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20.7 Inventory Model

In Chap. 15 the following inventory problem was considered. A camera store stocks
a particular model camera that can be ordered weekly. Let D,, D., . . . , represent
the demand for this camera during the first week, the second week. . . ., respectively,
{t is assumed that the D, are independent, identically distributed random variables
having a Poisson distribution with parameter A equat 1o I. Let X, represent the number
of cameras on hand at the outset, X, the number of cameras on hand at the end of
week one, X, the number of cameras on hand at the end of week (wo, and so forth.
On Saturday night the store places an order that is deljvered in time for the opening
of the store on Monday. The store uses an (s, S) ordering policy. If the number of
cameras on hand at the end of the week is less than s = | (no cameras in stock), the '
store orders up 1o § = 3. Otherwise, the store does not order (if there are any cameras
in stock, no order is placed). It is assumed that sales are lost when demand exceeds
the inventory on hand (no backlogging). The cost structure considered calls for in-
curring a penalty cost of $50 per unit for each unit of unsatisfied demand (lost sales).
If z > 0 cameras are ordered, the cost incurred is 10 + 25z dollars. If no cameras
are ordered, no ordering cost is incurred. Holding costs are to be neglected. In Sec.
15.7, this policy was evaluated by using the (long-run) expected average cost per unit
time as the criterion. It is not evident that this policy is optimal, and the purpose of
this section is to find the optimal policy. Even though we know that the optimal policy
must be of the (s, §) form, we shall consider all possible policies, although we shall
assume that three cameras is the maximum number of cameras that the store will
stock. The policy improvement algorithm will’ be used first, followed by the linear
programming formulation.

Because X, represents the state of the system, i.e., the number of cameras on
hand at the end of week r (before ordering), then ,X, =0,1, 2, 3. Similarly, there
are four possible decisions:
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Decision Action
0 Do not order
1 Order | camera
2 Order 2 cameras
3 Order 3 cameras

The possible transitions are given by'

Decision 0 .
S/ State 0 1 2 3
-of walcLEgy o 0 1 0 .0 0 ,
avallaf?l % L | D=1} P =0) 0 0
) 2 | D=2} PD=1) PD=0) 0
3 PD=3} PD=2 PD=1} PD =0
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798 Decision 1 Decision
Probabilistic Models State 0 1 2 3
0 P(D =1} P{D = 0} 0 0
1 P(D = 2) P{D = 1} P{D = 0} 0
2 P(D = 3} P(D = 2} P(D = 1) P{D = 0}
3 Decision | not permitted
} Decision 2
State 0 1 2 3
0 P{D = 2} PD =1} PD=0}° 0
1 P{D_ = 3} P{D = 2} P{D = 1} P{D = 0}
B 208 Decision 2 not permitted
A
Decision 3
State 0 1 2 3
0" PD=3} PD=2y PD=1} P{D=0}
1,2,3 Dccision 3 not permitted

Recalling that the demand D is a Poisson random variable with parameter A = 1.
and using appendix Table A.5.4, these transitions can now be expressed as

Decision 0 . Decision 1
State 0 1 2 3 State 0 1 2 3
0 1 0 0 0 0 0.632  0.368 0 0
1 0.632  0.368 0 0 1 0.264 0.368  0.368 0
2 0.264 0.368 0.368 0 2 0.080 0.184 0.368  0.368
3 0.080 0.184 0.368 0.368 3 Decision | not permitted
Vo
Decision 2 Decision 3 3
State | 0 1 2 3 State 0 1 2 3 » alternatively.
. 0 0.264  0.368  0.368 0 0 0.080 0.184 0368 0.368 .
> 1 0.080 0.184 0.3568 0.368 1523 Decision 3 not permitted gR) = ¢§
2,3 Dccision 2 not permitied !

The cost information required is similar to that given in Sec. 15.7. and you 2
urged to review this material. A summary is given by



Decision Actual Cost Per Week Expected Cost Per Week. C, 799
0 500 SOE(D) = 50 : Markovian Decision
| 35 + SO max (O - 1), 0} 35 + SO(1P{D =2} + 2P{D = 3} + - - -] = 534 Processes and
2 60 + 50 max (D - 2).0} | 60 + SO(IP(D = 3) + 2P(D = 4} + - - -] = 65.2 Applications
3 85 + 50 max {(D - 3).0) 85 + SO[1P{D = 4) + 2P(D = S} + - - -] = 86.2
0 S50 max {(D - 1).0} SO(IP{D = 2} + 2P{D = 3) + - - -] = 18.4
| 35 + S0 max {(D - 2). 0} 35 + SO[1P(D = 3} + 2P(D = 4} + - --]= 102
2 &0 + 50 max {(D - 3). 0} 60 + SO(1P{D = 4} + 2P(D = 5} + - - )= 61.2
] Decision 3 not’

permitied
0 S0 max {(D ~ 2). 0} SO(IP(D = 3} + 2P(D = &} + J= 5.2
1 35 4+ 50 max {(O - 3).0}) 35 + SO1P{D = a} + 2P(D = 5! + 1= 36.2
2.3 Decisions 2. 3 not
permitted
0 50 max {(D - 3). 0} SO(1P(D = 4) + 2P(D = 5} + - -]= 1.2
1.2, 3 Decisions 1, 2, 3 not
pcrmitted

Choose the (s, §) policy already introduced as-the initial policy for carryins oat
the value-determination step (step 1) of the policy improvement algorithm. This poEzcy,
R,, calls for ordering up to 3 units whenever the system is in state 0 (no cameras on
hand); otherwise, no order is placed. With this policy, the following four equasions
must be solved simultaneously for g(R)), vo(R ), U(R)), and vy(R,) [recall that o(R))

1

is arbitrarily taken to be zero]:
s _ 300 ‘7}
g(R) = Cokl + _E()Po,’(kl)uj(Rx) = vo(Ry) Q,/ L}
= :
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= Cy, + }_2 Polk)UR,) = vy(Ry)

3
= Co, + 2 pylk)ugR) = Ui,
or, alternatively,
68 .
_ g(R)) = 86.2 + 0.080u4(R,) + 0.184v,(R)) + 0.368u,(R,) — v4(R,)
= 18.4 + 0.632u4(R,) + 0.368v(R,) - u(R)) p

{ you = 5.2 + 0.26404(R,) + 0.3680,(R)) + 0.3680,R,) — uy(R))

1.2 + 0.080u4(R,) + 0.184v,(R,) + 0.368v,R,).




