Prices That Make Policy

Robin Hanson
Public Choice Outreach
7 June 2003
Three Premises and a Conclusion

1. It is not that hard to tell rich happy nations from poor miserable ones after the fact.
2. Governments largely fail by not aggregating available information.
3. Betting markets are the best known institution for aggregating information.

\[\therefore \quad \text{Try to vote on values, but bet on beliefs.} \]
Log GDP Per Capita vs. Year

Japan, Argentina, Venezuela highlighted

Source: Maddison 1995
Government Info Failure

Evidence

- Huge variation in national growth rates
- Stupid/ignorant public opinions, policies
- Disagreement, non-random-walk polls

Theory

- Voters rarely decisive, beliefs like clothes
- Very hard for voters to access expert info
Meta - Decisions

- Media, Academia, ...
- Politics
- Institution
- Decision

- Aggregates info
- Weighs values
- Beliefs
- Info
- Values

- Meta
Information Markets

• Most markets aggregate info as side effect
 – Very hard to find info to beat average return
 – Some markets now created for this purpose

• In direct compare, beat other institutions
 – Racetrack odds beat track experts (Figlewski 1979)
 – OJ futures improve weather forecast (Roll 1984)
 – I.E.M. beat president polls 451/596 (Berg et al. 2001)
 – HP market beat sales forecast 6/8 (Plott 2000)
Today’s Prices

40-45% Osama Bin Laden captured or neutralized by 31 Dec 2003

35-40% Saddam Hussein captured or neutralized by 30 Sept 2003

49-52% Weapons of Mass Destruction found in Iraq by 31 Sept 2003

64-66% Bush re-elected as US President

TradeSports.com
Estimates from Prices

$1 if A \leftrightarrow p(A) \quad 1

$x \leftrightarrow E[x] \quad 1

$1 if A&B \leftrightarrow p(A&B) \quad 1

$x if A \leftrightarrow E[x|A]*p(A) \quad 1

$1 if A&B \leftrightarrow p(B|A) \quad $1 if A$

$x if A \leftrightarrow E[x|A] \quad $1 if A$
Markets Can Advise Decisions

- $1 if Move Troops
- $1 if Not Move Troops
- $1 if War & Move Troops
- $1 if War & Not Move Troops

Compare!

- P(M)
- P(not M)
- P(W | M)
- P(W | not M)
Decision Market Applications

E[firm stock price | fire CEO?]
E[f(inflation,unemploy) | Fed raise rates?]
E[my years to live | opt for surgery?]
E[crime rate | gun control bill pass?]
E[Democrat win | Nominate Kerry?]
E[GDP | Bush II re-elected?]
E[SA civil war | US moves troops out?]
Every nation*quarter:
- Political stability
- Military activity
- Economic growth
- US aid/trade
- US military activity
& global, special

But: # Parameters > # Nations * #Quarters * #Variables
Probabilities > 2 #Parameters
Accuracy

Best of Both

Simple Info Markets

Market Scoring Rules

opinion pool problem

thin market problem

Estimates per trader
Experiment Environment

- 8 binary vars: STUVWXYZ
- $2^8 = 256$ combinations
- $20\% = P(S=0) = P(S=T) = P(T=U) = P(U=V) = \ldots = P(X=Y) = P(Y=Z)$
- 6 people, each see 10 cases: ABCD, EFGH, ABEF, CDGH, ACEG, BDFH
- random map STUVWXYZ to ABCDEFGH

Table

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sum | 6 | 3 | 4 | 10 | | | | |

Same

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Experiment Results

(Joint work with John Ledyard, Takashi Ishida, Net Exchange)
Vote On Values But Bet On Beliefs

$E[\text{GDP}^+ | \text{Alternative}] > ?$
$E[\text{GDP}^+ | \text{Status Quo}]$
Futarchy’s One Rule

When a market estimates currently-defined GDP+ to be higher given some proposed alternative policy, that policy becomes law.

- Unless market on future-defined GDP+ vetoes it
- Start with existing policies, fee to make proposal
- Like contract, proposal says how handle conflicts
- High standards at base, recurse to relax standards

http://hanson.gmu.edu/futarchy.html
Three Premises and a Conclusion

1. It is not that hard to tell rich happy nations from poor miserable ones after the fact.
2. Governments largely fail by not aggregating available information.
3. Betting markets are the best known institution for aggregating information.

∴ Try to vote on values, but bet on beliefs.