
1 Curse of Dimensionality

1.1 State space explosion!

1.1.1 Example 1: Traveling salesman problem

See Winstons book [1].

1.1.2 Example 2: Fishery:

A town must decide how many bass to catch and sell in a year. For selling x bass in year t, the
revenue generated is rt(x). The cost of catching x bass is c(x, b) where b is the number of bass in
the lake at the beginning of the year. Bass reproduce and the number of bass in the lake at the
beginning of a year is 20% more that the number left at the end of the previous year. Assume that
there are 10000 bass in the lake at the beginning of year 1. Formulate a DP recursion to maximize
revenue over T years. [1]

2 Mitigating Curse of Dimensionality

1) State space aggregation or gridding , 2) interpolation and 3) Value Function approximation (OR
774)

2.1 State space aggregation or gridding

This also called coarse discretization of the state space. In the fisheries problem impose a condition
that you may catch bass only in multiples of 1000. In example 3 above, cash can be spent only in
multiples of 100 and bushels can be sold or bought in multiples of 100. Coarse gridding reduces the
resolution which in turn reduces the problem’s solution quality. To improve the solution quality,
solve the problem first with coarse gridding. Find the states that are optimal. Then, finely discretize
states that are around the optimal states (a process known a grid refinement). Solve the problem
again. Continue until you are satisfied with the resolution of the answer or until your computer
chokes, which ever happens first! Its a hope that refinement will increase the solution quality but
sometimes the optimal path may lie outside the refined area.

In summary, disadvantage of aggregation: Two different states S1 and S2 may have the same
value function. It may happen then, that we make the same decision in both states eventhough
the difference in state S1 and S2 may call for different decisions.

2.2 Interpolation after gridding

In problems where price of an asset or return on investments is a state variable then there may not
be an exact match between the next state to the set of descritized states on the grid. In this case
one can round of the next state to one of the nearest state (grid point) or add the state as a new
state (new grid point) and interpolate its value function f using the nearest grid points.

2.3 Value Function Approximation (in OR 774)

In general, the regression VFA is written as

V̄ n+1(Sn+1|θ) =
∑
f∈F

θfφf (Sn+1), (1)
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Figure 1: Cyclic network

where V̄ n+1(Sn+1|θ) is the estimated value function in state Sn+1, θf is a parameter vector, φf is
a set of basis functions, and f ∈ F is called feature, which is an integer that denotes the number
of terms in the regression model. In ADP, the above regression value function approximation can
reduce large state-spaces and their values into a small number of features f , which avoids the
storage of millions of individual states and their values.

3 Cycles in network

Shortest path Algorithm for cyclic networks:
In acyclic networks, backward recursion is

ft(i) = min
j

[cij + ft+1(j)], i < j (2)

or forward reaching is
ft+1(j) = min

i
[cij + ft(i)], i < j. (3)

In both equations, i < j is an important requirement. The value of f is calculated in a descending
(backward recursion) or an ascending order (forward reaching). However, in network with cycles
this is not possible.

For network with cycles only reaching works in which ft(j) is computed in a non-decreasing
f-value sequence.

Example 4: See figure 1
Step 1: set f1=0. Set fj = c1j , ∀j = 2, · · · , N and set T = {2, · · · , N}. If node 1 is not connected

to any j then set c1j to a large number.

f1 = 0 (4)

f2 = c12 = 2 (5)

f3 = c13 = 4 (6)

f4 = f5 = f6 = ∞ (7)

Set T = {2, · · · , 6}.
Step 2: Find a node i in T for which

fi = min[fj |j ∈ T ] (8)

So the minimum of f2, · · · , f6 is f2 = 2. So i = 2.
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Step 3: Delete i = 2 from T . Stop if T is empty, else go to Step 4.
Step 4: T = {3, · · · , 6}. For each j ∈ T , update

fj = min[fj , fi + cij ] (9)

f3 = min[f3, f2 + c23] = min[4,∞] = 4 (10)

f4 = min[f4, f2 + c24] = min[∞, 5] = 5 (11)

f5 = min[f5, f2 + c25] = min[∞, 2 +∞] =∞ (12)

f6 = min[f6, f2 + c26] = min[∞, 2 +∞] =∞ (13)

Step 5: go to step 2.
Solving the problem further: The minimum of f3, · · · , f6 is f3 = 4. So i = 3. Delete i = 3 from

T . T = {4, · · · , 6}.

f4 = min[f4, f3 + c34] = min[5, 6] = 5 (14)

f5 = min[f5, f3 + c35] = min[∞, 4 +∞] =∞ (15)

f6 = min[f6, f3 + c36] = min[∞, 4 +∞] =∞ (16)

The minimum of f4, · · · , f6 is f4 = 5. So i = 4. Delete i = 4 from T . T = {5, · · · , 6}.

f5 = min[f5, f4 + c45] = min[∞, 5 + 1] = 6 (17)

f6 = min[f6, f4 + c46] = min[∞, 5 + 4] = 9 (18)

The minimum of f5, · · · , f6 is f5 = 6. So i = 5. Delete i = 5 from T . T = {6}.

f6 = min[f6, f5 + c56] = min[9, 6 + 2] = 8 (19)

The minimum of f6 is f6 = 8. So i = 6. Delete i = 6 from T . T = {φ}.
Answer is 8. Tracing the path backwards gives 6-5-4-2-1

4 Examples in Deterministic DP- Infinite Horizon

No longer a shortest path algorithm.

4.1 Machine replacement problem

How long to wait until the machine is replaced . These systems are called regenerative systems
because the system regenerates as a new system. Example: When would you replace your car?
Renewal systems will renew after a maintenance but do not restart as fresh.
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Suppose there are k = 1, 2, · · · , N alternatives at which the machine can be replaced. This means
at t if you pick a value for k then replace after t+ k time units. Let Rk be the cost of alternative k
at the start of the regeneration period (new purchase+maintenance-salvage). For a given k, Rk is
a constant. If β is the time value of money 0 < β < 1 and fn is the present value of regeneration at
iteration n (we drop the use of t because t goes to infinity and we are still using backward recursion,
hence, we start using n) then

fn+1 = min
k

[βkfn +Rk] (20)

The above is same as

ft = min
k

[βkft+k +Rk] (21)

In backward recursion,

n = 0, time = t+ k(at infinity) (22)

n = 1, time = t (23)

n = 2, time = t− k (24)

n = 3, time = t− 2k (25)

(26)

Over an unbounded horizon using the same policy k, the present value of regeneration can be
analytically solved as

fn+1 = min
k

[
Rk

1− βk
] (27)

because of the geometric progression

Rk + βkRk + β2k + · · · = Rk

1− βk
(28)

Since analytical methods are not always available, value iteration is used to find the answer.

4.2 Steps in value iteration

1. Choose f0 to be any number.

2. Find f1, f2, · · ·

3. Terminate when |fn+1 − fn| < ε, where ε is a very small number (such as 0.01).

Example 1:
Given R1 = $260, R2 = $540, and R3 = $760 and β = 0.9 Find the best replacement policy

analytically and using value iteration.
Analytical solution:
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