Metaheuristics

Meta- Greek word for upper level methods

Heuristics — Greek word heuriskein — art of discovering new
strategies to solve problems.

Exact and Approximate methods

Exact

— Math programming LP, IP, NLP, DP
Approximate

— Heuristics

Metaheuristics used for

— Combinatorial Optimization problems — a general class of IP problems with
discrete decision variables and finite solution space. Objective function
and constraints could be non-linear too. Uses relaxation techniques to
prune the search space.

— Constraint Programming problems — used for timetabling and scheduling
problems. Uses constraint propagation techniques that reduces the
variable domain. Declaration of variables is a lot more compact

Need for Metaheuristics

e What if the objective function can only be simulated and
there is no (or an inaccurate) mathematical model that
connect the variables

— Math and constraint programming need exact math formulations,
therefore cannot be applied to the above
e Large solution space- Ex: TSP, 5 cities have 120 solutions (5!),
10 cities have 10! ~ 3.6 million, 75 cities have 2.5X1010°
solutions

e Ex: Parallel machine job scheduling: process n jobs on m
identical machines. There are m" solutions

— Complexity - time and space complexity

— Time is the number of steps required to solve a problem of size n. We
are looking for the worst-case asymptotic bound on the step count
(not an exact count). Asymptotic behavior is the limiting behavior as n
tends to a large number.

Complexity of Algorithms

e An algorithm has a complexity f(n)= O(g(n)) if there exist
positive constants n, and c such that forall n>n,, f(n)<=c.g(n).
In this case f(n) is upper bounded by g(n).
— P class — polynomial time
— If g(n) is a polynomial
g(n) =a,.nk+...+a;.n+3a,
Then the corresponding algorithm has O(nk) complexity.

Shortest path algorithms such as Dijkstra’s with n nodes. Worst case scenario
is that each of the n nodes have n neighbors. The algorithm needs no more
than n? steps (upper bound) to find the solution. The complexity is O(n?) —a
guadratic polynomial.

Other examples are minimum spanning tree, max flow network etc.
The solutions for the above problems are tractable

Complexity of Algorithms

Exponential time O(c") where is c is a positive constant >1
Search Time of an Algorithm as a function of Problem size

J Ex: Size n=10 n=20 n=30 n=40 n=50
Linear O(n) 0.00001s 0.00002s 0.00003s 0.00004s 0.00005s
Quadratic O(n?) 0.0001s 0.0004s 0.0009s 0.0016s 0.0025s
5th order PolyO(n?®) 0.1s 0.32s 24.3s 1.7 min 5.2 min
Expo base 2 O(2") 0.001s 1s 17.9min 12.7days 35.7years
Expo base 3 0O(3") 0.059s 58 min 6.5 yrs 3855 centuries 2X108 centuries
Factorial o(n!) 3.62s 77146 years 8.4 X 10%® centuries ~~~~too large™~™~™

NP class — non-deterministic polynomial time, the solutions for the problems are
intractable

NP- hard problems (a more generic name) need exponential time to find optimal
solutions. Most real world optimization problems fit this category. Provably efficient
algorithms do not exist. Metaheuristics can help to solve (near optimally) this class of
problems.

NP-complete problems are in NP class. A solution to NP-complete can be verified in
polynomial time, however finding a solution is very difficult. These are also NP-hard and
the hardest among NP hard problems. Typically decision making problems.

May not be even decision problems such as subset sum problems.

— Ex: TSP, scheduling problems such as flow-shop, job-shop scheduling, n jobs — m machine scheduling,
guadratic assignment and location problems, grouping problems such as data clustering, graph
partitioning, routing and set-covering, knapsack and so on.

Metaheuristics

The idea: search the solution space directly. No math models, only a
set of algorithmic steps, iterative method.

Trajectory based methods (single solution based methods)
— search process is characterized by a trajectory in the search space

— It can be viewed as an evolution of a solution in (discrete) time of a
dynamical system

e Tabu Search, Simulated Annealing, Iterated Local search, variable
neighborhood search, guided local search

Population based methods

— Every step of the search process has a population — a set of- solutions

— It can be viewed as an evolution of a set of solutions in (discrete) time of a
dynamical system

* Genetic algorithms, swarm intelligence - ant colony optimization, bee colony
optimization, scatter search

Hybrid methods

Parallel metaheuristics: parallel and distributed computing-
independent and cooperative search

You will learn these techniques through several examples

History of Metaheuristics

1965: first Evolution Strategy

1975: first Genetic Algorithms

1983: Simulated Annealing

1986: Tabu Search

1991: Ant Colony Optimization

1997: Variable Neighborhood Search

2000+: parallel and distributed computing in metaheuristics

Metaheuristics

The idea: search the solution space directly. No math models, only a
set of algorithmic steps, iterative method. Find a feasible solution
and improve it. A greedy solution may be a good starting point.

Goal: Find the best solution for a given stopping criteria.
Applied to combinatorial and constraint optimization problems

Diversification and intensification of the search are the two
strategies for search in Metaheuristics. One must strike a balance
between them. Too much of either one will yield poor solutions.
Remember that you have only a limited amount of time to search
and you are also looking for a good quality solution. Quality vs Time
tradeoff.

— For applications such as design decisions focus on high quality solutions

(take more time) Ex. high cost of investment, and for control/operational

decisions where quick and frequent decisions are taken look for good
enough solutions (in very limited time) Ex: scheduling

— Trajectory based methods are heavy on intensification, while population
based methods are heavy on diversification.

Classifications in Metaheuristics

Nature inspired (swarm intelligence from biology) vs nonnature inspired
(simulated annealing from physics)

Memory usage (tabu search) vs memoryless methods (local search,
simulated annealing SA)

Deterministic (tabu, local search) vs stochastic (GA, SA) metaheuristics
— Deterministic — same initial solution will lead to same final solution after
several search steps
— Stochastic — same initial solution will lead to different final solutions due to
some random rules in the algorithm
Population based (manipulates a whole population of solutions —
exploration/diversification) vs single solution based search (manipulates a
single solution — exploitation/intensification).

lterative vs greedy. Iterative — start with a complete solution(s) and
transform at each iteration. Greedy- start with an empty solution and add
decision variables till a complete solution is obtained.

When to use Metaheuristics

If one can use exact methods then do not use Metaheuristics.

P class problem with large number of solutions. P-time algorithms are
known but too expensive to implement

Dynamic optimization- real-time optimization- Metaheuristics can reduce
search time and we are looking for good enough solutions.

A difficult NP-hard problem - even a moderate size problem.

Problems where objective function is a black box, i.e. often simulated and
has no/inaccurate math formulation for the objective function

f(x
X Black box objective ()
function

Metaheuristic

Quality metric

Evaluation of Results

Best Metaheuristic approach- does not exist for any problem.
No proof of optimality exists and you don’t care for one
either.

A heuristic approach designed for problem A does not always
apply to problem B. It is context-dependent.

Questions: Is the metaheuristic algorithm well designed and
does it behave well? No common agreement exist in the
literature.

What do we look for during implementation
— Easy to apply for hard problems
— Intensify: should be able to find a local optima
— Diversify: should be able to widely explore the solution space
— A greedy solution is a good starting point for an iterative search

Evaluation of Results

Evaluation criteria include:

— Ability to find good/optimal solutions. No way to prove optimality
unless all solutions are exhaustively enumerated, which is infeasible.

— Comparison with optimal solutions (if available). Test the heuristics on
small problems before scaling it up.

— Comparison with Lower/Upper bounds if already known (may be a
target was already set)

— Comparison with other metaheuristics methods
Reliability and stability over several runs

— Average gap between solution while approaching the (local) optimum

— statistical tools (standard deviation of solutions, Confidence intervals,
ANOVA)

Reasonable computational time Usually: between a few
seconds upto a few hours

11

Definitions

Neighborhood of solution s is denoted a N(s).

Local minima: solution s’ is local minima if forall s in N(s’),
f(s")<=f(s). Strictly local minima if f(s’)< f(s)

12

Main concepts to implement a Metaheuristic algorithm

Representation of solutions
— Vector of Binary values — 0/1 Knapsack, 0/1 IP problems
— Vector of discrete values- Location , and assignment problems
— Vector of continuous values on a real line — continuous, parameter
optimization
— Permutation — sequencing, scheduling, TSP

Objective function

Constraint handling

— Reject strategies- keep only feasible solution and reject infeasible ones
automatically.

— Penalizing strategy - infeasible solutions are considered and a penalty
function is added to the objective function for including a infeasible
solution during the search. s, s,,,, s,,, are the search sequence where
S.+, and s, are feasible but s,,, is infeasible and f(s,,,) is better than f(s,).
The penalized obj function is f'(s) = f(s)+ A c(s) where c(s) is the cost of
infeasible s and A is a weight.

Metaheuristics

Next class

— Single-solution metaheuristics

14

