA!Trial!2! 0.0281! 0.1537!

GMU!Trial!1! 0.0622! 60.0542!

GMU!Trial!2! 0.1252! 0.0951!

Table 2: Average Brier Scores 

Overall, the Brier score analysis suggests that the use of combinatorial markets had an 
effect on the forecasts made by users, but although the results are suggestive, the effects 
seen in this experiment do not conclusively demonstrate an effect of combinatorial mar-
kets on accuracy. 

Like the Brier scores, the expected Brier scores (Figure 5 and Table 3) for the combina-
torial market are not consistently lower than those for the flat market indicating that that 
the certainty in the participant’s predictions was not consistently less for the combinatorial 
market than for the flat market.  As can be seen in Table 3, at various time in the trials, the 
expected Brier scores in the combinatorial and flat markets approached the theoretical 
minimum generated by the full Bayes net expected Brier scores, though neither the com-
binatorial nor the flat market expected Brier score did so consistently.  This lack of con-
sistency is also evident in the average difference between the participants’ expected Brier 
scores.  Though the average expected Brier scores for the combinatorial market were less 
than those for the flat market in the California trials, they were slightly greater in the 
GMU trials. 

5. Conclusion 
The four trials in this experiment do not show a clear advantage for combo markets 

over flat markets on this “murder mystery” scenario. These results set limits on the condi-
tions and range where a clear advantage may be seen.  First, given the noise in the market 
estimates, the scenarios used in these trials provided insufficient theoretical difference 
(~10%) between the flat and combo Brier scores (as generated by the full and flat Bayes 



nets).  Although each of our trials involved ~10 people working for several hours, the 
effective sample size is simply the number of trials, four (4).  A scenario with a larger 
theoretical difference might show a consistent difference between the groups. 

! Bayes&Net&Average!
Expected&Difference!

Participants&Average&Ex8
pected&Difference!

CA!Trial!1! 0.0569! 0.0381!

CA!Trial!2! 0.0764! 0.0814!

GMU!Trial!1! 0.0786! 60.0133!

GMU!Trial!2! 0.0718! 60.0232!

Table 3: Average Brier Scores 

Second, to level the playing field, we provided direct evidence for all the market ques-
tions.  But the most likely benefit to using a combinatorial market lies in the ability to 
propagate the effect of evidence through the market and influence predictions for market 
questions that are not directly related to the evidence.  Examination of the data shows that 
changes in the predictions due to direct evidence seemed to overwhelm the changes in 
predictions due to evidence that was only indirectly related to each question. A clearer 
advantage for the combinatorial market might be seen if some questions could only be 
predicted from evidence relating to other correlated questions. 

In designing future trials based on the experimental trials reported here, several modifi-
cations may increase the effects on the dependent variables (Brier scores and expected 
Brier scores).  Possible modifications to the experimental design include making the cor-
relations among the questions and between evidence and the question stronger; simulating 
more specialize knowledge i.e. lower percentage of the participants receive each condi-
tional probability table; making it more difficult for participates to retain knowledge of 
specific relationships among the markets question and types of evidence; and adding ques-
tions for which no direct evidence is provided, but which are correlated with other ques-
tions for which there is evidence.  Additionally, designing trials that take less time could 
result in more trials being run with the same number of participants and thus provide an 
overall increase in the statistical power of the experiment.  Also, the experiment could be 
instrumented to provide data that would support the analysis of other metrics, e.g. joint 
probability distributions and conditionals.  The basic design of these experimental trials 
seems sound, and improvements to the experimental design have been identified that 
should increase the ability of the Combinatorial Market experiment to determine the ef-
fects of using probabilistically linked questions on prediction markets.   
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