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Dynamic Programming

 What is Dynamic Programming (DP)?

 An optimization method that finds the shortest path (ex: 

minimize cost) or the longest path (ex: maximize reward) in 

decision making problems that are solved sequentially 

over time.
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Linear Programming Example

Example: Sailco corporation sells sailboats.

 Sailco’s objective is to find an optimal production strategy for its 

sailboats for each day for the next 4 days.

 Demand is deterministic:

 D1 = 40, D2 = 60, D3 = 75, D4 = 25

 Cost of making a boat:

 with regular labor hours = $400/boat

 with overtime labor hours = $450/boat

 Holding cost of a boat in inventory = $20/boat

 Maximum number of boats that can be produced using regular 

labor hours = 40

 Starting inventory = 10 boats on day 1

 All demand must be met.



Linear Programming Example

 Boats could be produced by regular labor and overtime labor.

 Let 𝑥𝑡 be number of boats produced by regular labor during day t.

 Let 𝑦𝑡 be number of boats produced by overtime labor during day t.

 Let 𝑖𝑡 be the inventory remaining at the end of the day t.

 Inventory at the end of day 1:

 𝑖1= 𝑖0 + 𝑥1 + 𝑦1 − 𝐷1

 Inventory at the end of day 2:

 𝑖2= 𝑖1 + 𝑥2 + 𝑦2 − 𝐷2

 Inventory at the end of day n:

 𝑖𝑛= 𝑖𝑛−1 + 𝑥𝑛 + 𝑦𝑛 − 𝐷𝑛



Linear Programming Example

Objective: 

 Minimize production costs (regular labor and overtime labor) and 

holding costs.

 Minimize  𝑡=1
𝑇 400 ∗ 𝑥𝑡 + 450 ∗ 𝑦𝑡 + 20 ∗ 𝑖𝑡

Constraints: 

 Demand on each day must be met.

 𝑖𝑡>= 0

 Up to 40 boats per day can be produced with regular labor 

hours.

 𝑥𝑡<=40



Linear Programming Example



How complex would be the problem if the following occur:

 If the problem had to be solved for 1 year?

 365*3 = 1095 variables, 365*2 = 730 constraints.

 If the problem had to be solved for 10 years?

 10950 variables, 7300 constraints.

 If the demand was probabilistic?

 Modeling the problem may not be possible.

Challenges



 Dynamic decisions over time and uncertainty (stochastic 

behavior)

on top of

 Big data

 Complex non-linear system 

 Computational difficulty (state space and dimensionality)

 Time between decisions too short

Sequential Decision Making (Dynamic Programming)
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40

Myopic policy:  V(A)= min (Cij) 

= min of (10 or 20)  

leads to solution of 50 from A to 1 to B

DP policy: V(A) = min (Cij + V(next node))

= min (10 + 40, 20+10)  = 30  

leads to solution of 30 from A to 2 to B  

Cij= cost on the arc

Dynamic Programming Approach
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Find Shortest Path from Node 1 to 7

1 7

2

3

5

6

4

3

2 2

4

1

3 5

14

 First, we will model the problem using Integer Programming 

approach.

 Next, we will show the Dynamic Programming approach.



Integer Programming Approach
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• Let 𝑥𝑖𝑗 be a binary 

variable.

• It represents whether 

a path from i to j is 

chosen or not.



Integer Programming Approach
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• Let 𝑥𝑖𝑗 be a binary 

variable.

• It represents whether 

a path from i to j is 

chosen or not.

• Ignore the weights on 

the arcs for now.
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Integer Programming Approach
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• Let 𝑥𝑖𝑗 be a binary 

variable.

• It represents whether 

a path from i to j is 

chosen or not.

Objective:

• Weights on the arcs 

are needed for the 

objective function.



Integer Programming Approach

Constraints:

𝑥12 + 𝑥13 = 1

𝑥57 + 𝑥67 = 1

𝑥13 = 𝑥34

𝑥34 + 𝑥24 = 𝑥45 + 𝑥46

𝑥25 + 𝑥45 = 𝑥57

𝑥12 = 𝑥25 + 𝑥24

𝑥46= 𝑥67

 As the number of states (nodes) increases, the number of equations will also 

increase.

 With Integer/Linear Programming, all variables and constraints are 

typically added and solved together as one BIG problem, which makes it 

computationally infeasible for large problems.

Objective:
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Dynamic Programming Approach
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Notations:

• States: i, j

• Stage: t

• Action: k

• Optimal policy: R

• Value function of state: f(i)/V(i)
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Backward 

Recursion
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V= min(3+5, 

4+1) = 5
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V= min(1+5, 

4+5) = 6
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1 79

6

7

5 0

5

1

2

3

5

6

4

3

2 2

4

1

3 5

14

 With a Dynamic Programming approach:

 2 solutions are found: (1-2-5-7) and (1-3-4-6-7)

• Optimal Path Length = 9



Excel Demonstration



 We will deal with problems in which:

 there are no cycles, and

 the arcs are unidirectional.

 Real-world problems are sequential decision making problems 

over time, which is unidirectional.

 Examples: Google Maps for directions, Inventory control, Equipment 

replacement, and so on.

 Recursion definition for minimization problems:

 Value of a state i at stage t = minimum (cost of an action in state i at 

stage t which takes you to stage t+1 and the value of being in state 

j at stage t+1).

Deterministic Dynamic Programming – Finite Horizon



Longest Path Example

using Backward Recursion
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V= max(3+5, 

4+1) = 8
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V= max(1+5, 

4+8) = 12
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V= max(3+12, 

2+10) = 15



Longest Path Example

using Forward Reaching
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Forward 

Reaching
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V= max(4+3, 

2+2) = 7
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V= max(1+3,

3+7) = 10
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V= max(5+10, 

1+11) = 15



 A deterministic finite horizon problem can be solved 

backwards or by going forward.

 For all problems, we will follow the backward recursion formula.

 Begin solving by setting the last state value in the last stage to 

zero and work backwards till the first state in the first stage.

 If there is more than one solution to the max or min operator at 

any state then there are multiple optimal paths.

 At any single iteration, the calculations of the value function is 

only between the current state t and the future states at t + 1.

 This is a computational advantage as the algorithm performs only a 

few calculations at t even if the problem has millions of states that 

may occur at different times.

 The value of the first state in first stage is the solution of the problem.

Summary



Excel Demonstration



Dijkstra’s Algorithm
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• Start Here



Find Shortest Path from Node 1 to 7

1 7

∞

∞

∞ ∞

∞

∞

2

3

5

6

4

3

2 2

4

1

3 5

14

• Start Here



Find Shortest Path from Node 1 to 7

1 70

2

3

5

6

4

3

2 2

4

1

3 5

14

• Start Here
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• Start Here

• Add node 1 to the visited node list

• Explore the neighborhood

• Visit the nearest neighbor (node)
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• Add node 3 to the visited node list

• Explore the neighborhood

• Visit the nearest neighbor (node)
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• Stop when all nodes 

are visited.



Another Example using 

Dijkstra’s Algorithm
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 2 solutions are: (1-2-5-6) and (1-3-5-6)


