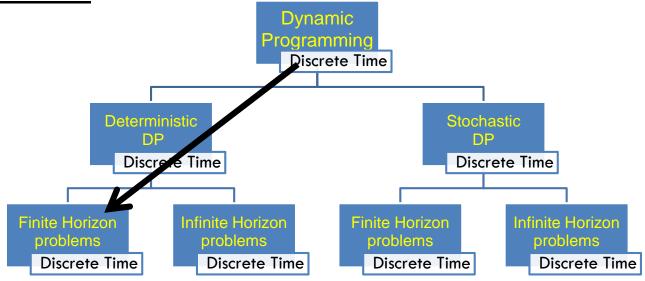
OR 674 DYNAMIC PROGRAMMING

Rajesh Ganesan,
Associate Professor
Systems Engineering and Operations Research
George Mason University

Ankit Shah Ph.D. Candidate

Dynamic Programming

- What is Dynamic Programming (DP)?
 - An optimization method that finds the shortest path (ex: minimize cost) or the longest path (ex: maximize reward) in decision making problems that are solved <u>sequentially</u> over time.



Example: Sailco corporation sells sailboats.

- Sailco's objective is to find an optimal production strategy for its sailboats for each day for the next 4 days.
- Demand is deterministic:
 - \square D1 = 40, D2 = 60, D3 = 75, D4 = 25
- Cost of making a boat:
 - with regular labor hours = \$400/boat
 - with overtime labor hours = \$450/boat
- □ Holding cost of a boat in inventory = \$20/boat
- Maximum number of boats that can be produced using regular labor hours = 40
- Starting inventory = 10 boats on day 1
- All demand must be met.

- Boats could be produced by regular labor and overtime labor.
 - $lue{}$ Let x_t be number of boats produced by regular labor during day t.
 - lacktriangle Let y_t be number of boats produced by overtime labor during day t.
- \square Let i_t be the inventory remaining at the end of the day t.
 - Inventory at the end of day 1:

$$i_1 = i_0 + x_1 + y_1 - D_1$$

■ Inventory at the end of day 2:

$$i_2 = i_1 + x_2 + y_2 - D_2$$

■ Inventory at the end of day n:

$$i_n = i_{n-1} + x_n + y_n - D_n$$

Objective:

- Minimize production costs (regular labor and overtime labor) and holding costs.
 - Minimize $\sum_{t=1}^{T} (400 * x_t + 450 * y_t + 20 * i_t)$

Constraints:

- Demand on each day must be met.
 - $i_t >= 0$
- Up to 40 boats per day can be produced with regular labor hours.
 - $x_t < =40$

$$Min Z = 400x_1 + 400x_2 + 400x_3 + 400x_4 + 450y_1 + 450y_2 + 450y_3 + 450y_4 + 20i_1 + 20i_2 + 20i_3 + 20i_4$$
(1)

Constraint: Inventory at the end of day t = Inventory at the end of day (t-1)+production during day t by regular labor+ production during day t by overtime labor - demand during day t

$$i_1 = 10 + x_1 + y_1 - 40 (2)$$

$$i_2 = i_1 + x_2 + y_2 - 60 (3)$$

$$i_3 = i_2 + x_3 + y_3 - 75 (4)$$

$$i_4 = i_3 + x_4 + y_4 - 25 (5)$$

$$x_t \leq 40, \ \forall t$$
 (6)

$$i_t \geq 0, \ \forall \ t$$
 (7)

$$y_t \geq 0, \ \forall \ t$$
 (8)

$$x_t \geq 0, \ \forall \ t$$
 (9)

Challenges

How complex would be the problem if the following occur:

- If the problem had to be solved for 1 year?
 - 365*3 = 1095 variables, 365*2 = 730 constraints.
- □ If the problem had to be solved for 10 years?
 - 10950 variables, 7300 constraints.
- If the demand was probabilistic?
 - Modeling the problem may not be possible.

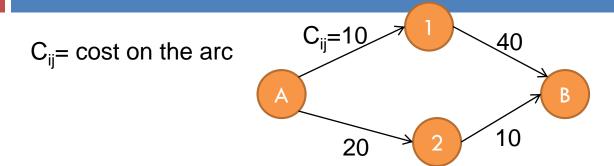
Dynamic Programming is an approach for solving such problems.

Sequential Decision Making (Dynamic Programming)

Dynamic decisions <u>over time</u> and <u>uncertainty</u> (stochastic behavior)

on top of

- Big data
- Complex non-linear system
- Computational difficulty (state space and dimensionality)
- □ Time between decisions too short

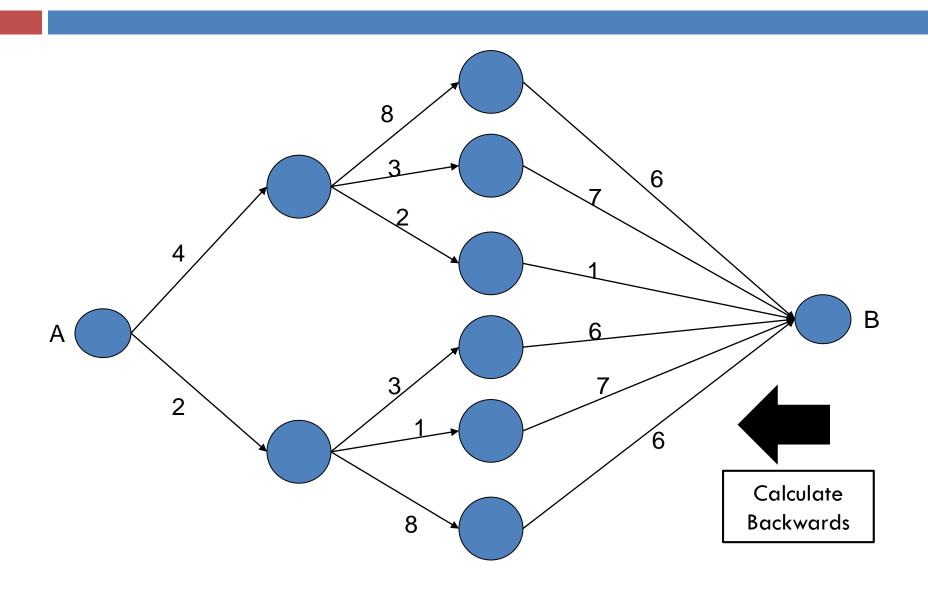


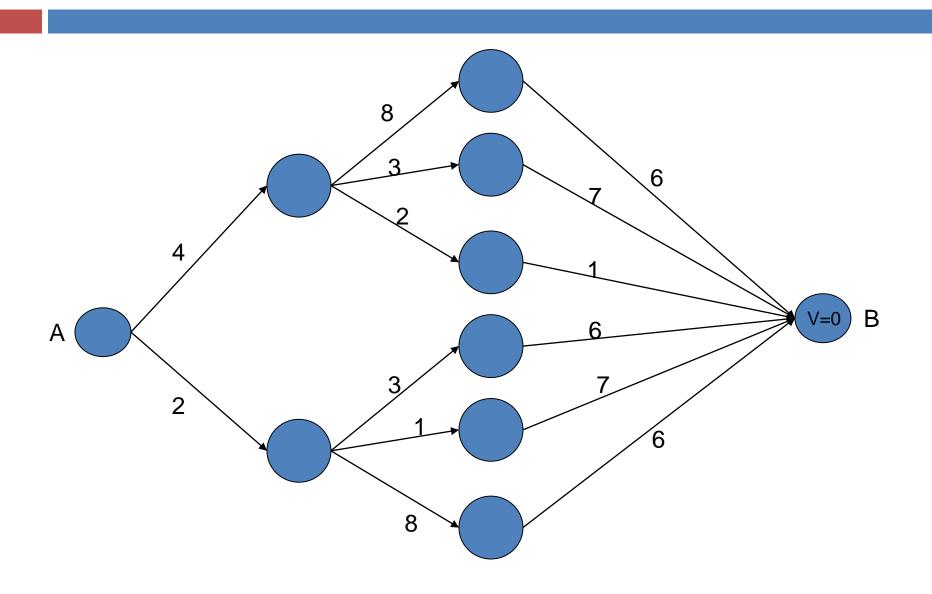
```
Myopic policy: V(A) = min(C_{ij})
= min of (10 or 20)
leads to solution of 50 from A to 1 to B
```

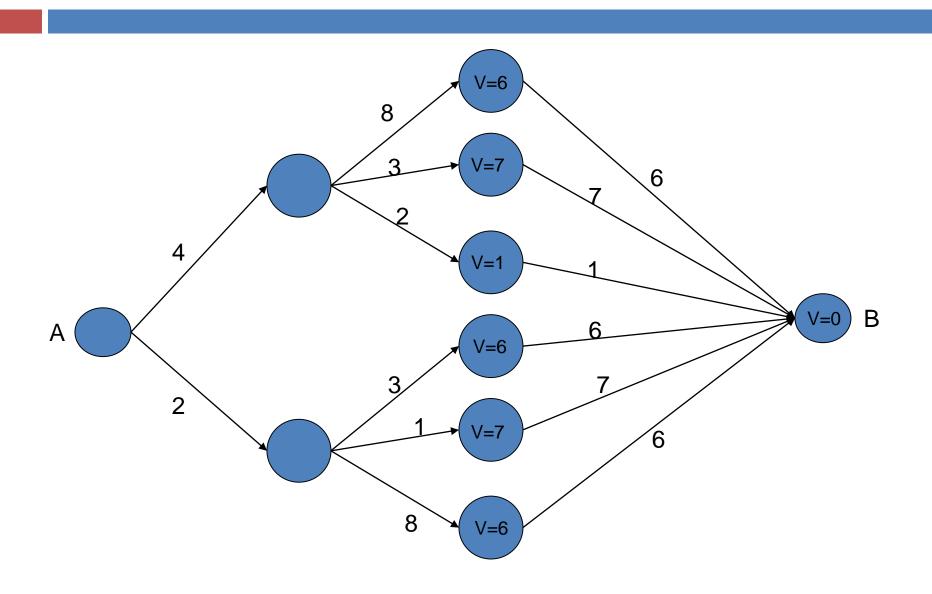
DP policy:
$$V(A) = min (C_{ij} + V(next node))$$

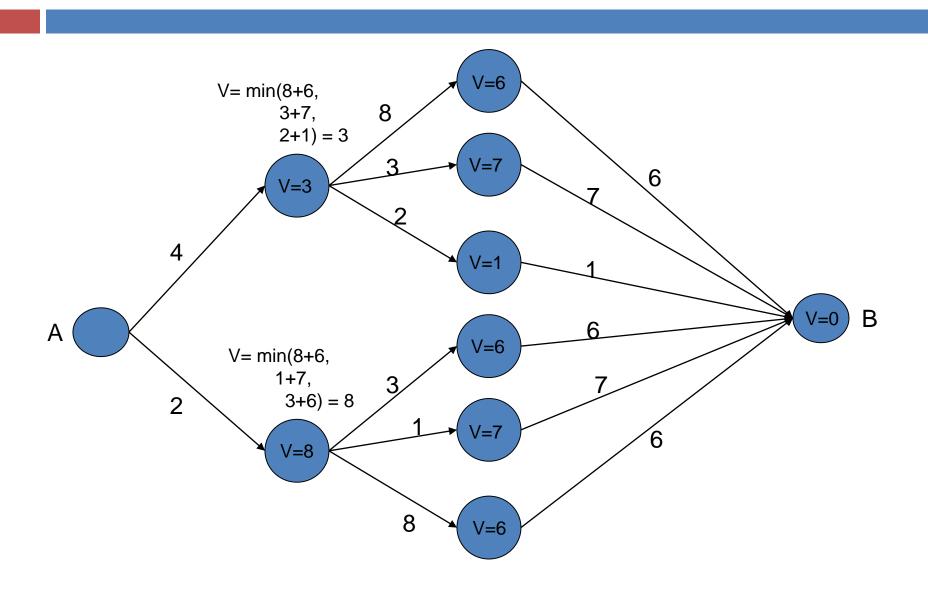
= $min (10 + 40, 20+10) = 30$
leads to solution of 30 from A to 2 to B

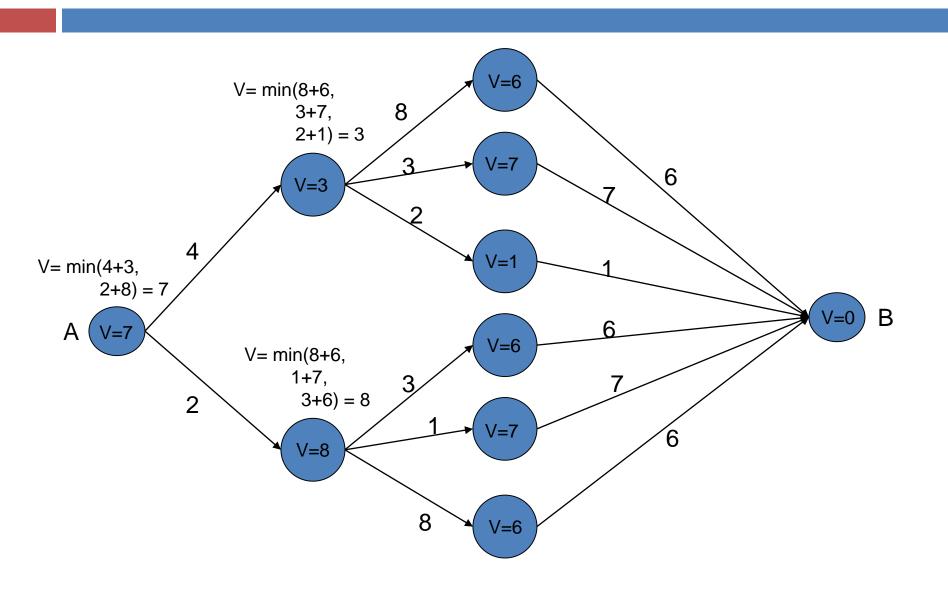
Key is to find the values of node 1 and 2

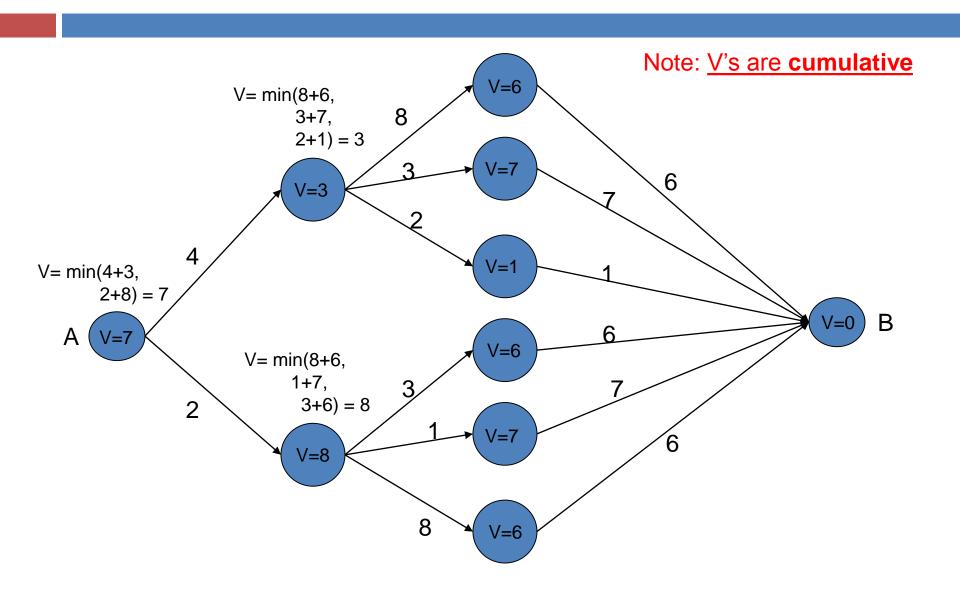


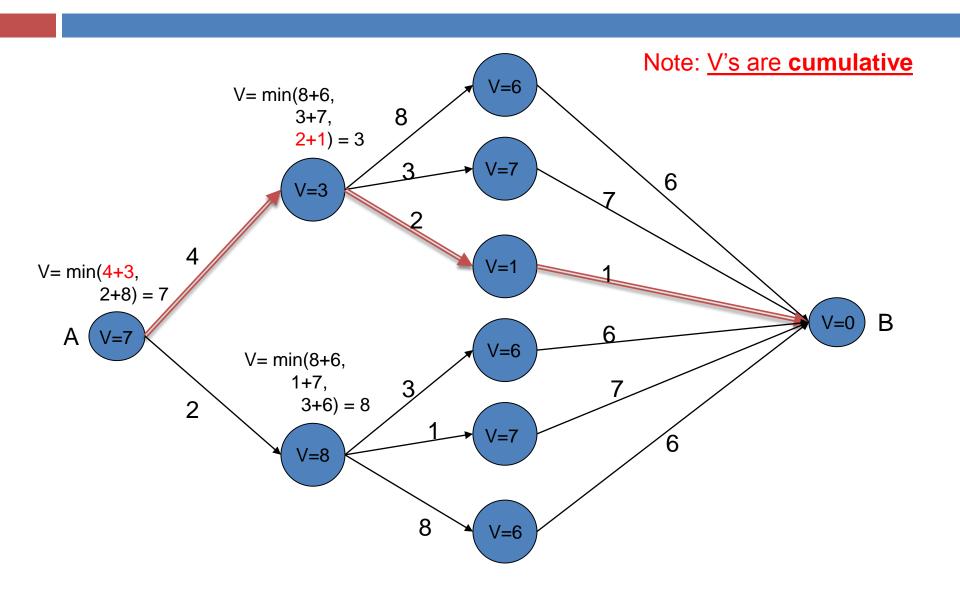






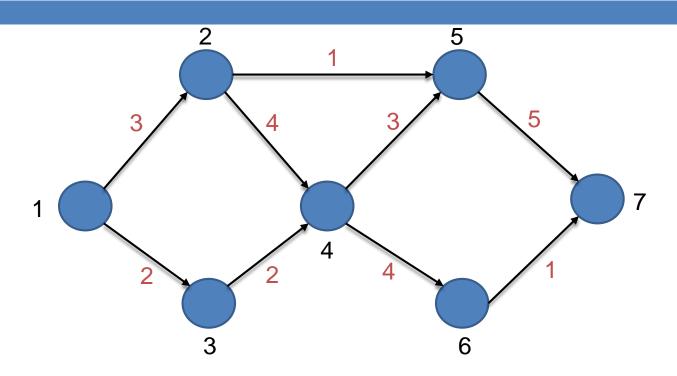




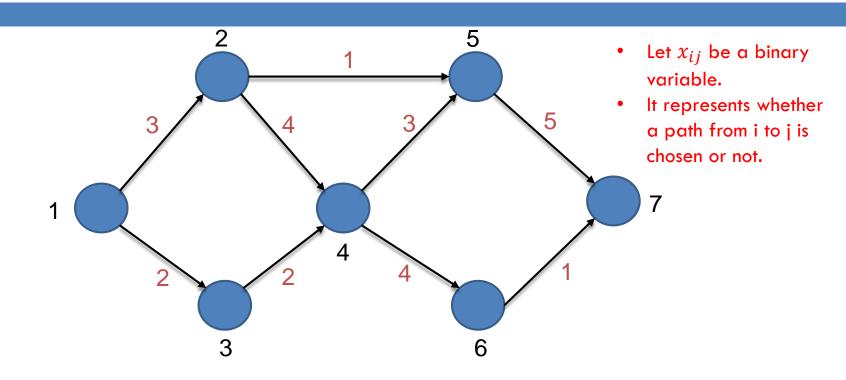


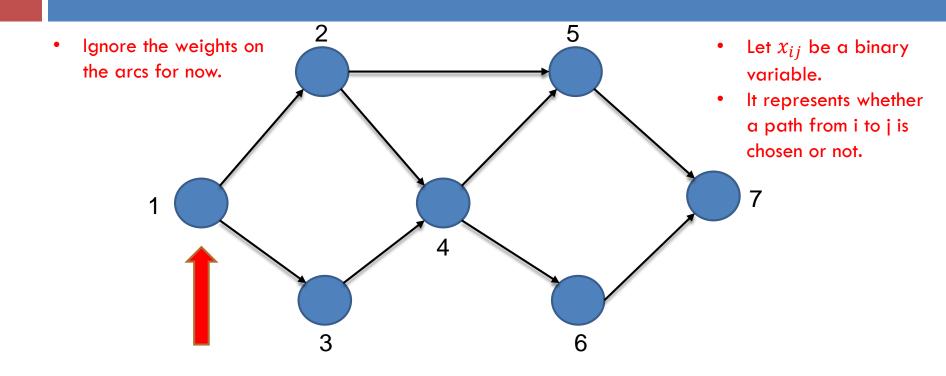
Another Example

Find Shortest Path from Node 1 to 7

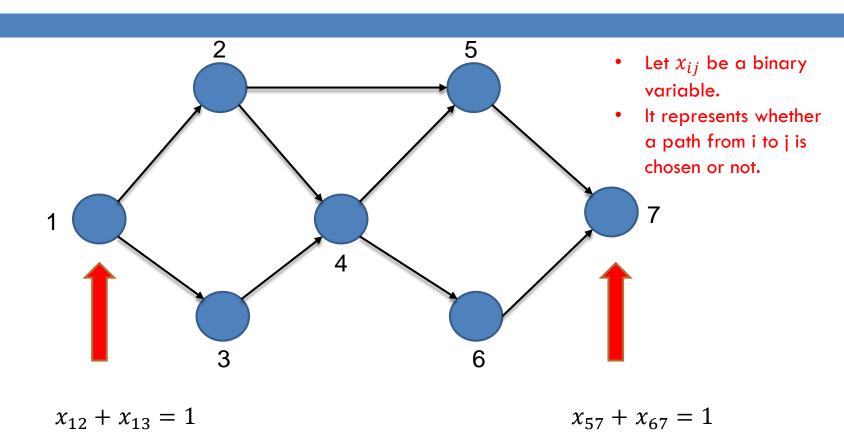


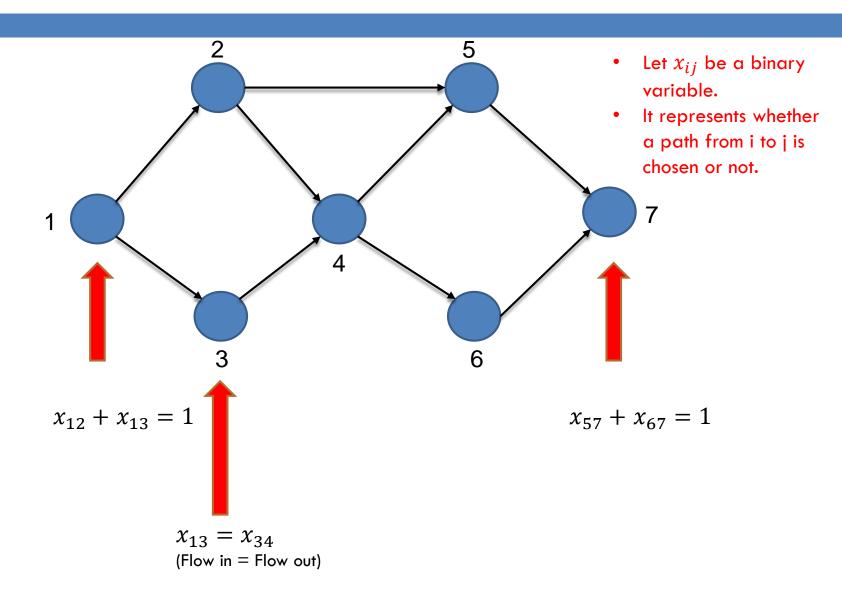
- First, we will model the problem using Integer Programming approach.
- Next, we will show the Dynamic Programming approach.

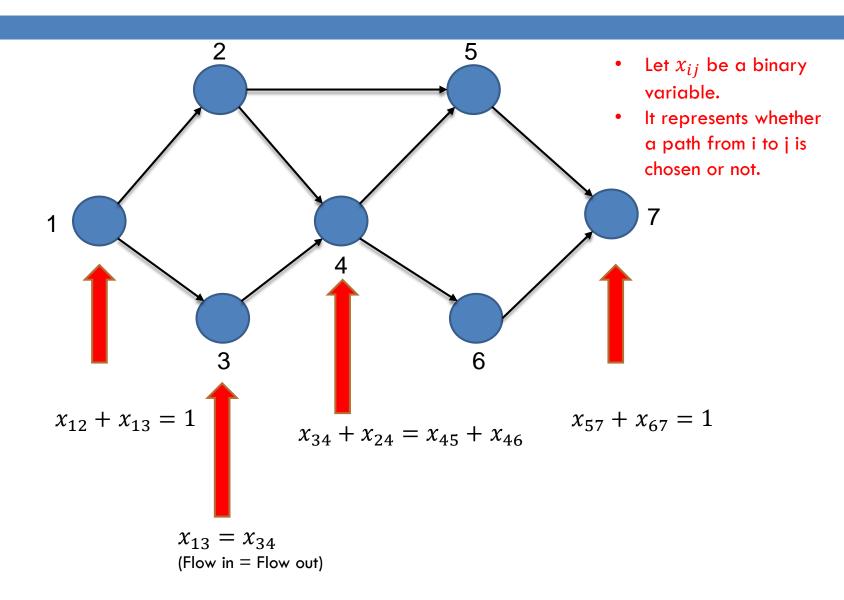


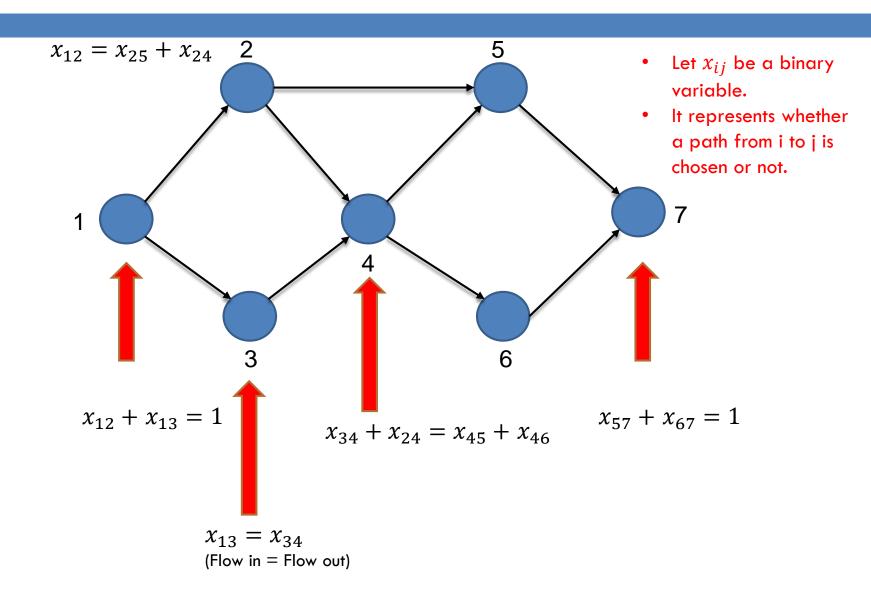


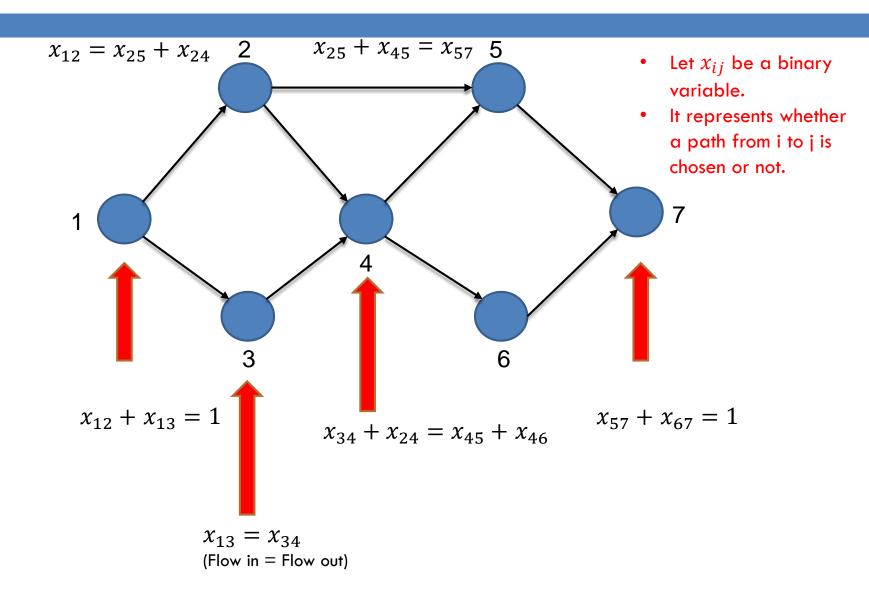
 $x_{12} + x_{13} = 1$

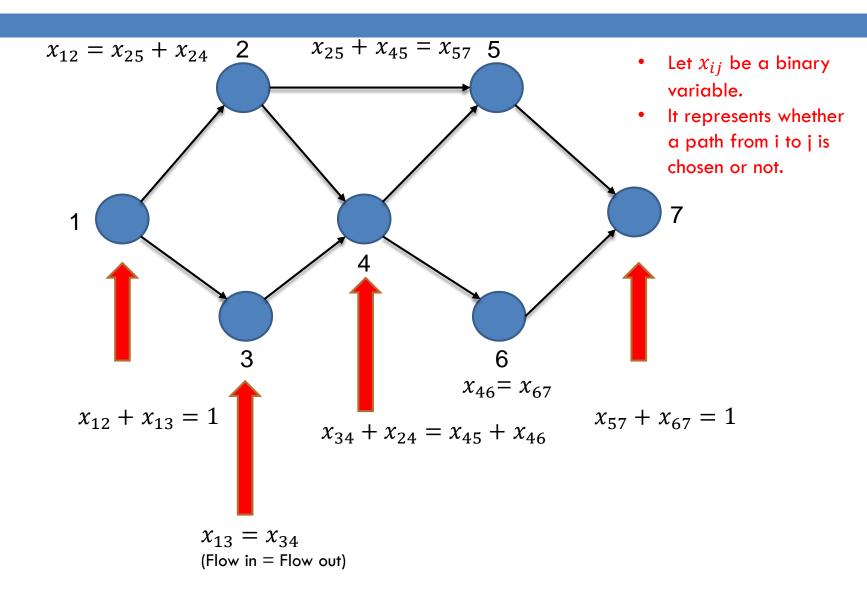


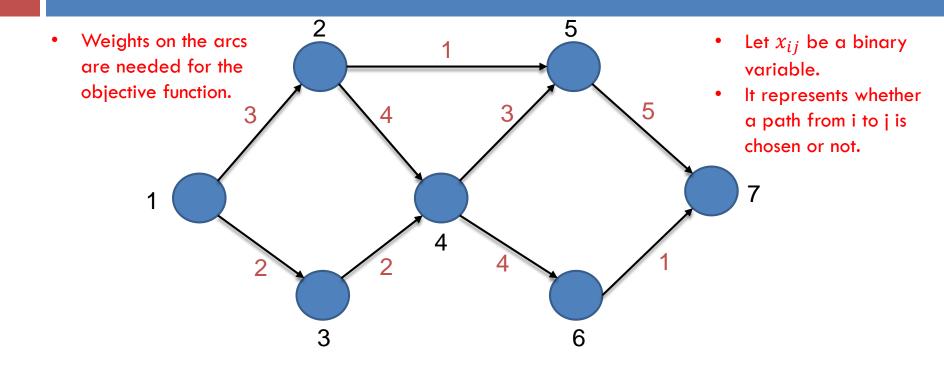












Objective: $Min\ Z = 3x_{12} + 2x_{13} + 1x_{25} + 4x_{24} + 2x_{34} + 3x_{45} + 4x_{46} + 5x_{57} + 1x_{67}$

Objective:
$$Min\ Z = 3x_{12} + 2x_{13} + 1x_{25} + 4x_{24} + 2x_{34} + 3x_{45} + 4x_{46} + 5x_{57} + 1x_{67}$$

Constraints:

$$x_{12} = x_{25} + x_{24}$$

$$x_{25} + x_{45} = x_{57}$$

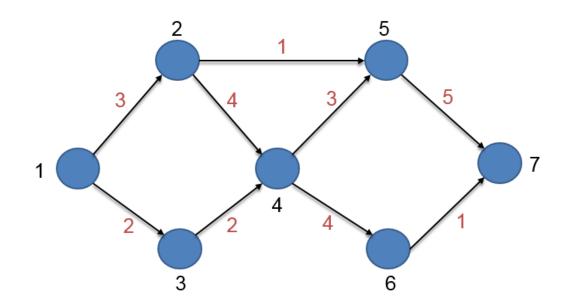
$$x_{12} + x_{13} = 1$$

$$x_{46} = x_{67}$$

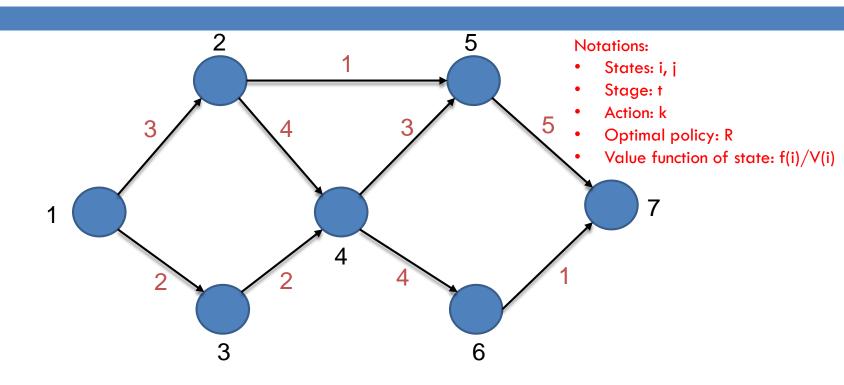
$$x_{57} + x_{67} = 1$$

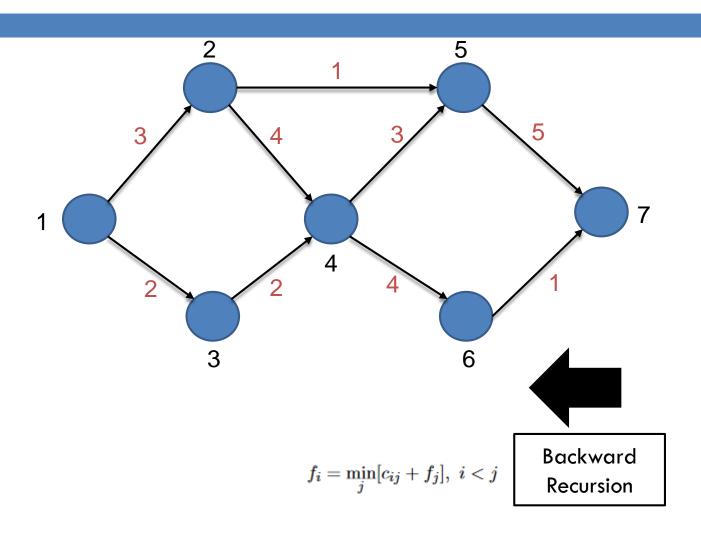
$$x_{34} + x_{24} = x_{45} + x_{46}$$

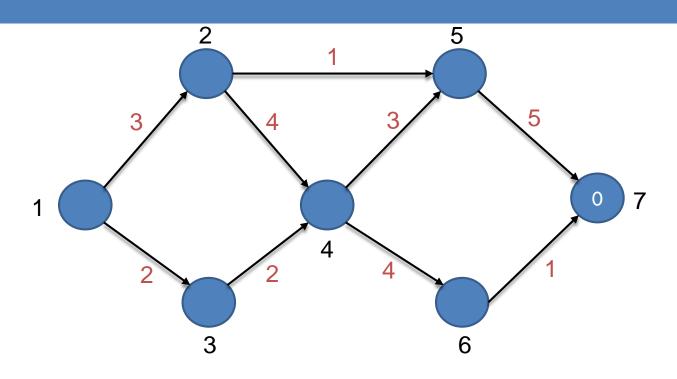
$$x_{13} = x_{34}$$

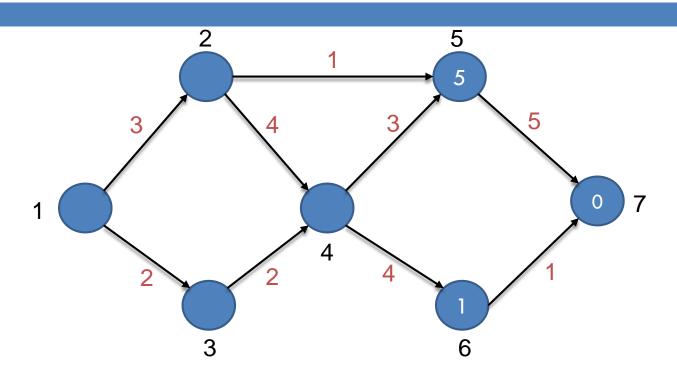


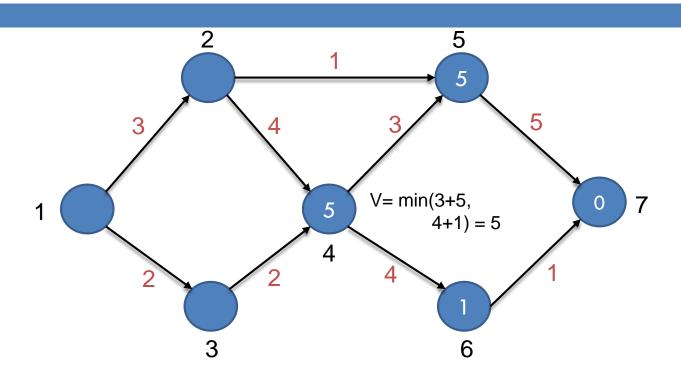
- As the number of states (nodes) increases, the number of equations will also increase.
- With Integer/Linear Programming, all variables and constraints are typically added and solved together as one BIG problem, which makes it computationally infeasible for large problems.

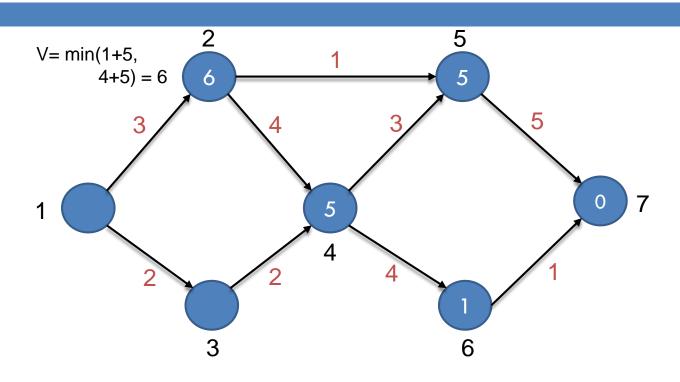




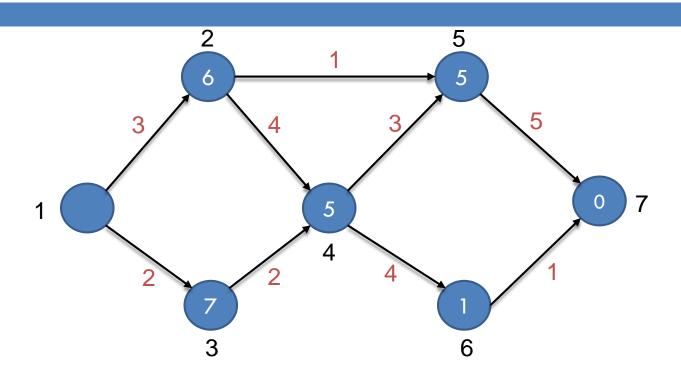




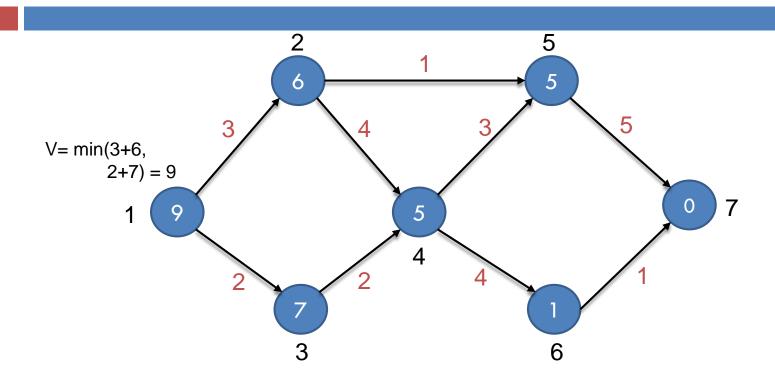




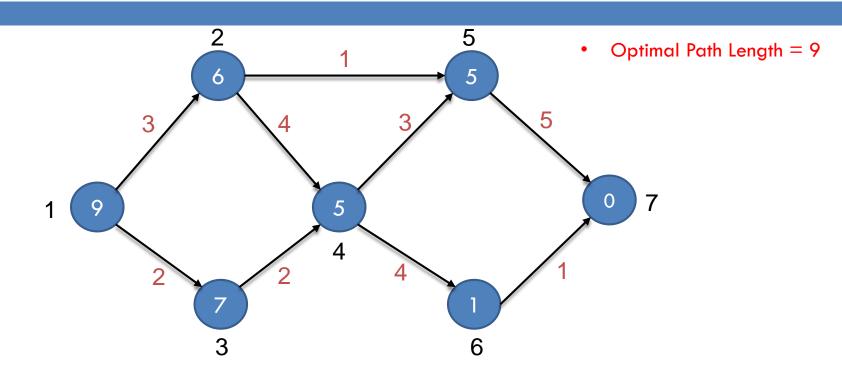
Dynamic Programming Approach



Dynamic Programming Approach



Dynamic Programming Approach



- With a Dynamic Programming approach:
 - 2 solutions are found: (1-2-5-7) and (1-3-4-6-7)

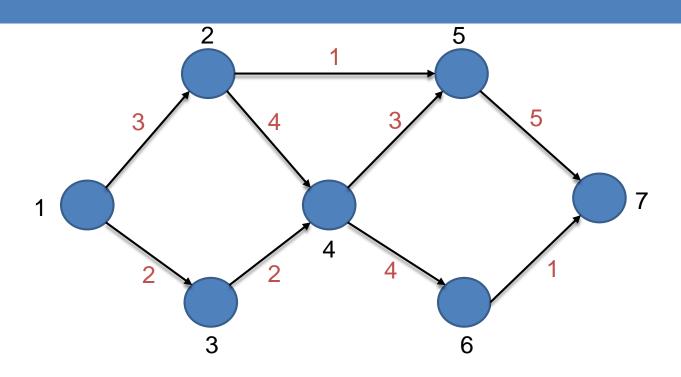
Excel Demonstration

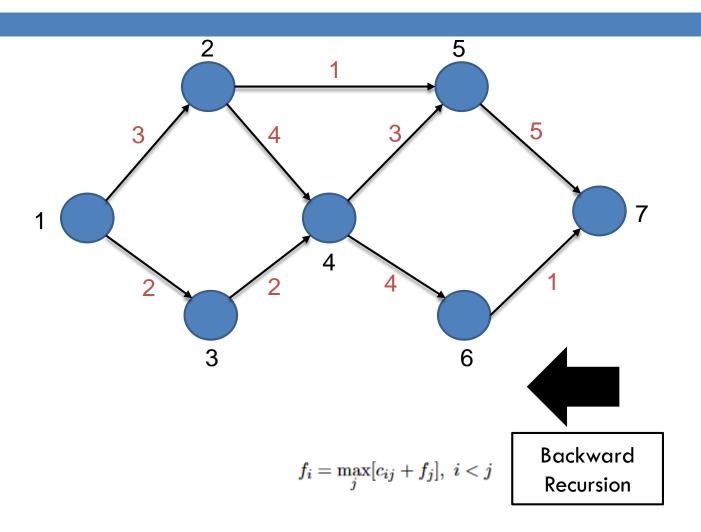
Deterministic Dynamic Programming – Finite Horizon

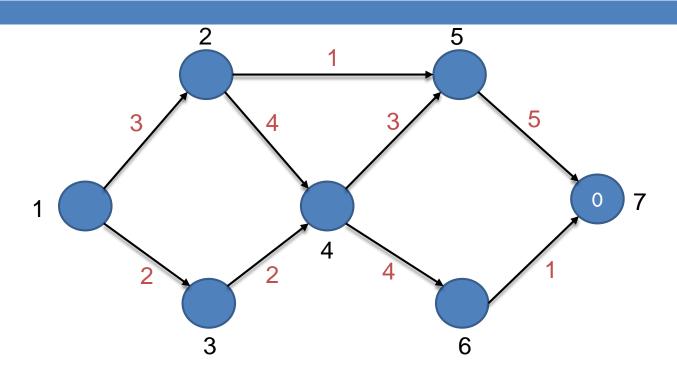
- □ We will deal with problems in which:
 - there are no cycles, and
 - the arcs are unidirectional.
- Real-world problems are sequential decision making problems over time, which is unidirectional.
 - Examples: Google Maps for directions, Inventory control, Equipment replacement, and so on.
- Recursion definition for minimization problems:
 - Value of a state i at stage t = minimum (cost of an action in state i at stage t which takes you to stage t+1 and the value of being in state i at stage t+1).

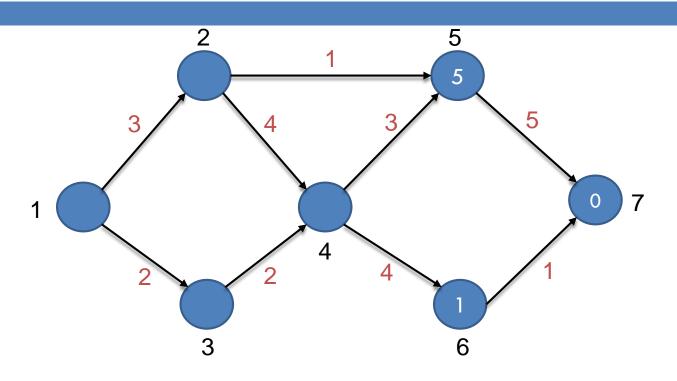
$$f_t(i) = \min_j [c_{ij} + f_{t+1}(j)], \ i < j$$

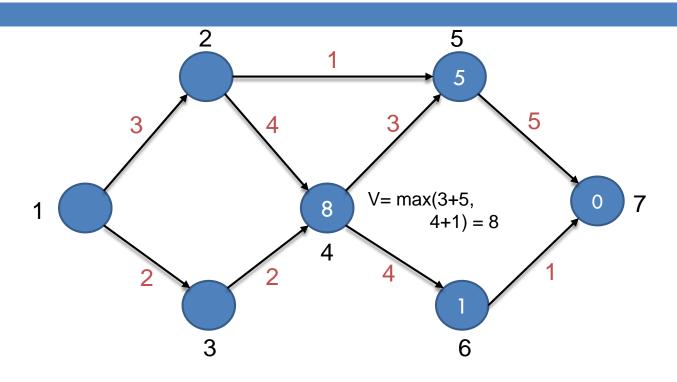
Longest Path Example using Backward Recursion

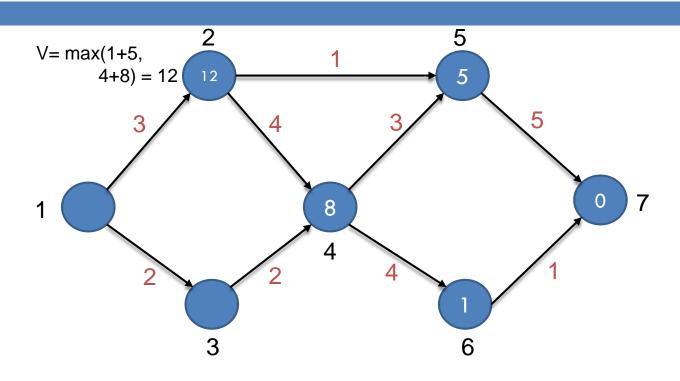


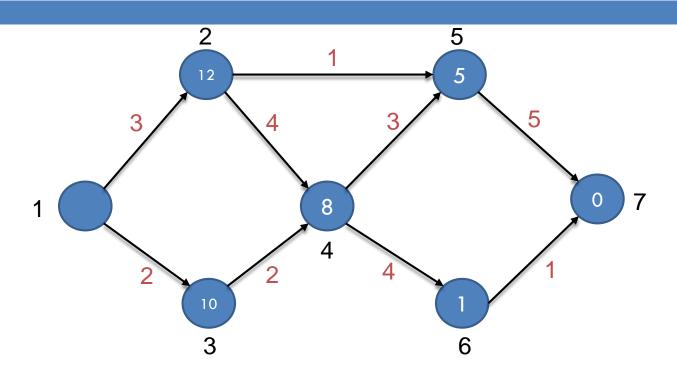


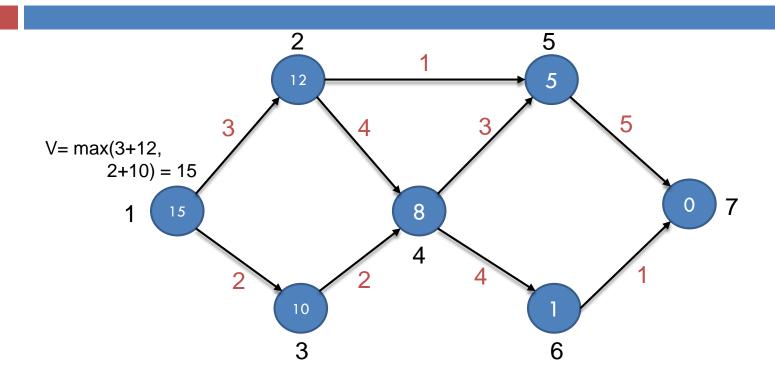




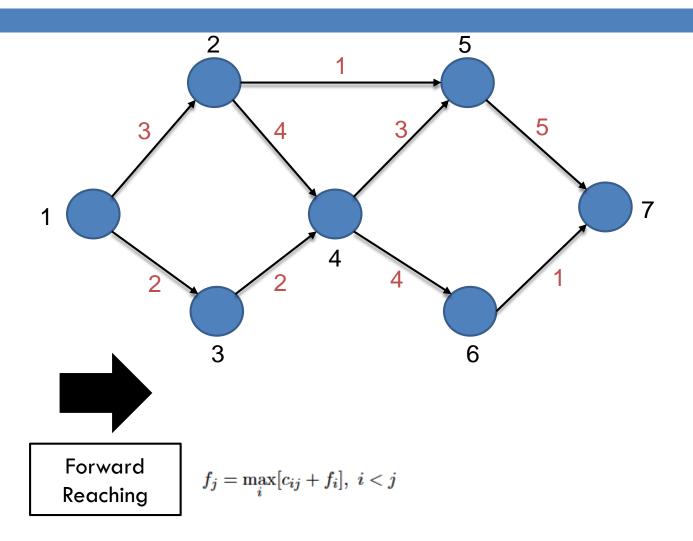


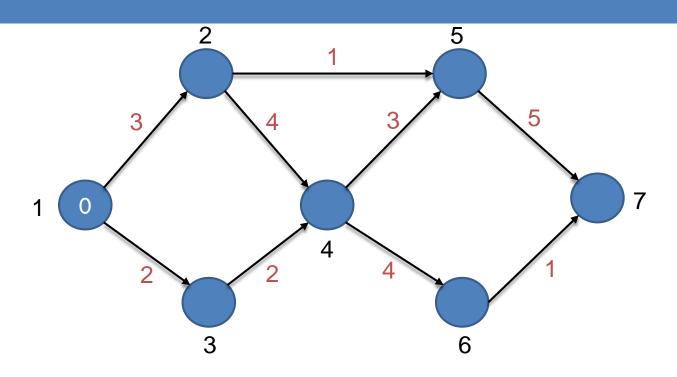


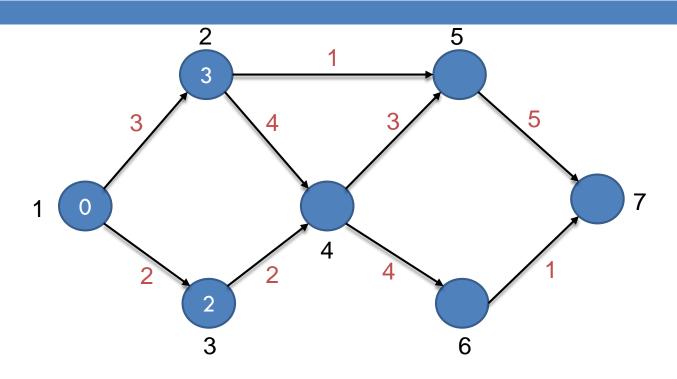


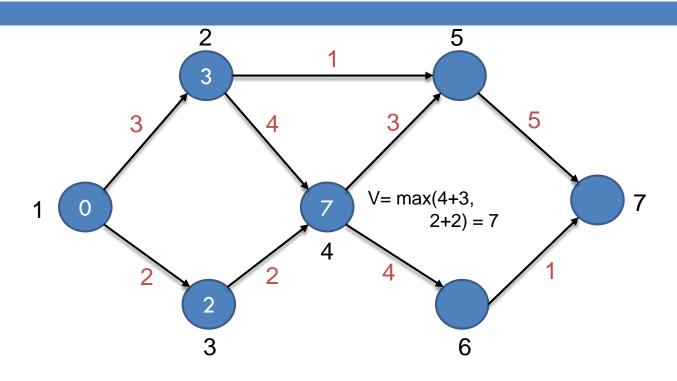


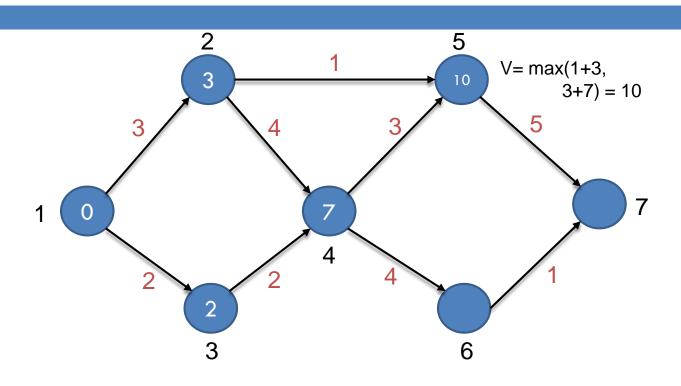
Longest Path Example using Forward Reaching

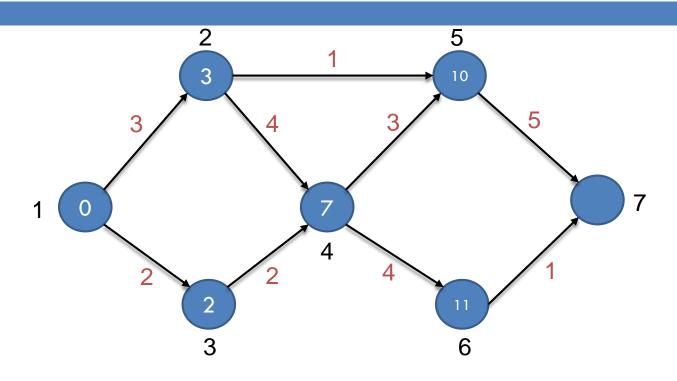


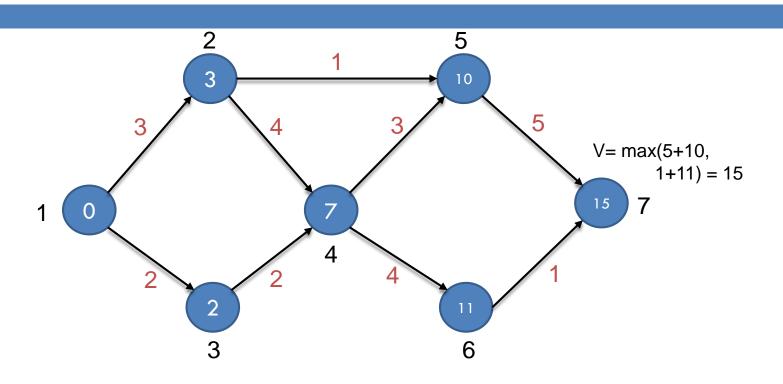










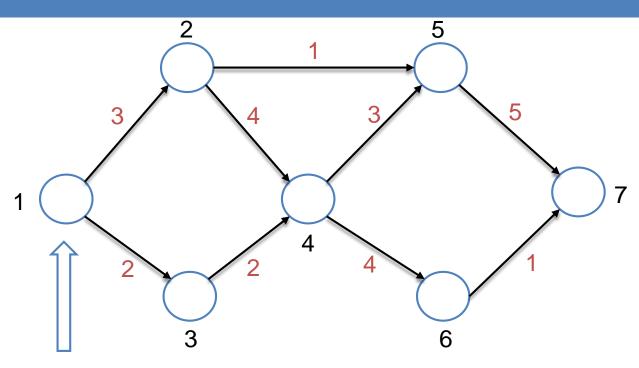


Summary

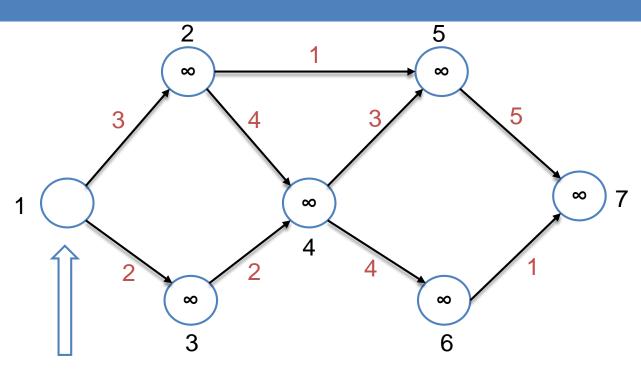
- A deterministic finite horizon problem can be solved backwards or by going forward.
 - □ For all problems, we will follow the backward recursion formula.
- Begin solving by setting the last state value in the last stage to zero and work backwards till the first state in the first stage.
- If there is more than one solution to the max or min operator at any state then there are multiple optimal paths.
- At any single iteration, the calculations of the value function is only between the current state t and the future states at t + 1.
 - This is a computational advantage as the algorithm performs only a few calculations at t even if the problem has millions of states that may occur at different times.
- The value of the first state in first stage is the solution of the problem.

Excel Demonstration

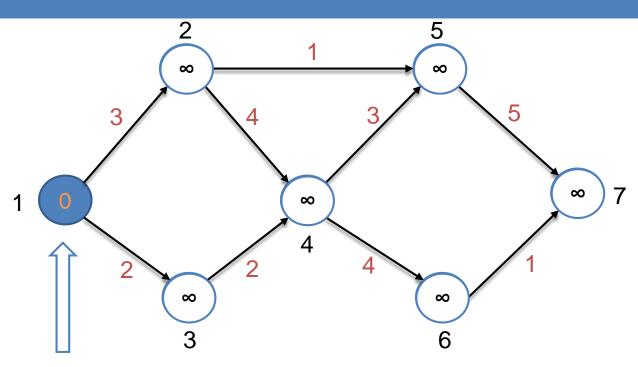
Dijkstra's Algorithm



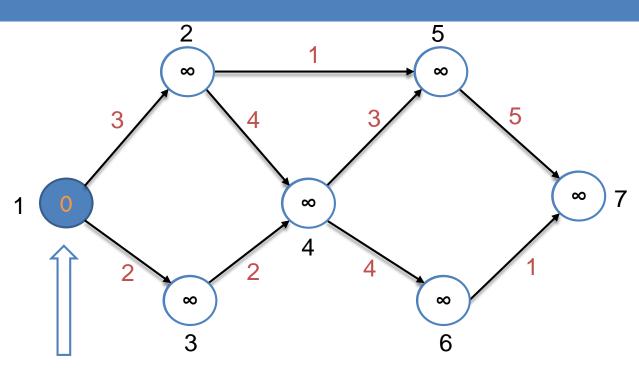
Start Here



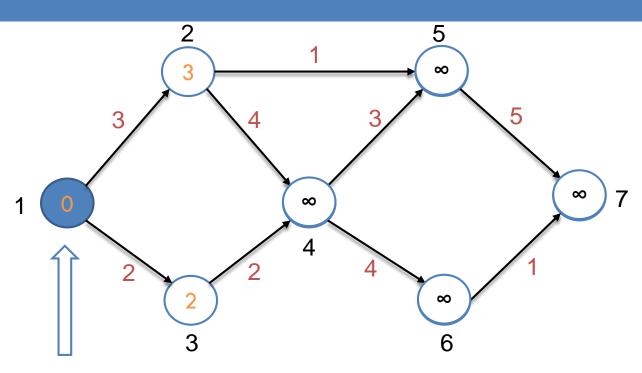
Start Here



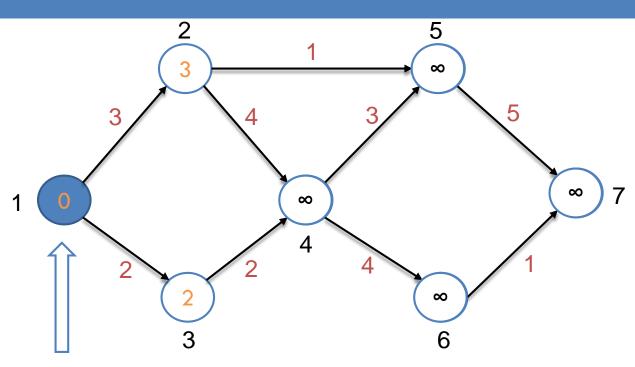
- Start Here
- Add node 1 to the visited node list



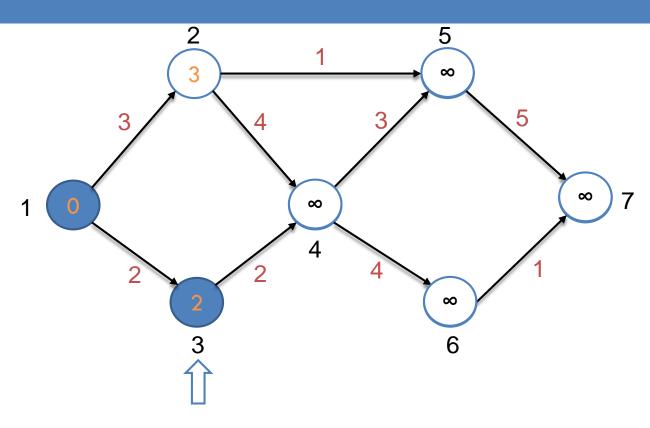
- Start Here
- Add node 1 to the visited node list
- Explore the neighborhood



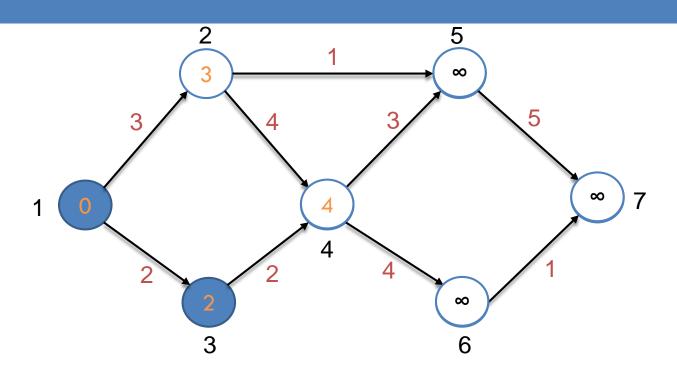
- Start Here
- Add node 1 to the visited node list
- Explore the neighborhood

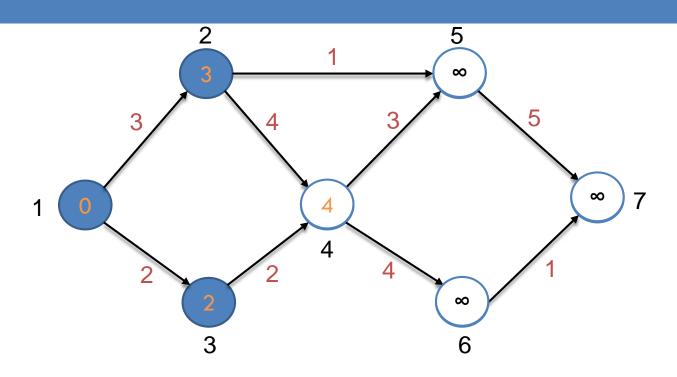


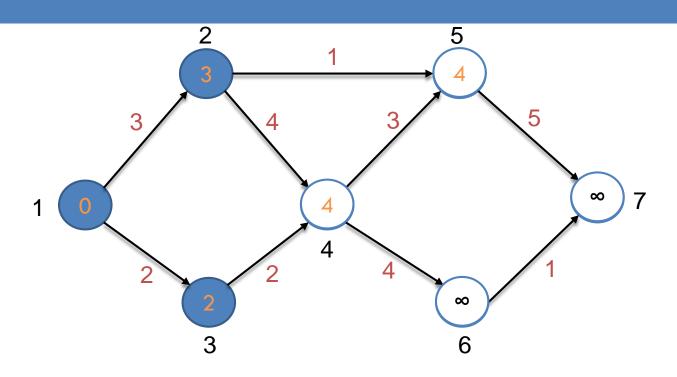
- Start Here
- Add node 1 to the visited node list
- Explore the neighborhood
- Visit the nearest neighbor (node)

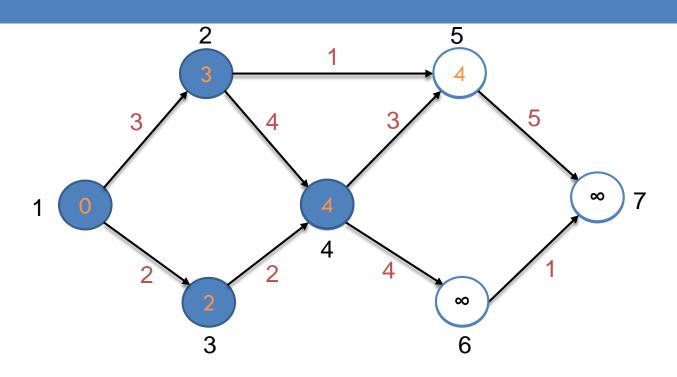


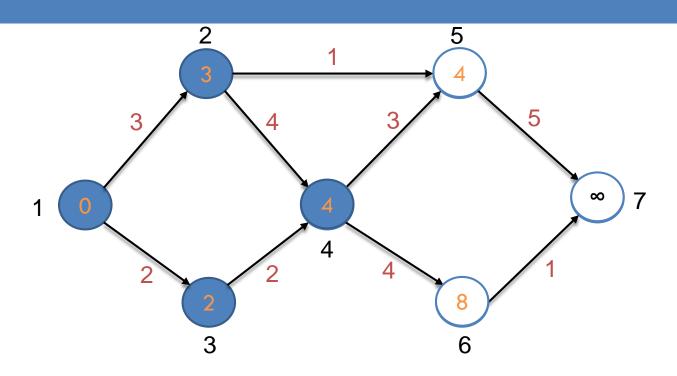
- Add node 3 to the visited node list
- Explore the neighborhood
- Visit the nearest neighbor (node)

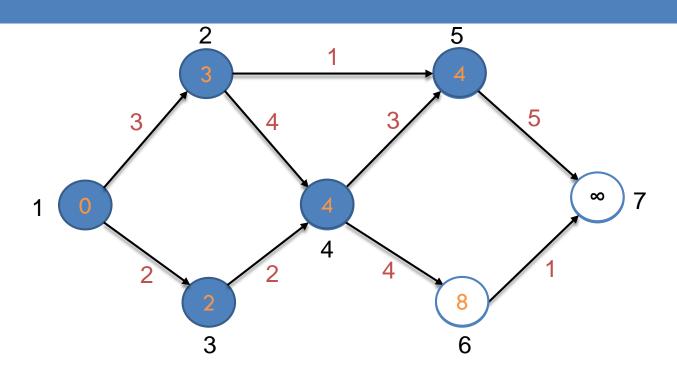


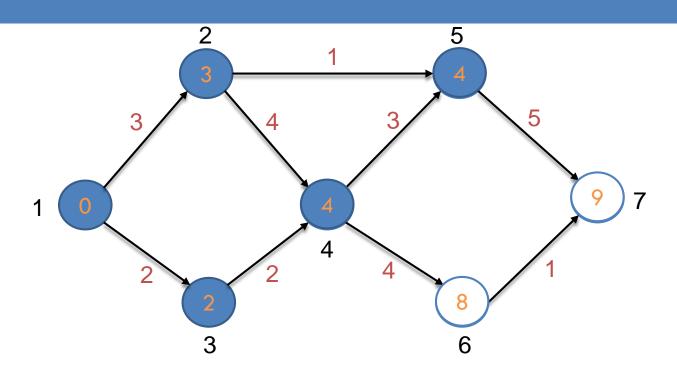


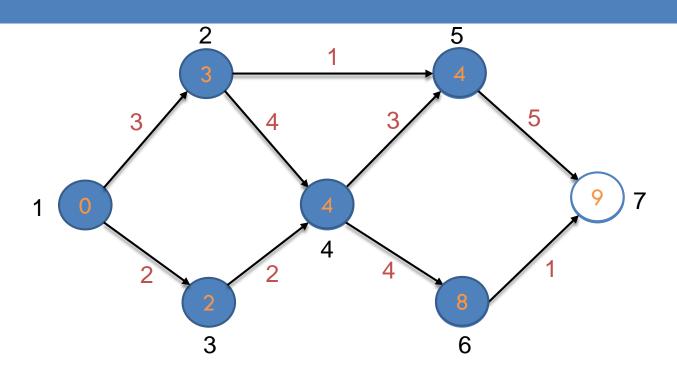


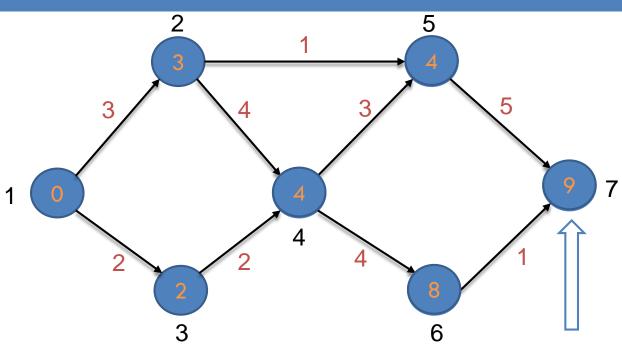






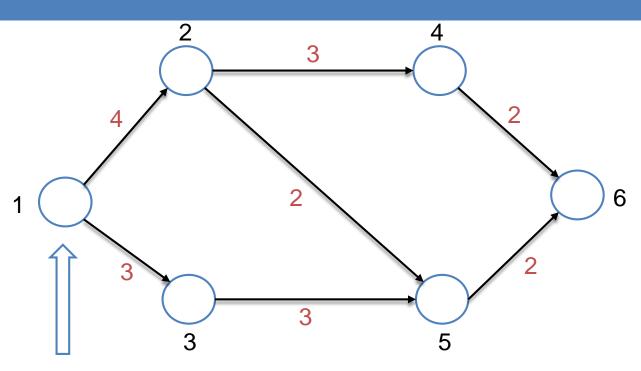




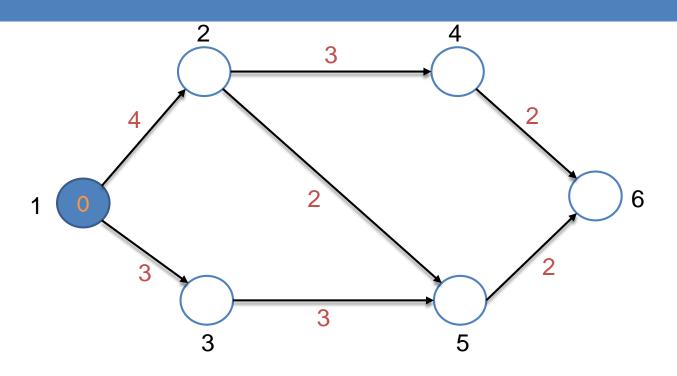


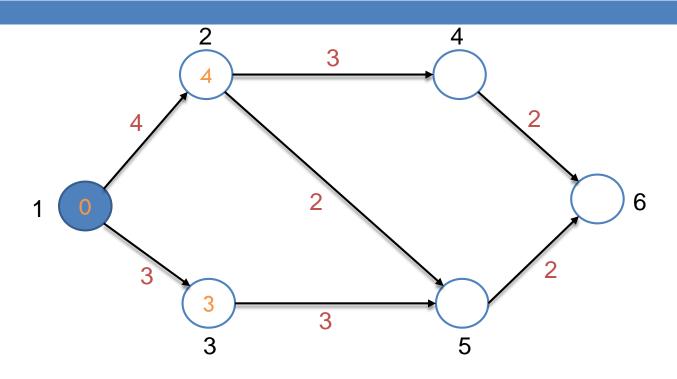
Stop when all nodes are visited.

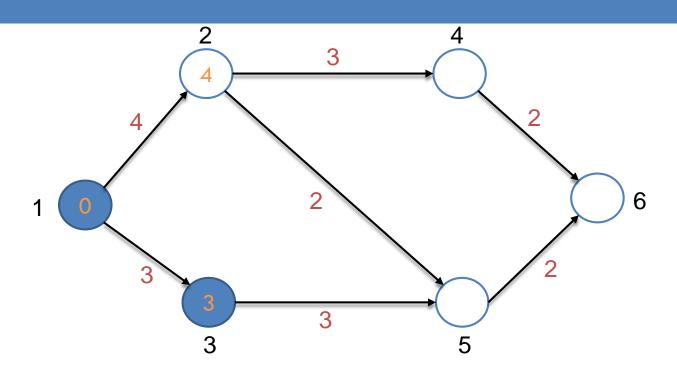
Another Example using Dijkstra's Algorithm

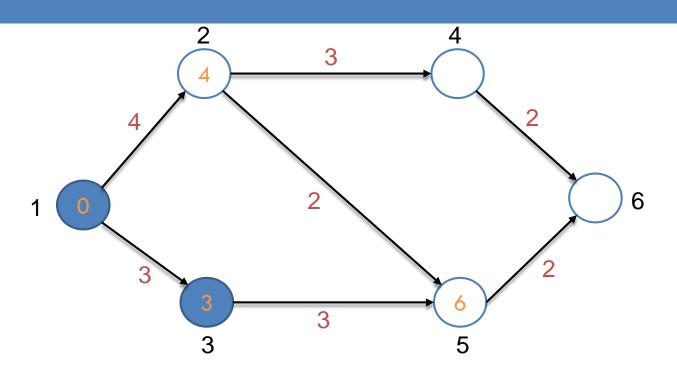


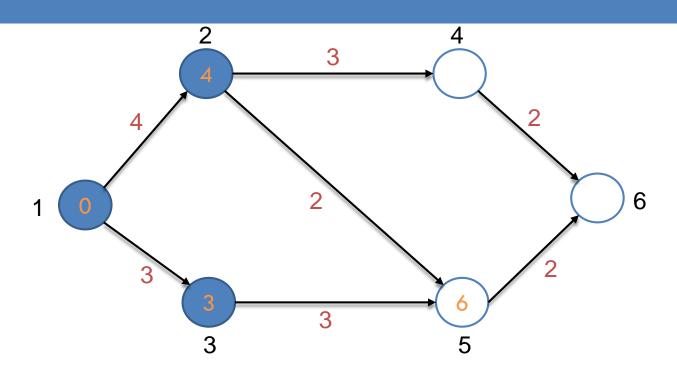
• Start Here

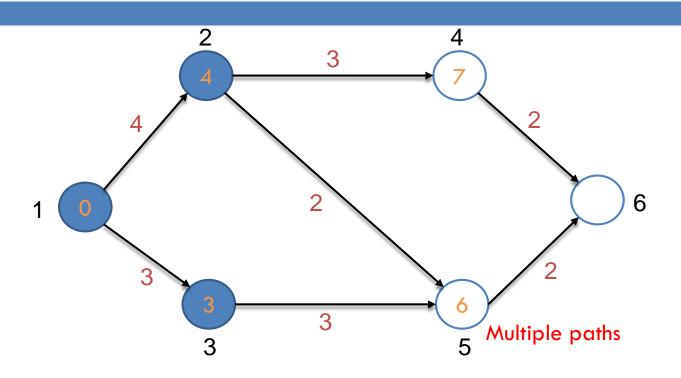


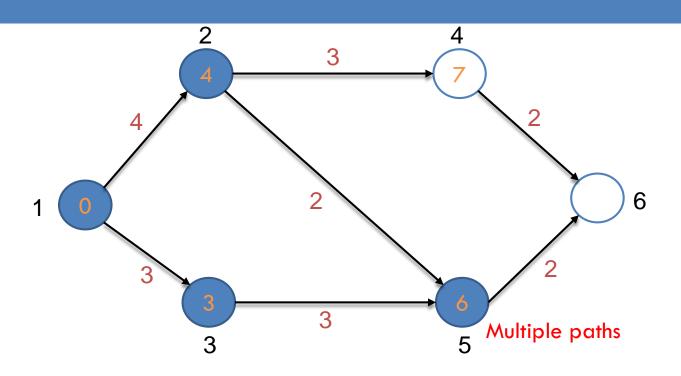


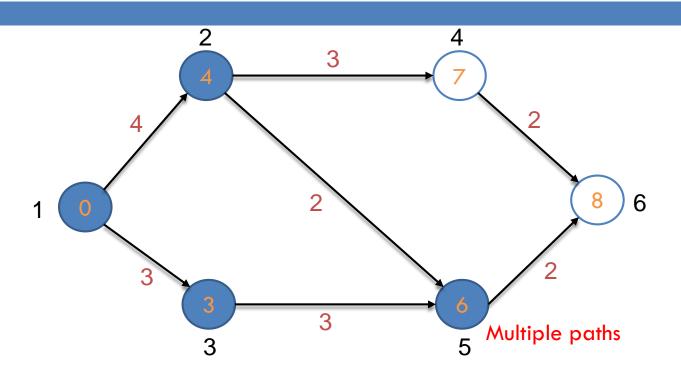


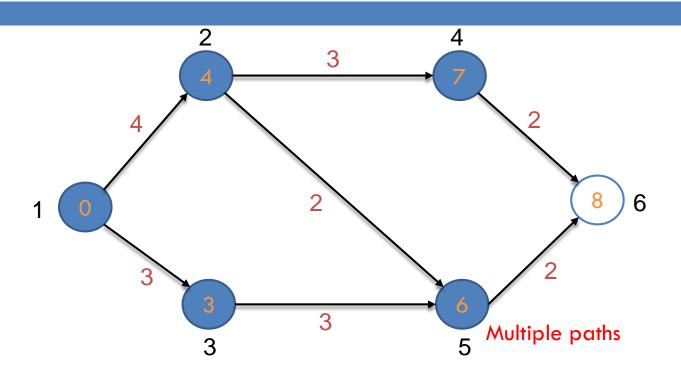


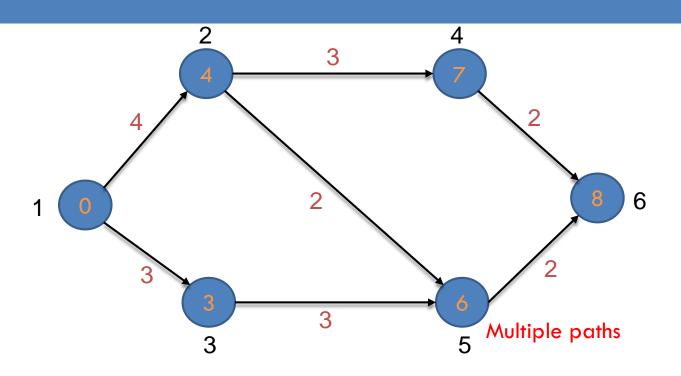


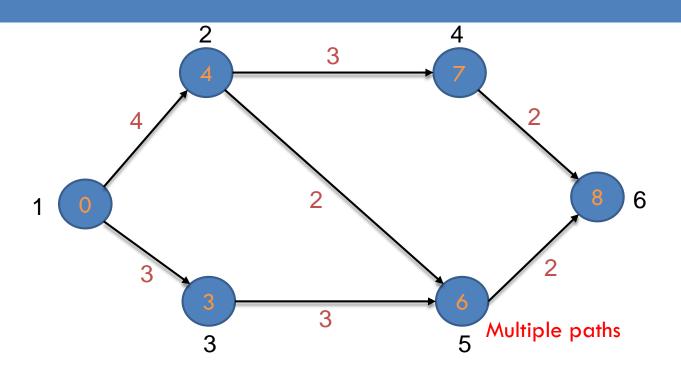












2 solutions are: (1-2-5-6) and (1-3-5-6)