
OR 674 DYNAMIC PROGRAMMING
Rajesh Ganesan,

Associate Professor

Systems Engineering and Operations Research
George Mason University

Ankit Shah

Ph.D. Candidate

Analytics

Descriptive
(IT, CS)

Prescriptive
(Application

of OR
methods)

Predictive
(STAT)

Theory

and

methods

of OR

OR

Analytics and Operations Research (OR)

Identifies future

possibilities/trends

(Statistical learning

algorithms)

Prescribes decisions/actions in response

to expected future conditions

Provides information about what happened

(Data aggregation, data mining, data

visualization)

Decision Making in Optimization

Linear or Non-linear

Dynamic or Static

Probabilistic or Deterministic

One time decision or
Sequential Decisions

Objectives • What are the objectives?

Big Data

• Availability

• Type (Static, dynamic (frequency of
collection), discrete, continuous)

• Size (Big Data)

Model
• Known, unknown (Learning)

• Which OR tool(s) is appropriate

Solution
Strategy

• Computational complexity

• Verification

• Validation

• Implementation

Decision making in

optimization

Steps

(near) Optimal

Decision(s)

Operations
Research

(Math prog)

Static decisions
(One-time
decision)

Linear
Programming

Mixed Integer
Programming

Non-linear
Programming

Metaheuristics

Dynamic decisions
(sequential
decision)

Stochastic
Programming

Dynamic
Programming
(Discrete Time)

Deterministic
DP

Finite Horizon
problems

Infinite Horizon
problems

Stochastic
DP

Finite Horizon
problems

Infinite Horizon
problems

Decisions taken repeatedly over time

as the system evolves

Optimal control

(Continuous time)

Differential

Equations

Approach

The Big Picture

Operations
Research

(Math prog)

Static decisions
(One-time
decision)

Linear
Programming

Mixed Integer
Programming

Non-linear
Programming

Metaheuristics

Dynamic decisions
(sequential
decision)

Stochastic
Programming

Dynamic
Programming
(Discrete Time)

Deterministic
DP

Finite Horizon
problems

Infinite Horizon
problems

Stochastic
DP

Finite Horizon
problems

Infinite Horizon
problems

Decisions taken repeatedly over time

as the system evolves

Optimal control

(Continuous time)

Differential

Equations

Approach

The Big Picture

OR 774

Static Decision Making

 Static (ignore time)

 One-time Investment

 Assignment

 People to jobs

 Jobs to machines (maximize throughput, minimize tardiness)

 Classrooms to courses

 Traveling Salesman (leave home city, travel to different

cities and return back to home city in the shortest

distance without revisiting a city)

 Set Covering (Installation of fire stations)

Dynamic Decision Making

 Dynamic (several decisions over time)

 Portfolio management (daily trading)

 Inventory control (hourly, daily, weekly, …)

 Dynamic Assignment

 Running a shuttle company (by the minute)

 Airline seat pricing (by the hour)

 Air traffic control (by the minute)

 Maneuvering a combat aircraft or a helicopter or a missile

(decisions every millisecond)

An Example

Stochastic Dynamic Programming Framework for

a Network Security Problem

Organization’s Network

Malicious Activity

Monitors/Honeypots[Venkatesan et al. 2017]

Organization’s Network

Objective: Decide the placement of monitors at each epoch (time index “t”) such that

maximum number of malicious activities are identified and mitigated (infinite horizon).

[Venkatesan et al. 2017]

Organization’s Network

Objective: Decide the placement of monitors at each epoch (time index “t”) such that

maximum number of malicious activities are identified and mitigated (infinite horizon).

time = t [Venkatesan et al. 2017]

Organization’s Network

Objective: Decide the placement of monitors at each epoch (time index “t”) such that

maximum number of malicious activities are identified and mitigated (infinite horizon).

Between t to t+1 [Venkatesan et al. 2017]

Organization’s Network

Objective: Decide the placement of monitors at each epoch (time index “t”) such that

maximum number of malicious activities are identified and mitigated (infinite horizon).

Between t to t+1 [Venkatesan et al. 2017]

Organization’s Network

Objective: Decide the placement of monitors at each epoch (time index “t”) such that

maximum number of malicious activities are identified and mitigated (infinite horizon).

Between t to t+1 [Venkatesan et al. 2017]

Organization’s Network

Objective: Decide the placement of monitors at each epoch (time index “t”) such that

maximum number of malicious activities are identified and mitigated (infinite horizon).

Between t to t+1

Sequential Decision Making

under Uncertainty

with an Unknown Model

Solved using Stochastic Dynamic Programming

(Learn through Simulation-based Optimization)

[Venkatesan et al. 2017]

Today’s Talk

 Modeling and Solution Strategies for Static and
Dynamic Decision Making

 Linear Programming example

 Integer Programming example

 What to do if the model is too hard to obtain or its
simply not available and there is high computational
complexity

 Metaheuristics (directly search the solution space)

 Simulation-based Optimization

 Dynamic Programming example

 Computational aspects

• 100 workers

• 80 acres of land

• 1 acre of land produces 1 ton of wheat/corn

• 2 workers are needed for every ton of either crop

• Storage permits only a max production of 40 tons

of wheat

• Selling price of wheat = $3/ton

• Selling price of corn = $2/ton

 x1 = quantity of wheat to grow in # of tons

 x2 = quantity of corn to grow in # of tons

 How many tons of wheat and corn to produce to maximize revenue?

 Solution: Simplex Algorithm, solved using solvers, CPLEX, Gurobi.

Subject to

Mathematical Model

Linear Programming

Assumptions in Linear Programming

 1. Proportionality: This is guaranteed if the

objective and constraints are linear

 2. Additive: Independent decision variables

 3. Divisibility: Fractions allowed

 4. Certainty: Coefficients in the objective function

and constraints must be fixed

What if you had many decision variables

 Big Data

 Computational burden

 Today’s solvers can handle large problems

 Linear Programming is easy to implement

 However, solutions can be far from optimal if

applied to problems under uncertainty in a non-

linear environment

 Use only when appropriate

 Is the real-world linear, fixed, deterministic?

Relax Assumption 1

 1. Proportionality: if not true

 Max Z = 3x1
2 + 2x2

2

 Need Non-linear Programming (far more difficult than

Linear Programming)

 Solution strategies are very different

 Method of steepest ascent, Lagrangian Multipliers, Kuhn-

Tucker methods

 OR 644 - A separate course taught by Dr. Sofer

Quantity

Profit

Quantity

Profit

Non-linear

 3. Divisibility: If fractions are not allowed

 Yes or no decisions (0,1) binary variables

 Assignment problems

 Need Integer Programming

 OR 642 - A separate course taught by Dr. Hoffman

 These problems are more difficult to solve than

Linear Programming

Relax Assumption 3

Examples

Example

 Consider the following problem:

 Find the shortest route starting at node 1 such that:

 the selected route passes each node exactly once,

 and comes back to node 1.

1

2

3

4

5

10

8

15

10

3

Example

 Consider the following problem:

 Find the shortest route starting at node 1 such that:

 the selected route passes each node exactly once,

 and comes back to node 1.

1

2

3

4

5

10

8

15

10

3

Also known as a

Traveling Salesman

Problem (TSP)

(Finding the shortest path

covering all the cities)

Example

 Consider the following problem:

 Myopic Route:1-2-3-4-1 = 5+3+15+10 = 33

1

2

3

4

5

10

8

15

10

3

Also known as a

Traveling Salesman

Problem (TSP)

(Finding the shortest path

covering all the cities)

Example

 Consider the following problem:

 Myopic Route:1-2-3-4-1 = 5+3+15+10 = 33

 Optimal Route: 1-3-2-4-1 = 10+3+8+10 = 31

1

2

3

4

5

10

8

15

10

3

Also known as a

Traveling Salesman

Problem (TSP)

(Finding the shortest path

covering all the cities)

Computational Complexity

 Now, imagine solving a TSP for 20 cities.

 An exhaustive enumeration: 20! = 2*1018 solutions.

 If a computer can evaluate 100 million solutions/second, it

will take 771 years.

Example

 Consider the following problem:

Item benefit weight

1 60 10

2 100 20

3 120 30

 Maximize your benefit.

 You can pick an item or a fraction of an item.

 Total weight must not exceed 50.

Example

 Solution Method:

Item benefit weight benefit/weight

1 60 10 6

2 100 20 5

3 120 30 4

 Greedy Approach (Pick in an order: High to low)

 Pick item 1 benefit = 60 weight = 10

 Pick item 2 benefit = 100 weight = 20

 Pick 2/3 of item 3 benefit = 80 weight = 20

Total benefit = 240 weight = 50

Example

 Consider the same problem:

Item benefit weight

1 60 10

2 100 20

3 120 30

 Maximize your benefit.

 You can pick an item (fraction of an item is not

allowed).

 Total weight must not exceed 50.

Also known as a 0-1

Knapsack Problem

(for ex. selecting items for

carry-on bag with a weight

restriction.)

Knapsack Problem

 Solution Method:

Item benefit weight benefit/weight

1 60 10 6

2 100 20 5

3 120 30 4

 Greedy Approach (Pick in an order: High to low)

 Pick item 1 benefit = 60 weight = 10

 Pick item 2 benefit = 100 weight = 20

 Pick 2/3 of item 3 benefit = 80 weight = 20

Total benefit = 160 weight = 30

Knapsack Problem

 Solution Method:

Item benefit weight benefit/weight

1 60 10 6

2 100 20 5

3 120 30 4

 Optimal Selection:

 Pick item 3 benefit = 120 weight = 30

 Pick item 2 benefit = 100 weight = 20

Total benefit = 220 weight = 50

Knapsack Problem

 Solution Method:

Item benefit weight benefit/weight

1 60 10 6

2 100 20 5

3 120 30 4

 Integer Programming Formulation:
Max 60 x1 + 100 x2 +120 x3

Subject to

10 x1 + 20 x2 + 30 x3 ≤ 50

where x1,x2, and x3 are binary variables (either 0 or 1)

Computational Complexity

 Now, try packing a UPS/FEDEX truck or aircraft with

both weight & volume constraints and maximize the

benefit.

 Although computers can help to solve, the solution will be

computationally very expensive for large real-world

problems.

 In many cases, we strive of near-optimal (good enough)

solutions.

Near-Optimal Solution Techniques

 Several techniques (Genetic algorithm, simulated annealing, tabu search, …)

 Search the solution space

 There are no models like LP, IP, NLP

 Start your search by defining one or many feasible solutions

 Improve your objective of the search by tweaking your solutions

systematically

 Stop search when you have had enough of it (computing time reaches your

tolerance)

 Be happy with the solution that you have at that point

 You may have gotten the optimal solution but you will never know that it is

indeed optimal

 Metaheuristics is not suitable for sequential decision making under

probabilistic conditions (uncertainty)

Metaheuristics (OR 670)

 Let us introduce dynamic decisions over time and
uncertainty (stochastic behavior)

on top of

 Big data

 Complex non-linear system

 Computational difficulty (state space and
dimensionality)

 Time between decisions too short

Sequential Decision Making under Uncertainty

Simulation-based Optimization

 Model-free Approach

System simulator

Optimizer

Decisions

Output

(Objective function)

Environment (uncertainty)

 Simple example: Car on cruise control
 A mathematical model that relates all car parameters and the environment

parameters may not exist

 A more difficult to solve and complex example: Air traffic control
 (Optimizer is an Artificial Intelligence (Learning) Agent)

• The primary purpose is

to prevent collisions.

• ATC help in the optimal

movement of air traffic.

How does an AI agent learn?

 In a discrete setting you need Dynamic Programming (OR674 and

OR 774) – term common among advanced OR

 In a continuous time setting it is called optimal control (Differential

equations are used) – term common among Electrical Engineers

 Mathematically the above methods are IDENTICAL

 Computer Science folks call it machine learning, AI, or Reinforcement

Learning and use it mainly for computer games

AlphaGo Zero (2017):

Acquired 3000 years of human knowledge in 40 days from scratch,

simply by playing millions of games against itself.

Learned the best moves over time and developed new strategies.

Different Lines of Investigation

 Operations Research – Markov Decision Processes

 Bellman, 1957

 Powell, 2007

 Control Theory – Heuristic Dynamic Programming / Neuro

Dynamic Programming

 Problems in physical processes with continuous states and actions

 Werbos, 1974

 Bertsekas and Tsitsiklis, 1996

 Computer Science - Reinforcement Learning

 Samuel, 1959

 Sutton and Barto, 1981

Dynamic Programming

 What is Dynamic Programming (DP)?

 An optimization method that finds the shortest path (ex:

minimize cost) or the longest path (ex: maximize reward) in

decision making problems that are solved sequentially

over time.

Dynamic Programming

 What is Dynamic Programming (DP)?

 An optimization method that finds the shortest path (ex:

minimize cost) or the longest path (ex: maximize reward) in

decision making problems that are solved sequentially

over time.

Dynamic Programming

 What is Dynamic Programming (DP)?

 An optimization method that finds the shortest path (ex:

minimize cost) or the longest path (ex: maximize reward) in

decision making problems that are solved sequentially

over time.

An Example

Find Shortest Path from A to B

1

2

4

6

73

6

3

6

7

8

2
1

8

A
B

What is the minimized total?

Find Shortest Path from A to B

6

73

6

3

6

7

8

2
1

8

A
B

4
1

2

Questions

 How many of you evaluated all possible paths to arrive at the answer?

 How many of you started by looking at the smallest number from A (in this

case it is 2) and went on to the next node to find the next smallest number 1

to add and then added 7 to get an answer of 10

 If you did all possible paths then you performed an explicit enumeration of

all possible paths (you will need 771 years or more to solve 20 city TSP)

or

 you tried to follow a myopic (short-sight) policy, which did not give the

correct answer

Computational Perspective

 For explicit enumeration, to find the shortest path

 There were 18 additions

 And 5 comparisons (between 6 paths)

1

2

4

6

73

6

3

6

7

8

2
1

8

Another Example

A B

Explicit enumeration

27 paths

27*3= 81 additions

26 comparisons

Another Example

A B

Explicit enumeration

55 paths*5 additions per path=15625 additions

55 – 1 comparisons = 3124

Dynamic Programming Approach

A

2

B

1Cij=10

20 10

40

Myopic policy: V(A)= min (Cij)

= min of (10 or 20)

leads to solution of 50 from A to 1 to B

DP policy: V(A) = min (Cij + V(next node))

= min (10 + 40, 20+10) = 30

leads to solution of 30 from A to 2 to B

Cij= cost on the arc

Myopic vs Dynamic Programming

Find Shortest Path from A to B (using DP)

1

2

4

6

73

6

3

6

7

8

2
1

8

A
B

Calculate

Backwards

Find Shortest Path from A to B (using DP)

1

2

4

6

73

6

3

6

7

8

2
1

8

A
V=0 B

Find Shortest Path from A to B (using DP)

1

2

4

6

73

6

3

6

7

8

2
1

8

A
V=0 B

V=6

V=7

V=6

V=1

V=7

V=6

Find Shortest Path from A to B (using DP)

1

2

4

6

73

6

3

6

7

8

2
1

8

A
V=0 B

V=6

V=7

V=6

V=1

V=7

V=6

V=3

V=8

V= min(8+6,

3+7,

2+1) = 3

V= min(8+6,

1+7,

3+6) = 8

Find Shortest Path from A to B (using DP)

1

2

4

6

73

6

3

6

7

8

2
1

8

A
V=0 B

V=6

V=7

V=6

V=1

V=7

V=6

V=3

V=8

V= min(8+6,

3+7,

2+1) = 3

V= min(8+6,

1+7,

3+6) = 8

V=7

V= min(4+3,

2+8) = 7

Find Shortest Path from A to B (using DP)

1

2

4

6

73

6

3

6

7

8

2
1

8

A
V=0 B

V=6

V=7

V=6

V=1

V=7

V=6

V=3

V=8

V= min(8+6,

3+7,

2+1) = 3

V= min(8+6,

1+7,

3+6) = 8

V=7

V= min(4+3,

2+8) = 7

Note: V’s are cumulative

 14 additions not 18

 5 comparisons as before

 Not a significant saving

in computation

Another Example

A B

Explicit enumeration

27*3= 81 additions

26 comparisons

Backward recursion

24 additions

13 comparisons

Another Example

A B

Explicit enumeration

55 paths*5 additions per path=15625 additions

55 – 1 comparisons = 3124

Backward recursion

4*(25)+10=110 additions

20*4+1 comparisons = 81

A significant saving in computation!!!

Backward Recursion

 Real world problems cannot be solved backwards

because time flows forward

 So we need to estimate the value of the future states

 We estimate the value of the future states almost

accurately by learning in a simulator which interacts

with the environment

 We make random decisions initially and learn from

those and then become greedy eventually by making

only the best decisions

Monitoring an Organization’s Network

Malicious Activity

Monitors/Honeypots[Venkatesan et al. 2017]

Simulation-based Optimization

Large-scale System
(Computer network simulator)

Approximate Dynamic

Programming (learning)
(Value of a state)

Decisions

(Where to place

the monitors)

Output

(Objectives)

State,

Reward

Inputs

Uncertainty (Malicious activities)

In a loop

Pre-decision state

(current state)

Land in a good pre-decision state

(future state)

Post-decision state

Make an optimal decision Uncertainty

Dynamic Programming

for

Sequential Decision Making (over time)

is based on the idea that

we want to move from one good state of the system to another

by

making a near-optimal decision

in the presence of uncertainty

In large scale problems, the above is achieved via reinforcement learning (approximate dynamic

programming) that entails only an interaction with the environment in a model-free setting

In Summary

Analytics

Descriptive
(IT, CS)

Prescriptive
(Application

of OR
methods)

Predictive
(STAT)

Theory

and

methods

of OR

OR

Analytics and Operations Research (OR)

Optimization in Prescriptive Analytics

Optimization
in prescriptive

analytics

OR models

Computational
complexity

Algorithms for
solving

BIG Data and
data mining

Data
visualization
& statistical

analysis

Data storage

IT

IT, CS

STAT

OR

OR, CS

OR

Big Data Decision Making Problems

 Understand characteristics of the data, linear/non-linear,

deterministic/stochastic, static/dynamic (frequency of

collection).

 Beware of:

 Myopic policies

 Exhaustive enumeration of all solution

 Computational complexity

Computational Aspects

 LP - software has been developed. It has been widely
researched.

 IP and NLP are more difficult to solve than LP (software exists).
Well researched.

 Large-scale Stochastic DP (ADP in particular) is not well
researched and is a newer field (no software, have to write the
code).

 Computationally far difficult than LP, IP, NLP but we are
getting better with faster computers.

 However, ADP is the only route for near-optimally solving
some of the toughest DYNAMIC optimization problems in real-
world.
 Particularly for sequential decision making every few seconds in a

fast changing and uncertain environment.

 If you solve it, PATENT IT!!!

Main Take Away for Next Class

 Value function V is cumulative.

 When making a decision sequentially over time (dynamic

programming):

 Sum: cost/reward of making the decision with

value of the estimated future state that the decision brings you to

 In this course, we solve optimally.

 In OR 774 and in real-world problems, we strive of near-optimal (good

enough) solutions.

 We will use Matlab and Excel to solve DP problems, however

prior knowledge of Matlab or Excel use is not required.

Questions, Discussion, and Feedback

Thank you!

Contact Info:

Ankit Shah
ashah20@gmu.edu

