
1 Refresher: DP

2 Shortest Path Problem: DP Backward Recursion

The backward recursive equations are

fi = min
j

[cij + fj], i < j (1)

Or, If stage t is specified then
ft(i) = min

j
[cij + ft+1(j)], i < j (2)

3 Shortest Path Problem: Forward Calculation (Reaching)

fj = min
i

[cij + fi], i < j (3)

Or, if stage t is specified then
ft+1(j) = min

i
[cij + ft(i)], i < j (4)

4 DP Elements

To solve any sequential decision making problem with DP one must identify and define the following
elements. The main elements of the DP recursive equation are

1. Stage t: For finite horizon problems it is usually time t (but not always true). For infinite horizon
problems its always time.

2. State i or j and in general S: Usually its the AVAILABLE resource that need to be allocated
at stage t. However, there are problems where the state is the inventory at hand, or the price
of an asset in an asset acquisition problem (e.g. stock market, oil prices), and so on. The next
state of a system depends on the current state and the action taken in the current state.

3. Action or decision x or a or k: The action (xt or at) taken in (state i at stage t or St) that moves
the system to state (j at stage t+1 or St+1) under the influence of a exogenous process W . This
means St+1 is a function of (St, xt,Wt+1).

4. Exogenous process W : Its either deterministic or stochastic (uncertainty). For example, in
inventory control problems it is the demand.

5. Contribution function (reward or cost): C or c or r and depending on the type of problem you
will use C(i, a, j) or C(S, x) or ci,j and so on. This is the immediate contribution of an action
taken in a particular state. Also known as the one-step cost or reward function.

6. Value function of a state f or V or R: The long-run value ft(S) of being in a state S at stage t.
This is used in making decisions in state S.

7. Transition probability p(i, a, j) or P (i, a, j) or pij(k): This is only for stochastic DP where it
denotes the probability of transitioning from state i to state j under action a.

8. Objective function: This is the max or min operator that acts on the value function.
1

5 Deterministic DP-Finite Horizon-Modified version with action x

ft(i) = min
x

[c(i, x) + ft+1(j)], i < j (5)

6 Incorporating time value of money

ft(i) = min
x

[c(i, x) + βft+1(j)], i < j (6)

where 0 < β < 1.

7 Deterministic DP-Infinite Horizon

ft = min
k

[αkft+1 +Rk] (7)

7.1 Steps in value iteration

f b+1 = min
k

[αkf b +Rk] (8)

1. Set b=0.

2. Choose f0 to be any number.

3. Find f1, f2, · · ·

4. Terminate when |f b+1 − f b| < ε, where ε is a very small number (such as 0.01).

8 Probabilistic or Stochastic DP-Finite Horizon

a) The next state is certain but the reward/cost obtained in the current state is stochastic,

ft(i) = min
x

[Expected Cost c(i, x) +
∑
j

ft+1(j)], (9)

where
c(i, x) =

∑
j

p(i, x, j)c(i, x, j) (10)

b) The next state is uncertain and the reward/cost obtained in the current state is stochastic. In
general

ft(i) = min
x

[Expected Cost c(i, x) +
∑
j

p(i, x, j)ft+1(j)], (11)

c) There are problems where c(i, x) is fixed (not an expected value) and the next state is uncertain.

ft(i) = min
x

[c(i, x) +
∑
j

p(i, x, j)ft+1(j)], (12)

d) There are also problems where c(i, x) does not exist. The next state is obviously uncertain.
2

ft(i) = min
x

[
∑
j

p(i, x, j)ft+1(j)], (13)

Stochastic DP (finite horizon) is also represented as decision trees.

9 Incorporating time value of money

ft(i) = min
x

[Expected Cost c(i, x) + β
∑
j

p(i, x, j)ft+1(j)], (14)

where 0 < β < 1.

10 Probabilistic or Stochastic DP-Infinite Horizon

10.1 Bellman’s optimality Equation for average cost/reward for finite state but
infinite horizon

Define V n
i (R) = Total cost of operating the system for n steps starting in state i and following policy

R. R is a vector of all actions that corresponds to each state.
Let M denote the total number of states. Since every state is reachable infinitely often, the notion

of iteration number n is introduced and stage (which is often time) index t is dropped.
The long run average expected cost per unit time following policy R (as n tends to infinity) is

g(R)

g(R) = Cik − Vi(R) +
M∑
j=0

Pij(k)Vj(R) ∀i (15)

This is called the Bellman’s optimality equation for long run average cost/reward for a system that
moves from state i to state j under action k and a transition probability Pij(k). The above Bellman’s
equation is independent of n and g(R), Vi(R) stabilizes as n→∞. The Bellman’s equation for n-step
transition to reach the stabilized g(R) and Vi(R) is as follows

g(R) = Cik − V n
i (R) +

M∑
j=0

Pij(k)V n−1
j (R), ∀i (16)

Note that there are M+1 equations (state i=0,1,..,M) M+2 unknowns which are

g(R), V0(R), .., VM (R) (17)

To solve the Bellman’s equation to get the optimal decision in each state, we assume

VM (R) = 0 (18)

(similar to backward recursion but M th state is not an end state. Remember, each state is reachable
infinitely often). So, we have M+1 unknowns. We are performing a forward algorithm since this is an
infinite horizon problem.

3

11 Solution to Bellman’s equation

There are 2 ways to solve: Value Iteration, Policy Iteration.

11.1 Policy Iteration

Step 1: Value Determination. We have (M+1) equations and (M+2) variables.
Assume an arbitrary policy and set iteration index n=1. We are solving this as n→∞.

R1 = (R1
0, ..., R

1
M) (19)

Let
VM (R) = 0 (20)

Solve (M+1) equations and (M+1) variables in this following Bellman’s equation

Vi(R
n) = Cik − g(Rn) +

M∑
j=0

Pij(k)Vj(R
n), ∀i (21)

Step2: Policy Determination New Policy

Rn+1 = (Rn+1
i)∀i = argmin

k
[Cik − Vi(Rn) +

M∑
j=0

Pij(k)Vj(R
n)], ∀i (22)

If
Rn 6= Rn+1 (23)

then set n = n+ 1 and goto step 1, else stop. g(R) gives the long run average cost/reward. R∗ is the
optimal policy.

11.2 Example: Solving MDP with Policy Iteration

See hand out

11.3 Value Iteration

Policy iteration gets complicated as the number of system states grow. Calculations are very tedious
and solving simultaneous equations is very cumbersome. So we use Value Iteration.

Step 1:
V 0 = (V 0

0 , V
0
1 , V

0
2 , · · · , V 0

M) = 0 (24)

Set n=0 and ε, which is a small number
Step 2: Find new values of V n+1

i

V n
i = min

k
[Cik − g +

M∑
j=0

Pij(k)V n−1
j], ∀i (25)

Since g is not known you can assign any V n−1
i value to g and use the same value within an iteration,

and the value of the same i from n− 1th iteration between iterations.
4

Step 3: Policy Determination

Rn+1 = (Rn+1
i)∀i = argmin

k
[Cik − V n−1

i +
M∑
j=0

Pij(k)V n−1
j] (26)

Step 4: If span of
|V n − V n−1| < ε (27)

then STOP. Rn = R∗ which is the optimal Policy. Else, set n=n+1 and goto step 2.

11.4 Example for value iteration average cost/reward

See Excel worksheet.

11.5 Summary

Bellman’s equation for average cost/reward for finite state but infinite horizon (policy iteration)

Vi(R) = Cik − g(R) +
M∑
j=0

Pij(k)Vj(R), ∀i (28)

Where Vi(R) is the total expected cost of starting in state i and following through n steps with
policy R (R is a vector of k values, one k for each i). i, j are states, k - actions.
g(R) - Long Run average cost per unit time of following policy R. Cik is the immediate cost of

action k in state i. Pij(k) is the transition probability from state i to state j following policy R (or
action k in state i) .

12 Bellman’s equation for discounted cost

Let V n
i (R) be the expected total discounted cost starting in state i and evolving over n steps and

following policy R.

Vi(R) = Cik + β
M∑
j=0

Pij(k)Vj(R) ∀i (29)

Cik - Cost for first observed period under R and β
∑M
j=0 Pij(k)V n−1

j (R) is the expected total dis-
counted cost by evolving over n-1 steps. β is the discount factor 0 < β < 1 (time value of money).

So we have M+1 equations and M+1 unknown variables.

12.1 Policy Iteration for discounted cost criteria

We are solving this as n→∞. Step 1: Value determination. Set n=1, For an arbitrarily chosen policy

R1 = (R1
0, R

1
1, R

1
2, · · · , R1

M) (30)

Vi(R
n) = Cik + β

M∑
j=0

Pij(k)Vj(R
n) ∀i (31)

5

Solve M+1 simultaneous equations.
Step 2: Policy determination

Rn+1 = argmin
k

[Cik + β
M∑
j=0

Pij(k)Vj(R
n)] (32)

Step 3: If Rn+1 = Rn stop, else n=n+1 and goto step 1

12.2 Example for policy iteration -Discounted cost criteria

See hand out.

12.3 Value Iteration for discounted cost/reward

Step 1: Set n=0 Choose V 0
i = 0, ∀i

Step 2: Evaluate

V n
i = min

k
[Cik + β

M∑
j=0

Pij(k)V n−1
j] (33)

Step 3: Check
|V n
i − V n−1

i | < ε ∀i (34)

If True - STOP and get policy by using

Rn = argmin
k

[Cik + β
M∑
j=0

Pij(k)V n−1
j] (35)

Else increment n=n+1 goto and step 2.

13 SMDP: Average cost criteria

For Markov process, tij(k) is no longer equal. Cannot use value iteration because g(R) cannot be any
arbitrary Vi. Solve using policy iteration

Vi(R) = Cik − g(R)tik +
M∑
j=0

Pij(k)Vj(R), ∀i (36)

tik =
M∑
j=0

Pij(k)tij(k) (37)

cik =
M∑
j=0

Pij(k)cij(k) (38)

6

14 SMDP: Discounted cost criteria if tij(k) is exponentially dis-
tributed

Solve using policy iteration

Vi(R) = Cik +
M∑
j=0

e−γtij(k)Pij(k)Vj(R) ∀i (39)

Solve using value iteration

V n
i = min

k
[Cik +

M∑
j=0

e−γtij(k)Pij(k)V n−1
j] ∀i (40)

Match e−γtij(k) to βtij(k) to determine γ. Value iteration can be used.

15 Approximate DP

ADP (learning-based MDP) is needed in place of DP (MDP) for sequential decision making problems
if the following occurs

1. Transition probabilities are not known

2. Number of system states is large (remember the difference between high dimensional and large
system state)

15.1 Issues due the above

1. Since transition probabilities are not known (curse of modeling), a simulation framework is
needed to generate the Markov jumps. Solution: Use a learning-version of Bellman’s equation,
which will only yield near-optimal solutions under certain conditions. This will cause conver-
gence to a band but not to a point like the g(R) as in MDP. This will cause the results to be
approximate.

2. Value functions cannot be stored due to high computational storage requirement for the large
number of states (curse of dimensionality). Also, reading and writing into a large matrix of states
and its value function values is not computationally feasible. Therefore, value functions must
be estimated. Solution: value function approximation with or without state space aggregation.
This will cause the results to be approximate.

3. Synchronous update as in MDP where the values of all states are updated in every iteration is
not possible due to high computational time to update the values because of the large number
of states: Solution: Asynchronous update of only one state in each iteration, which introduces
the notion of sampling one realization of the Markov jump. This will cause slower convergence
and will need millions of iterations.

4. Since values of states are no longer stored, the actions are not tractable. A scheme to find the
best actions must be devised. Solution: Create an argmin or argmax equation.

7

5. Since ADP is an unsupervised learning scheme, exploration, learning and learnt phases are
required to obtain the near-optimal solutions.

To resolve the above issues and to apply DP to large scale problems, take OR 774 advanced DP.

8

