Risk and Utility

Risk - Introduction

Which game will you play?
Which game is risky?
Going by expected monetary value (EMV) or the additive value function Game 2 has Higher EMV but also higher risk
CONCLUSION: EMV alone is not enough for decision making. Risk is very important too
Figure 13.1

What is an Utility function?

- A way to translate dollars into "utility units"
- It should help choose between alternatives by maximizing the expected utility
- Typical shapes of utility function include log, and exponential

Risk-Averse Utility Function

Note the Concave curve - this denotes Risk Averse - typical for most people

Risk averse person

- Imagine that you are gambling and you hit this situation
- Win $\$ 500$ with prob 0.5 or lose $\$ 500$ with prob 0.5
- A risk-seeking person will play the game but a risk averse person will try to trade in the gamble (try to leave the game) for a small penalty (example: pay $\$ 100$ and quit).
- The EMV of the game is $\$ 0$ and a risk averse person will trade in the gamble for an amount that is always less than the EMV value. In this case $-\$ 100<\$ 0$

Different Risk Attitudes

Different Risk Attitudes

Investing in the Stock Market

$\$ 200$ brokerage fee
Solution to the decision tree is to invest in high-risk stock. Here risk is not incorporated

Utility function for investment

- Dollar value utility value

1500
1000
500
200
0.52

100
0.46
-100
0.33
-1000

Investing in the Stock Market

$\$ 200$ brokerage fee
Solution to the decision tree is to invest in low-risk stock. Here risk is incorporated via utility function

Definitions: Certainty Equivalents and Utility

- A Certainty Equivalent is the amount of money you think is equal to a situation that involves risk.
- The Expected (Monetary) Value - EMV - is the expected value (in dollars) of the risky proposition
- A Risk Premium is defined as:

Risk Premium = EMV - Certainty Equivalent

- The Expected Utility ($E U$) of a risky proposition is equal to the expected value of the risks in terms of utilities, and $E U($ Risk $)=$ Utility (Certainty Equivalent)

Finding a Certainty Equivalent given utility

curve

How to find the utility curve?

- Using Certainty Equivalent

Assessing Utility Using Certainty Equivalents

Lottery Example

In a Reference Lottery, you can:

- Vary the probabilities
- Vary the payoffs associated with the risk
- Vary the Certainty Equivalent

In all cases, you must set all of the other values to find the one you want

Assessing Utility Using Certainty Equivalents

Let utility for $\$ 100$ be 1 and for $\$ 10$ be 0 The EMV is $\$ 55$.

As a risk averse person you will not play the game and accept a value less than $\$ 55$. Let that be $\$ 30$ (this is a subjective value and can differ from person to person)

Make the
Expected Utility (EU) of option A = EU of option B
That is the options are indifferent in terms of EU

Eliciting a Utility Curve

$$
\begin{aligned}
& \mathrm{CE}=\$ 30 \\
& \mathrm{U}(\$ 100)=1 \text { and } \mathrm{U}(\$ 10)=0 \\
& \text { therefore, } \\
& \mathrm{U}(\$ 30)=1 * 0.5+0 * 0.5=0.5
\end{aligned}
$$

Replace dollar $\$ 10$ with $\$ 30$ and play a new gamble. Now the EMV is $100 * .5+30^{*} .5=65$ For what dollar value will you trade this gamble? Say $\$ 50$ (again this is subjective)

$$
\begin{aligned}
& \text { Make } \mathrm{EU}(\mathrm{~A})=\mathrm{EU}(\mathrm{~B}) \\
& \mathrm{CE}=\$ 50 ; \\
& \mathrm{U}(\$ 100)=1 \text { and } \mathrm{U}(\$ 30)=0.5 ; \\
& \text { therefore, } \\
& \mathrm{U}(\$ 50)=0.5(1)+0.5(.5)=0.75
\end{aligned}
$$

Eliciting a Utility Curve (Cont.)

Repeat the process another time, say with $\$ 10$ and $\$ 30$. Find EMV. This is now $\$ 20$.
Trade in the gamble for say $\$ 18$.

$\mathrm{CE}=\$ 18$;
$\mathrm{U}(\$ 30)=0.5$ and $\mathrm{U}(\$ 10)=0$;
therefore,
$\mathrm{U}(\$ 18)=0.5(.5)=0.25$

Plot Utility curve

Utility function matching the two assumed bounds (\$10 and \$100) and the three points that were elicited (the 25th, 50th, and 75th percentiles)

The Exponential Utility Function

- We assume the utility function can match an exponential curve

$$
U(x)=1-e^{-x / R}
$$

- R will affect the shape of the exponential curve, making it more or less concave \Rightarrow more or less risk averse, thus
- R is the risk tolerance
- There is an approximation that can be used to estimate the risk tolerance

The Risk Assessment Lottery

- For what value of Y will you play the game? Or at what Y soes the game become risky?
- The highest value of Y at which you are willing to take the lottery (bet) [instead of remaining with $\$ 0$ loss or gain] is approximately equal to R

The Risk Assessment Lottery

- Choose Y to be $\$ 900$ (again subjective)
- The highest value of Y at which you are willing to take the lottery (bet) [instead of remaining with $\$ 0$ loss or gain] is approximately equal to R.. Hence $R=Y=900$

The Risk Assessment Lottery

- Choose Y to be $\$ 900$ (again subjective)
- The highest value of Y at which you are willing to take the lottery (bet) [instead of remaining with $\$ 0$ loss or gain] is approximately equal to R.. Hence $R=Y=900$
- Using the above data find $E U$ and CE for this game
- Win $\$ 2000$ with prob 0.4
- Win $\$ 1000$ with prob 0.4
- Win $\$ 500$ with prob 0.2

Plug in $\mathrm{R}=900$ in $\quad U(x)=1-e^{-x / R}$
Find $\mathrm{U}(\mathrm{x})$ for $\mathrm{x}=2000,1000$, and 500

The Risk Assessment Lottery

- Using the above data find $E U$ and CE for this game
- Win $\$ 2000$ with prob 0.4
- Win $\$ 1000$ with prob 0.4
- Win $\$ 500$ with prob 0.2

Plug in $\mathrm{R}=900$ in $U(x)=1-e^{-x / R}$
Find $\mathrm{U}(\mathrm{x})$ for $\mathrm{x}=2000,1000$, and 500
$E U=0.4 \mathrm{U}(2000)+0.4 \mathrm{U}(1000)+0.2 \mathrm{U}(500)=0.7102$
To find CE $\quad 0.7012=1-\mathrm{e}^{(-\mathrm{x} / 900)} . \quad \mathrm{CE}:=-\mathrm{R} \cdot(\ln (1-.7102))$ Solve for x , which is $\$ 1114.71$

Summary: This CE is calculated using exponential Utility Function

Alternate CE Calculations using Expected value and Variance of Pavoffs.

From page 544 of Clemens, we have a lottery with payoffs $\mathrm{x}:=\left[\begin{array}{c}2000 \\ 1000 \\ 500\end{array}\right]$ and probabilities $\mathrm{p}:=\left[\begin{array}{l}.4 \\ .2\end{array}\right]$. The Risk Tolerance R is assumed to be $\$ 900$.
Using either method, you must compute $\mu=\sum_{i} p_{i} \cdot x_{i}=1300 \quad$ and

$$
\begin{array}{rlc}
\text { Var }:=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \cdot\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2} \text { to get } \sigma=600 & \text { So we have alternative calculations: } \\
& \mathrm{CE}:=1300-\frac{0.5 \cdot \mathrm{Var}}{\mathrm{R}} & \text { or }
\end{array} \mathrm{CE}=1100
$$

With calculators that have \ln functions or Excel, I think that the more precise answer is about as easy to calculate.

