
Figure 1: TPM. Policy R (1,1,1,1)

Figure 2: Expected costs.

1 Probabilistic or Stochastic DP- Infinite Horizon

1.1 Machine replacement problem:

M/c Inspected periodically. Inspection process is a Markov Chain
M/c found in one of the following states:
0 - Good as new.
1 - Minor problems
2 - Major problems
3 - Inoperable
Transition Probability Matrix (TPM). See Figure 1. Note state 3 is absorbing state
Expected cost of producing defective items in those states per unit time. Figure 2
When in state 3 Total Cost = Lost Production + Replacement Cost $2000 + $4000 = $6000.
Question: Find expected cost of the maintenance policy in the long run that calls for replacement

in state 3.
Solution: Obtain Limiting probabilities: M+1 states 0 · · · M
New TPM with replacement in state 3. Figure 3. Now we have an irreducible and ergodic Markov

chain.

πj =
M∑
i=0

πipij (1)

π0 = π3 (2)

1

Figure 3: New TPM. Policy R (1,1,1,3)

π1 =
7

8
π0 +

3

4
π1 (3)

π2 =
1

16
π0 +

1

8
π1 +

1

2
π2 (4)

π3 =
1

16
π0 +

1

8
π1 +

1

2
π2 (5)

1 = π0 + π1 + π2 + π3 (6)

where M is the number of states.
Solving

π0 =
2

13
(7)

π1 =
7

13
(8)

π2 =
2

13
(9)

π3 =
2

13
(10)

Long run expected cost is

g(R) = E(C) = 0 ∗ π0 + 1000 ∗ π1 + 3000 ∗ π2 + 6000 ∗ π3 = $1923.08 (11)

1.2 Introducing actions in a Markov chain

Suppose you had a decision to make in each state from the following:
1 - Do nothing
2 - Overhaul (return system to state 1)
3 - Replace (return system to state 0)

Question: Determine the optimal policy at each point in time when the machine is
observed in one of the states 0-3.

Policy R- Rule for making a decision. You need to find a policy vector which is optimal, that is
Decisions (*,*,*,*) corresponding to State 0, 1, 2, 3 respectively. The decision process associated
with every state of the Markov Chain is known as the Markov Decision Process (MDP).

2

Figure 4: Cost matrix Cik.

Figure 5: TPM for policy R (1,1,3,3).

1.3 Motivation for MDP

Total number of policies possible
34 = 81 policies (12)

If you do explicit enumeration then each policy must be evaluated as follows.
Let Cik be the cost incurred if decision k is taken in state i Given the overhaul cost is $2000 and

lost production cost during overhaul $2000. Cik Matrix is in Figure 4
To find the optimal policy take an arbitrary policy out of the 81 possible. Let this be Policy vector

R (1, 1, 3, 3). New TPM for the above policy is in Figure 5.
Find limiting (long run) probability (This is the probability of being in a state in the long run).

πj =
M∑
i=0

πipij (see previous example) (13)

The Expected cost in the long run E(C)

g(R) = E(C) = π0 ∗ 0 + π1 ∗ 1000 + π2 ∗ 6000 + π3 ∗ 6000 =
M∑
i=0

πicik (14)

3

These numbers are obtained from cost matrix Cik for policy R (1 1 3 3)
Repeat this process another 80 times. Compare all the E(C) values and get the optimal policy.

Imagine 10 states and 10 actions. 1010 policies - Almost impossible to solve.
MDP offers a quick solution to the above problem.

1.4 LP formulation and difficulties with LP

In every state a decision has to be made. Define

Dik = P (decision = k|state = i) (15)

k = 1, 2, ..,K (16)

i = 0, 1, 2, ..,M (17)

In matrix, Dik , rows add upto 1.
Define yik as steady state (long run) probability that the system is in state i and decision k is taken.

yik = P (State = i and decision = k) (18)

yik = πiDik (19)

πi =
K∑
k=1

yik (20)

where πi is the long run probability and Dik is as defined earlier. Here you are summing over all
actions in a state i.

Dik =
yik
πi

=
yik∑K
k=1 yik

(21)

Now
M∑
i=0

πi = 1 (22)

So
M∑
i=0

K∑
k=1

yik = 1 (23)

From steady state probability

πj =
M∑
i=0

πipij (24)

πj =
K∑
k=1

yjk (25)

From (20), (24) and (25)

4

K∑
k=1

yjk =
M∑
i=0

K∑
k=1

yikpij , ∀j = 0,· · ·,M

(27)

yik ≥ 0 ∀i, ∀k (28)

g(R) = E(C) =
M∑
i=0

K∑
k=1

Cikyik (29)

=
M∑
i=0

K∑
k=1

πiCikDik (30)

The LP is summarized as follows

Minimize g(R) = E(C) =
M∑
i=0

K∑
k=1

Cikyik (31)

S.t.

M∑
i=0

K∑
k=1

yik = 1 (32)

K∑
k=1

yjk −
M∑
i=0

K∑
k=1

yikpij = 0, ∀j (33)

yik ≥ 0, ∀i, ∀j (34)

Once yik is found you can get

Dik =
yik∑K
k=1 yik

(35)

There are (M+1)*K variables yik. (M+1) basic variables, rest are non basic = 0, and (M+2)
constraints

LP is impractical if M and K are large. Even if LP is practical for a large number of variables and
constraints, the real issue is for reasonably large M, transition probabilities do not make sense because
it will be very small.

Solving LP for the previous MDP problem yields

y01 =
2

21
(36)

y11 =
5

7
(37)

y22 =
2

21
(38)

y33 =
2

21
(39)

And rest yik are 0. So optimal policy is in Figure 6
5

Figure 6: Optimal policy from LP.

2 Solving using MDP to find optimal policy

Define V n
i (R) = Total cost of operating the system for n steps starting in state i and following policy

R. R is a vector of all actions that corresponds to each state.
Let M denote the total number of states. Since every state is reachable infinitely often, the notion

of iteration number n is introduced and stage (which is often time) index t is dropped.

V n
i (R) = Cik +

M∑
j=0

Pij(k)V n−1
j (R) ∀i (40)

This is a recursive equation, where Cik is the immediate cost as a result of being in state i and
taking decision k, and

∑M
j=0 Pij(k)V n−1

j (R) is the total expected cost of evolving over n− 1 periods.

V 1
i (R) = Cik ∀i (41)

because the V 0
j (R) value for each state is zero at the beginning of the system. The long run average

expected cost per unit time following policy R (as n tends to infinity) is given as

g(R) =
M∑
i=0

πiCik (42)

which is independent of starting state i, and where πi is the limiting probability which can also be
obtained by multiplying Pij(k) several times. Remember this is the same formula that was used to
calculate the expected value of one of the 81 policies in the previous example.

V n
i (R) ≈ ng(R) + Vi(R) ∀i (43)

where g(R) is independent of starting state i and Vi(R) is dependent on starting state i. Vi(R) can
be interpreted as the influence of starting state i on the total expected cost after n steps and following
policy R.

ng(R) + Vi(R) = Cik +
M∑
j=0

Pij(k)V n−1
j (R) (44)

6

= Cik +
M∑
j=0

Pij(k)[(n− 1)g(R) + Vj(R)] ∀i (45)

However
M∑
j=0

Pij(k)(n− 1)g(R) = (n− 1)g(R) (46)

because g(R) is a constant (long run average cost) and

M∑
j=0

Pij(k) = 1 (47)

because sum of a row in the TPM is 1.
Therefore

ng(R) + Vi(R) = Cik + (n− 1)g(R) +
M∑
j=0

Pij(k)Vj(R) ∀i (48)

Rearranging

(n− n+ 1)g(R) = Cik − Vi(R) +
M∑
j=0

Pij(k)Vj(R) ∀i (49)

or

g(R) = Cik − Vi(R) +
M∑
j=0

Pij(k)Vj(R) ∀i (50)

This is called the Bellman’s optimality equation for long run average cost/reward for a system that
moves from state i to state j under action k and a transition probability Pij(k). The above Bellman’s
equation is independent of n and g(R), Vi(R) stabilizes as n→∞. The Bellman’s equation for n-step
transition to reach the stabilized g(R) and Vi(R) is as follows

g(R) = Cik − V n
i (R) +

M∑
j=0

Pij(k)V n−1
j (R), ∀i (51)

Note that there are M+1 equations (state i=0,1,..,M) M+2 unknowns which are

g(R), V0(R), .., VM (R) (52)

To solve the Bellman’s equation to get the optimal decision in each state, we assume

VM (R) = 0 (53)

(similar to backward recursion but M th state is not an end state. Remember, each state is reachable
infinitely often). So, we have M+1 unknowns. We are performing a forward algorithm since this is an
infinite horizon problem.

3 Solution to Bellman’s equation

There are 2 ways to solve: Value Iteration, Policy Iteration.
7

3.1 Policy Iteration

Step 1: Value Determination. We have (M+1) equations and (M+2) variables.
Assume an arbitrary policy and set iteration index n=1. We are solving this as n→∞.

R1 = (R1
0, ..., R

1
M) (54)

Let
VM (R) = 0 (55)

Solve (M+1) equations and (M+1) variables in this following Bellman’s equation

Vi(R
n) = Cik − g(Rn) +

M∑
j=0

Pij(k)Vj(R
n), ∀i (56)

Step2: Policy Determination New Policy

Rn+1 = (Rn+1
i)∀i = argmin

k
[Cik − Vi(Rn) +

M∑
j=0

Pij(k)Vj(R
n)], ∀i (57)

If
Rn 6= Rn+1 (58)

then set n = n+ 1 and goto step 1, else stop. g(R) gives the long run average cost/reward. R∗ is the
optimal policy.

3.2 Example: Solving MDP with Policy Iteration

See hand out

3.3 Value Iteration

Policy iteration gets complicated as the number of system states grow. Calculations are very tedious
and solving simultaneous equations is very cumbersome. So we use Value Iteration.

Step 1:
V 0 = (V 0

0 , V
0
1 , V

0
2 , · · · , V 0

M) = 0 (59)

Set n=0 and ε, which is a small number
Step 2: Find new values of V n+1

i

V n
i = min

k
[Cik − g +

M∑
j=0

Pij(k)V n−1
j], ∀i (60)

Since g is not known you can assign any V n−1
i value to g and use the same value within an iteration,

and the value of the same i from n− 1th iteration between iterations.
Step 3: Policy Determination

Rn+1 = (Rn+1
i)∀i = argmin

k
[Cik − V n−1

i +
M∑
j=0

Pij(k)V n−1
j] (61)

8

Step 4: If span of
|V n − V n−1| < ε (62)

then STOP. Rn = R∗ which is the optimal Policy. Else, set n=n+1 and goto step 2.

3.4 Example for value iteration average cost/reward

See Excel worksheet.

3.5 Summary

Bellman’s equation for average cost/reward for finite state but infinite horizon (policy iteration)

Vi(R) = Cik − g(R) +
M∑
j=0

Pij(k)Vj(R), ∀i (63)

Where Vi(R) is the total expected cost of starting in state i and following through n steps with
policy R (R is a vector of k values, one k for each i). i, j are states, k - actions.
g(R) - Long Run average cost per unit time of following policy R. Cik is the immediate cost of

action k in state i. Pij(k) is the transition probability from state i to state j following policy R (or
action k in state i) .

4 Bellman’s equation for discounted cost

Let V n
i (R) be the expected total discounted cost starting in state i and evolving over n steps and

following policy R.

Vi(R) = Cik + β
M∑
j=0

Pij(k)Vj(R) ∀i (64)

Cik - Cost for first observed period under R and β
∑M

j=0 Pij(k)V n−1
j (R) is the expected total dis-

counted cost by evolving over n-1 steps. β is the discount factor 0 < β < 1 (time value of money).
So we have M+1 equations and M+1 unknown variables.

4.1 Policy Iteration for discounted cost criteria

We are solving this as n→∞. Step 1: Value determination. Set n=1, For an arbitrarily chosen policy

R1 = (R1
0, R

1
1, R

1
2, · · · , R1

M) (65)

Vi(R
n) = Cik + β

M∑
j=0

Pij(k)Vj(R
n) ∀i (66)

Solve M+1 simultaneous equations.
Step 2: Policy determination

9

Rn+1 = argmin
k

[Cik + β
M∑
j=0

Pij(k)Vj(R
n)] (67)

Step 3: If Rn+1 = Rn stop, else n=n+1 and goto step 1

4.2 Example for policy iteration -Discounted cost criteria

See hand out.

4.3 Value Iteration for discounted cost/reward

Step 1: Set n=0 Choose V 0
i = 0, ∀i

Step 2: Evaluate

V n
i = min

k
[Cik + β

M∑
j=0

Pij(k)V n−1
j] (68)

Step 3: Check
|V n

i − V n−1
i | < ε ∀i (69)

If True - STOP and get policy by using

Rn = argmin
k

[Cik + β
M∑
j=0

Pij(k)V n−1
j] (70)

Else increment n=n+1 goto and step 2.

4.4 Example for value iteration discounted cost

See excel sheet.

5 LP formulation for Discounted Cost

6 Additional Examples

Water resource model, Inventory control model, and another machine maintenance problem (see hand-
outs).

7 Semi- Markov decision process

See handout.

10

