
1 Operations Research (OR):

A scientific approach (mathematical modeling) to decision making. Involves optimization of ob-
jective(s) subject to constraint(s). Objective: To make (near-) optimal decisions that maximizes
reward or minimizes cost. Reward/cost units: Measured in terms of ($), time, personnel, weight
(lbs) or distance (miles) etc.

2 LP vs Deterministic DP

LP is very commonly used, fast, easy to implement, and very good for quick approximate solution
(caution!).

Time is an important factor that will affect the model. LP is good for problems that are deter-
ministic, one-time decision making problem at a given time and need the following assumptions.
1. Proportionality: This is guaranteed if the objective and constraints are linear, 2. Additive:
Independent decision variables, 3. Divisibility: Fractions allowed, and 4. Certainty: Coefficients in
the objective function and constraints must be fixed.

What happens if the following occur?

1. If the problem had to be solved over time, time between decisions is small, there is no
computing power to solve large sized problems in that small time interval to optimality.

2. If the problem had stochastic elements such as a probabilistic demand or return on investment.

3. If the proportionality assumption does not hold, that is objective and constraints are non-
linear

The above could be answered with Dynamic Programming.

3 Dynamic Programming

DP is used for sequential decision making. DP is classified as deterministic and stochastic and each
of them is further classified as finite and infinite horizon problems.

Finite Horizon- Shortest Path Algorithm
Infinite Horizon- Control Problems

4 DP-Deterministic-Finite Horizon

4.1 Shortest Path Algorithm

Initially will deal with problems in which there are no cycles (called acyclic networks) and the
arcs are unidirectional. This is often the case because sequential decisions made over time are
unidirectional. Applications: Mapquest, Google Maps, inventory control, equipment replacement,
and so on.
Example 2. Find the shortest path in Figure 1.
An arc connects state i with state j and has a value of ci,j . A Myopic action is one in which the

shortest path is chosen among all the paths that are available from a given state i.
Exhaustive enumeration is not an option due to high computational burden.
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Figure 1: Example 2: Shortest Path.

5 IP vs DP

Some notes on Integer Programming (IP) and Non-linear Programming (NLP).

1. IP is a class of optimization problems in which all the variables are integers. For example,
variables that are binary (0 or 1) in an assignment problem of n jobs and m machines. The
question is which job goes on which machine and in which order. Also precedence relationship
between the operations on the job must be maintained when a job requires more than 1
machine to process.

2. IP is harder to solve since the feasible region has to be searched and not just the extreme
points as in LP. This means that the solution need not lie only on the boundary of the feasible
region.

3. To search inside the feasible region, you will have to make a start at some point. This will
determine how long it will take to reach the solution.

4. There are several search methods which fall under the field of evolutionary computational
algorithms (also called meta heuristics) such as branch and bound, tabu search, simulated
annealing, and genetic algorithm to solve IP.

5. Mixed integer programming is a special case of IP in which some variables are non-integers.

6. A quick solution to IP is by LP relaxation to IP in which the variables are all relaxed to be
non-integers. The solution is than rounded off to the nearest integer. 2 points of CAUTION:
1) rounding off might take the solution outside the feasible area, so care must be taken to
ensure that the rounding off is done in such as way that the solution in inside the feasible
region by testing the constraints. 2) IP will give incorrect results if LP relaxation is used
on binary variables. For example, if your binary decision variable (0-do not invest, 1-invest)
turns out to be 0.5 then what will you do? What if it is 0.49 or 0.51 will you round them off
to 0 and 1 respectively?

7. Non-linear programming is even harder and has two classes of problems: Constrained and
unconstrained optimization. It uses gradient based search techniques which are obtained form
the derivatives of the nonlinear function at a point. Functions: convex, concave. Concept of
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Figure 2: Example 3: Shortest Path.

saddle point, local and global optimum. Solution techniques: Lagrange multiplier, method of
steepest descent, Kuhn-Tucker conditions and so on.

5.1 An IP solution to shortest path:

Example 3. Find the shortest path in Figure 2.
Let xij = 0 if arc i, j is not chosen and xij = 1 otherwise. To write the following see Figures 3

and 4

Min Z = 3x12 + 2x13 + 1x25 + 4x24 + 2x34 + 3x45 + 4x46 + 5x57 + 1x67 (1)

subject to

x12 + x13 = 1 (2)

x57 + x67 = 1 (3)

x25 + x45 + x46 = 1 (4)

x25 + x24 + x34 = 1 (5)

x57 − x25 − x45 = 0 (6)

x67 − x46 = 0 (7)

x25 − x12 ≤ 0 (8)

x24 − x12 ≤ 0 (9)

x34 − x13 = 0 (10)

x45 − x24 − x34 ≤ 0 (11)

x46 − x24 − x34 ≤ 0 (12)

x24 − x12 ≤ 0 (13)

x34 − x13 = 0 (14)

xij = binary integers, ∀{ij} (15)

Lindo program code in Figure 5. Lindo solution is in Figure 6
Observations from Example 3
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Figure 3: Example 3 with stages marked.

Figure 4: Example 3: Steps to form constraints.
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Figure 5: Example 3 Lindo code.

Writing IP equations as given in Figure 4 is not easy as the number of state increases. Also IP
finds only one optimal solution even though example 3 has 2 solutions. DP solution is the fastest
way to solve this problem and it finds both solutions.

5.2 Myopic Solution

A myopic policy does not yield optimal solution. This is because its actions are dependent on the
contribution function and not the value function.
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Figure 6: Example 3: Lindo solution

5.3 DP solution to Example 3:

Terminology used in DP: State i, j, Stage t, action or decision, k, optimal policy R, value function
of a state which is denoted as fi or Vi or f(i) or V (i).
Fundamental Mathematical Construction in DP is the RECURSIVE EQUATION
A recursive equation is a relation between t and t+ 1 along with an optimization operator (max

or min or minmax or maxmin). DP is solved backward for finite horizon problems. Recursive
relation formalizes this backward procedure.

5.3.1 Steps in Backward Recursion

1. Step 1. Let fi be the value function at state i.

2. Step 2. Let flast−state =0;

3. Step 3.
fi = min

x
[cix + fj ], i < j (16)
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Or,

4. Step 4. If stage t is specified then

ft(i) = min
x

[cix + ft+1(j)], ∀i, (17)

5. Stop when starting state and stage is reached

6. Get the shortest path by going forward.

Recursive Solution to Example 3

f7 = 0 (18)

f6 = min[c67 + f7] = 1 (19)

f5 = min[c57 + f7] = 5 (20)

f4 = min[c45 + f5, c46 + f6] = min[8, 5] = 5 (21)

f3 = min[c34 + f4] = 7 (22)

f2 = min[c25 + f5, c24 + f4] = min[1 + 5, 4 + 5] = 6 (23)

f1 = min[c12 + f2, c13 + f3] = min[9, 9] = 9 (24)

Tracing forward, the paths are, at 1 both 2 and 3 (1-2, 1-3), at 2 it is 5 (1-2-5), at 3 it is 4 (1-3-4),
at 5 it is 7 (1-2-5-7), at 4 it is 6 (1-3-4-6), at 6 it is 7 (1-3-4-6-7).

Solution: (1-2-5-7) and (1-3-4-6-7), path length = 9

6 Observations from the DP solution to Example 3

1. A deterministic finite horizon problem can be solved backwards (tracing the solution forward)
or forward (tracing the solution backwards).

2. For all problems (deterministic or stochastic, finite or infinite horizon) we will follow the
backward recursion formula because forward reaching will not be applicable to the stochastic
infinite case due to the constraints placed by the Markov chain. For finite horizon problems,
forward reaching is used only if end state (sink) is not known.

3. Begin solving by setting the value of the last state in the last stage to zero and work backwards
till the first state in the first stage.

4. If there is more than one solution to the max or min operator at any state then there are
multiple optimal paths.

5. At any single iteration, the calculations of the value function is only between the current state
at t and the future states at t+1. This has a computational advantage because the algorithm
performs only a few calculations at t even though the problem could have millions of states
occurring at other times.

6. The value functions at a state are cumulative from the current state at t till the end of the
problem in a backward recursion setting. In other words, it is the sum of all the cix’s starting
from state i at t till the end of the problem for a given network that evolves over several
stages.
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7. The value of the first state in first stage is the solution of the problem or the objective function
value.

8. Actions are defined for every stage and for all states in that stage. The collection of optimal
actions from the first to the last state/stage gives the optimal path (aka policy R).

9. Feasible actions at a state in a stage will depend on the current state. However, the action
MUST influence the state variables. Otherwise keep those variables out of the state and treat
them as just observable variables that do not belong to the state.

10. For real world problems, both action and state, and uncertainty in the case of stochastic DP,
are all multi-dimensional, which causes computational storage issues known as the curse of
dimensionality. Methods are there to mitigate this curse but more research is needed.

11. 2 steps - Model the problem using the DP recursion by defining stage, state, action, con-
tribution function, and exogenous information, then solve the model to obtain the objective
function and the optimal action path through the stages t.

12. The objective is to go from one good state at t to another good state at t + 1 by taking an
optimal action at t under uncertainty.

To solve any sequential decision making problem with DP one must identify and define the
following elements. The main elements of the DP recursive equation are

1. Stage t: For finite horizon problems it is usually time t (but not always true). For infinite
horizon problems its always time.

2. State i or j and in general S: Usually its the AVAILABLE resource that need to be allocated
at stage t. However, there are problems where the state is the inventory at hand, or the price
of an asset in an asset acquisition problem (e.g. stock market, oil prices), and so on. The
next state of a system depends on the current state and the action taken in the current state.

3. Action or decision x or a or k: The action (xt or at) taken in (state i at stage t or St) that
moves the system to state (j at stage t+1 or St+1) under the influence of a exogenous process
W . This means St+1 is a function of (St, xt,Wt+1).

4. St+1 is a function of (St, xt,Wt+1). Define St+1, which in turn defines the state transition
function.

5. Exogenous process W : Its either deterministic or stochastic (uncertainty). For example, in
inventory control problems it is the demand.

6. Contribution function (reward or cost): C or c or r and depending on the type of problem
you will use C(i, a, j) or C(S, x) or ci,j and so on. This is the immediate contribution of an
action taken in a particular state. Also known as the one-step cost or reward function.

7. Value function of a state f or V : The long-run value ft(S) of being in a state S at stage t.
This is used in making decisions in state S.

8. Transition probability p(i,a,j) or P(i,a,j): This is only for stochastic DP where it denotes the
probability of transitioning from state i to state j under action a.

9. Objective function: This is the max or min operator that acts on the value function.

Exercise 2. [1].
Find the shortest path for the problem in Figure 7.
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Figure 7: Exercise 2: Shortest Path.

6.1 Shortest Path Problem: Forward Calculation (Reaching)

fj = min
x

[cix + fi], i < j (25)

Or, if stage t is specified then

ft+1(j) = min
x

[cix + ft(i)], ∀i, (26)

Trace the path backwards.
Exercise 3. Solve Example 3 with Reaching to find the shortest path.

6.2 Longest Path Problem: Forward Calculation (Reaching)

Longest Path Algorithms give the critical path of a network. They are useful in applications such as
finding the project due date or earliest finish date of the project, or maximizing reward. Replacing
min with max
Exercise 4. Solve Example 3 with Reaching to find the longest path.
Exercise 5. Solve Example 3 with backward recursion to find the longest path.

6.3 Computational Efficiency of DP vs exhaustive enumeration

To solve the shortest path in Figure 8, if one has to solve the 55 paths explicitly then with 5
additions in each path there are (55) × 5 = 15625 additions. With DP, there are 4(25) + 5 = 105
additions.

6.4 General Recursion Definition for Min problems

Value of being in state i at stage t = min (cost of an action in state i at stage t which takes you to
state j at stage t+ 1 plus the value of being in state j at stage t+ 1.

6.5 Dijkstra’s Algorithm for shortest path

See Figure 9. V= All vertices (states), and S is an empty set. Acquire nodes into S until
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Figure 8: Computational Efficiency.

Figure 9: Dijkstra’s Algorithm.

V − S = φ (Null Set) (27)

f1 = 0 (28)

Update all fi at every step. Initialize all f’s except f1 to ∞

1. Step 1. Closest neighbor to 1 is 3, so acquire 3

S = (1, 3) (29)

f3 = 3 + f1 = 3 (30)

f2 = 4 + f1 = 4 (31)

3 has 1 as predecessor
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2. Step 2. Next closest neighbors to S are

f2 = 4 + f1 = 4 Min so acquire 2 (32)

f5 = 3 + f3 = 6 (33)

S = (1, 3, 2) (34)

2 has 1 as predecessor

3. Step 3. Next closest neighbors to S are:

f4 = f2 + 3 = 7 (35)

f5 = min(2 + f2, 3 + f3) = min(6, 6) = 6 Min so acquire 5 (36)

S = (1, 2, 3, 5) (37)

5 has 2 and 3 as predecessor

4. Step 4. Next closest to S are

f4 = f2 + 3 = 7 Min so acquire 4 (38)

f6 = min(2 + f5) = min(8) = 8 (39)

S = (1, 2, 3, 5, 4) (40)

4 has 2 as predecessor

5. Step 5. Acquire 6
f6 = min(2 + f4, 2 + f5) = min(9, 8) = 8 (41)

6 has 5 as predecessor

Tracing backwards using predecessor relationship
2 possible solutions (1-2-5-6), (1-3-5-6)
Total time = 8 =f6

6.6 Matlab code for the length of the shortest path

See Figure 10
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Figure 10: Matlab code for length of Shortest Path.
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