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ABSTRACT
Trajectory data are usually recorded as a sequence of sampled data
points. For most trajectory data collected from human carried GPS
devices (e.g, Geolife dataset [32]), the data are collected in a constant
sampling rate. Since people travel using different transportation
modes, the variance of velocities is large, which causes the sample
points of the trajectory to be very sparse in some parts but highly
dense in some others. This phenomenon seriously challenges the
existing trajectory distance measurements in the following two
aspects. First, for sparse parts of the trajectories, although several
trajectory distance measures have been developed, it is extremely
challenging for the existing trajectory measures to work well when
the data points are sparse (e.g, GPS data collected on highway) due
to the absences of matched points pairs between two trajectories.
Second, for highly dense parts of the trajectories, it is not scalable
to large dataset even using the simplest Euclidean distance measure
to compute trajectory distances.

In order to address the above challenges simultaneously, we
propose a Step-Invariant Trajectory (SIT) representation with linear
time translation from raw data to uniformly distributed trajectory
points by dynamically changing the sampling rates. Based on SIT
representation, we also propose two effective and scalable distance
measures for SIT. We evaluate the effectiveness and efficiency of
our representation along with its distance measures by performing
multiple trajectory classification and clustering experiments. These
results show that our distance measures on SIT representation is
much more accurate and robust than other distance measures and
representations on sparse trajectory datasets. Our approach can
also achieve competitive accuracy with the state of the art model-
based trajectory representations on dense datasets, but the time
spends on translating to our representation are 115 times faster, on
average, than translating to other model-based representations.
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1 INTRODUCTION
A large amount of trajectory data have been generated and studied
in multiple areas. For instance, in Geographic Information System
(GIS), trajectory data are collected from positioning devices such as
GPS [20, 32]. In computer vision, trajectory data are obtained from
various sensors or surveillance systems [5, 16]. To study and mine
trajectory data, one of the most fundamental problems is how to
measure the dissimilarity/distance between two trajectories. Unfor-
tunately, there is no universal way to measure the distance. Even
though several distance measures were developed for trajectory
data, after a set of experiments, Wang et al. [28] concluded that
“there is no trajectory similarity measure that can beat all the others
in every circumstance."

We motivate our approach by introducing a simple example.
Consider two spatial trajectories T 1 and T 2 that move in the same
straight route represented in 2D coordinate system.

• T 1 = {(0, 1), (3, 1), (7, 1), (9, 1), (10, 1)}
• T 2 = {(0, 1), (2, 1), (4, 1), (8, 1), (10, 1)}

Intuitively,Distance(T 1,T 2) should be zero since they are taking ex-
act the same route. However, the distances computed by Euclidean
Distance (EuDist), Dynamic Time Warping (DTW), and Discrete
Frechét Distance (DFD)—all of which are the most commonly used
trajectory distance measures—are shown in Table 1.

Distance Measure Distance Normalized Distance 1

Euclidean Distance 3.3166 1.4832
DTW 4 0.6667
DFD 1 -

Table 1: The distances between two identical spatial trajec-
tories with different sample points

1The normalized EuDist is computed by:

NormEuDist =
EuDist (T 1, T 2)√

|T 1 |
(1)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) The raw spatial trajectories to be clustered

(b) Clustering by using
Euclidean distance

(c) clustering by using Dy-
namic TimeWarping distance

(d) Clustering by using
Discrete Frechét distance

(e) Clustering by using Step-
Invariant Euclidean distance

Figure 1: Single-link agglomerative clustering on various
distance measures

We see that none of the three distance measures gives the ex-
pected distance for the identical spatial trajectories.

The distance measure is essential in trajectory learning. As an-
other example, consider a set of spatial trajectories in Fig 1a. In-
tuitively, if we perform clustering on these trajectories, the result
should group the trajectories with the same color together. However,
Fig(1b, 1c, 1d) show the single-link agglomerative clustering result
under Euclidean, Dynamic Time Warping and Discrete Frechét dis-
tance measures respectively. We can also see that none of these
commonly used distance measures shows the expected result.

To solve the problem, researchers have developed different dis-
tance measures on trajectory data [4, 10, 17, 23, 27]. However, the
distance is usually measured on the sampled data points of the
actual trajectories. Therefore, the trajectory representation is a
substantial problem that determines the quality of distance mea-
sure. Consider the trajectories in Figure 2. In order to compute
the distance between two trajectories, all above trajectory distance
measures need to compute the distances which connect the points
between the two trajectories. We call such distance basic distance.
The basic distance is composed of true distance and alignment error.

And the normalized DTW distance is computed by:

NormDTW =
DTW (T 1, T 2)

AliдnmentCount
(2)

Figure 2: The relationship among basic distance, true dis-
tance and alignment error

The true distance is the radial distance from the point on one trajec-
tory data samples to the “best match" point on the other trajectory.
Notice that the “best match" point may not exist and not even close
to any points on original trajectory samples. The alignment error
is the distance from the “best match" points to the closest sample
point on the same trajectory which is the noise of the basic dis-
tance. The relationship among the basic distance, the true distance
and the alignment error is shown in Figure 2. The true distance is
unknown since we do not know where is the “best match" point.
The alignment error depends on the uniformity of the sampling
points which is usually uncertain. When the sampling points are
sparse, the alignment error would dominate the basic distance. Con-
sequently the basic distance may not represent any relationship
with the trajectory distance using any distance measure. So the tra-
jectory distance measure problem can be reduced to the problem of
finding the correct alignments between two trajectories. The align-
ment problem is also encountered in time series domain. Yankov
et al. [30] use a constant rescaling factor combined with dynamic
time warping to alleviate the alignment problem. However, it is not
a good solution for trajectory data because moving objects usually
have various velocities and missing values. There is no constant
rescaling factor that can solve the alignment problem. In order to
find a set of “good" alignments, we need a dynamic scaling factor
to unify the sampling points so that the alignment error will no
longer dominate the basic distance.

Based on the above observations, we propose a piecewise linear
interpolation based representation that reduces the alignment error
by dynamically resampling the trajectory data with equal distri-
bution. That is, we dynamically add or remove points to translate
the raw trajectories into trajectories with universal format such
that the distance between two consecutive points in the same tra-
jectories is equal to a constant number r . We call the translated
trajectories the Step-Invariant Trajectory (SIT) representation of raw
trajectory. Consider the two trajectories in Figure 2 again. If we set
the constant step distance r such that r <<True Distance, the true
distance will dominate the basic distance. In the previous example
with two identical spatial trajectories T 1 and T 2, when r = 2 their
SIT representations would be:

• T 1′ = {(0, 1), (2, 1), (4, 1), (6, 1), (8, 1), (10, 1)}
• T 2′ = {(0, 1), (2, 1), (4, 1), (6, 1), (8, 1), (10, 1)}
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The distance between T1′ and T2′ would be zero for all dis-
tance measures. Similarly, for the clustering task in Figure 1a, the
result of agglomerative clustering using Step-Invariant Trajectory
representation is shown in Figure 1e.

The rest of this paper is organized as follows: in Section 2 we give
the literature review briefly in three related topics: trajectory dis-
tance measure, trajectory representation, trajectory reconstruction.
Then, we introduce our Step-Invariant Trajectory representation
along with its distance measures in Section 3. In Section 4, we evalu-
ate our representation with its distance measures by applying 1-NN
classification algorithm and agglomerative clustering algorithm.We
compare the accuracy of our method with other distance measures
on raw trajectory data and the state of the art representations to
show the effectiveness and efficiency of our method. We conclude
in Section 5.

2 RELATEDWORK
We provide review of relevant literature on three related topics
including trajectory distance measures, trajectory representation
and trajectory reconstruction.

2.1 Trajectory Distance Measure
Many distance measures on trajectory data have been developed
in recent years. Researchers have conducted effectiveness studies
[15, 26, 28, 31] on popular trajectory distance measures (e.g., Eu-
clidean Distance (EuDist)[23], Dynamic Time Warping (DTW)[17] ,
Discrete Freché Distance (DFD)[4], Longest Common Sub-Sequence
(LCSS) [27] etc.) for raw trajectory data. These studies have a simi-
lar conclusion, that no single trajectory distance measure can beat
other distance measures on every circumstance. Wang et. al[28]
performed a series of transformations including increasing and
decreasing the resampling rates, shifting the sample points and
adding noise on the same set of real GPS trajectories to evaluate the
effectiveness of various distance measures by comparing the com-
puted distances (the closer to zero, the better the distance measure).
In their conclusion, all the distance measures studied are sensitive
to decreasing sampling rate. This observation is consistent with
the case when the alignment error dominates the basic distance.

2.2 Trajectory Representation
Many researchers propose methods to represent the trajectory data
using a constant number of coefficients obtained from different
ways [6, 14, 18, 29]. Naftel et al. [18] learn trajectory data with
Discrete Fourier Transform (DFT) coefficients. Jung et al. [6] used
polynomial curve fitting algorithm to find a vector of suitable pa-
rameter sets to represent the trajectories. However, the constant
dimensional parameter based representations may not properly
represent trajectories with different route lengths since longer tra-
jectories contain more information than shorter ones.

Some other researchers proposed segmentation-based trajectory
representations along with some special distance measures. Porikli
[22] proposed a set of trajectory distance metrics based on Hid-
den Markov Model based representation. However, these distance
metrics rely on high quality trajectory data. Lee et al. [10] pro-
posed a partition-and-group framework for trajectory mining tasks.
Their proposed work break trajectory into a set of line segment

usingMinimumDescription Length, then the authors define a three-
component distance which integrates the perpendicular distance,
the parallel distance, and the angle distance together. Finally they
group the line segment together by using the three-component
distance. In [8, 9, 13], the authors also use the three-component dis-
tance to perform different trajectory mining tasks. Their approach
is approximate so the performance will degrade when the trajectory
is complex (e.g., trajectory contains short detours). In [2, 19, 25],
the authors discretize the trajectory using various methods, but all
the proposed methods fail to handle the “boundary problem" (i.e.
when points are near the boundary and discretized into different
symbols). In [19], the authors use a fuzzy method which increases
the computational complexity.

Morris et. al. [16] utilize the repetitive nature of the trajectories
to build activity models in a 3-stage hierarchical clustering learning
process, which characterizes the activities at multiple levels of
resolution. Hu et. al. [5] build an incremental version of Dirichlet
Process Mixture Model (DPMM) for trajectory clustering problem.
Xu.H [29] proposed a shrinkage-based framework for unsupervised
trajectory learning problem to improve the accuracy of clustering by
using multi-kernal-based estimation process to iteratively leverage
multiple structural information within a trajectory and the local
motion patterns across multiple trajectories. In [14], Lin et al. use a
3-phase approach to represent the trajectory data. They first build a
scene-specific thermal transfer field on trajectory training dataset.
Then they build a 3D tube for each trajectory in the test dataset
based on the thermal transfer field. Finally, for each trajectory,
they generate a feature vector via a droplet process. The above
model-based representations are able to achieve a higher accuracy
then distance-based learning using raw trajectory data. However,
these model-based representations require sufficient amount of
trajectories in the dataset and high sampling rates. As a result, a
significant amount of time is spent on building the model. These
representations also require careful parameter tuning to achieve
desired results. Therefore, these approaches are inconvenient to be
applied on new datasets.

2.3 Trajectory Reconstruction
Some researchers propose methods to recover actual trajectories
from a sparse trajectory dataset. In [11][24][12], the authors recon-
struct the trajectories by using the information from other trajec-
tories in the same dataset. A comparative survey [1] introduces
several trajectory reconstruction methods based on various map in-
ference algorithms. These methods are used for sparse trajectories,
and do not handle both under-sampled case and over-sampled case
simultaneously. While both the trajectory reconstruction approach
and our Step-Invariant Trajectory (SIT) representation work by
adding, removing and modifying the coordinates of the raw data,
there are significant differences between our proposed method and
existing approaches. The reconstruction methods focus on recover-
ing the original trajectory from the trajectory data samples, while
our method focuses on providing a good distance measure for trajec-
tory data. On the other hand, for extremely sparse trajectory data,
performing trajectory reconstruction before our Step-Invariant
transformation is also helpful to achieve a better result.
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3 METHODOLOGY
3.1 Terms and Notations
Def. 1 Spatial-Temporal Trajectory (STT): A Spatial-Temporal Tra-
jectory is a sequence of coordinates with timestamps (i.e, {latitude,
longitude, timestamp}) obtained from an object moving in a 2-d or
3-d open space.

Def. 2 Spatial Trajectory (ST): A single Spatial Trajectory T =
{P1, P2, ..., Pm } is a polyline which connects a sequence of points
Pi = (xi ,yi ) where (xi ,yi ) is the coordinate of Pi . We may use
letter “T " followed by an integer trajectory id to represent single
trajectory. We use letter “P" or “Q" with subscript to represent
points (locations) in a trajectory. Unless stated, all the trajectories
in the rest of this paper are Spatial Trajectories.

Def. 3 Pointwise Euclidean distance: We use |Pi , Pj | to denote the
Euclidean distance between two points Pi and Pj .

Def. 4 Step-Invariant Trajectory: A Step-Invariant Trajectory (SIT)
is a Spatial Trajectory in which the Euclidean distance between
every pair of two consecutive points is equal to a constant step
distance r , where r is the only parameter chosen by user which
controls the granularity of the SIT.

Def. 5 Subtrajectory: A subtrajectory C[s,e] is a subsequence
of a trajectory T = {P1, P2, ..., Pm },where s is the start index, e is
the end index in T and 1 ≤ s < e ≤ m. We use a sliding window
of length n, where n < m to extract all possible subtrajectories
C[s,s+n−1] from T , where 1 ≤ s ≤ |T | − n + 1.

Def. 6 Trajectory length: The length of a trajectory is the count
of points in that trajectory. We use “|T |" to denote the length of
trajectory.

Def. 7 Trajectory route distance: The trajectory route distance is
the sum of the Euclidean distances between all consecutive pairs.
We use “| |T | | =

∑ |T |−1
i=1 |Pi , Pi+1 |" to denote the trajectory route

distance.
Def. 8 Spatial Trajectory dissimilarity/distance: Spatial Trajec-

tory dissimilarity/distance is the dissimilarity/distance between two
trajectories under some trajectory distance measures.

3.2 Step-Invariant Trajectory Representation
In Section 1, we briefly introduced the advantages of Step-Invariant
Trajectory representation when measuring the distance between
two trajectories. In this section, we describe how to translate the
raw trajectory into Step-Invariant Trajectory in linear time. By Def.
4, the “Step-Invariant" trajectory should have the same constant
step distance between every pair of two consecutive points. In order
to achieve the property of constant step distance, we use piecewise
linear interpolation technique to force the step distance r equal
to a user-chosen constant value which is depend on individual
dataset. The user should chose a upper bound value of r such
that r <<true distance and r is small enough so that the Step-
Invariant Trajectory does not lose too many details of the original
trajectory. Meanwhile, the values of r should not be too small in
which will lead to unnecessarily high sampling rates and high
computational complexity. However, we will demonstrate the value
of r can be still chosen from awide range of values in Section 4.4.We
describe the related technique and implementation details below,

and propose two trajectory distance measures for Step-Invariant
Trajectory representation in Section 3.3.

3.2.1 Dynamic Step-Invariant Trajectory Transformation by Piece-
wise Linear Interpolation. To formalize the piecewise linear inter-
polation technique, we give the equation below to show how to
compute the coordinates. Consider a simple trajectory with only
3 sample points: T1 = {P0, P1, P2} in Figure 3a. We use piecewise
linear interpolation to add some points P (i)0 (i = 1, 2, 3...) on line seg-
ment {P0, P1} where |P0, P

(i)
0 | = i ∗ r . So the coordinate (x (i)0 ,y

(i)
0 )

of P (i)0 can be computed by solving Equation 3 and Equation 4:

x
(i)
0 − x0

x1 − x0
=

i ∗ r√
(x1 − x0)2 + (y1 − y0)2

(3)

y
(i)
0 − y0

y1 − y0
=

i ∗ r√
(x1 − x0)2 + (y1 − y0)2

(4)

Given the constant step distance r , for any i = 1, 2, 3..., with the
constrain of i ∗ r < |P0, P1 |, solving the above equation,
P
(i)
0 = (x

(i)
0 ,y

(i)
0 ) is determined as below:

x
(i)
0 =

i ∗ r√
(x1 − x0)2 + (y1 − y0)2

∗ (x1 − x0) + x0 (5)

y
(i)
0 =

i ∗ r√
(x1 − x0)2 + (y1 − y0)2

∗ (y1 − y0) + y0 (6)

Nowwe can translate the segment {P0, P1} to {P0, P
(1)
0 , P

(2)
0 , ..., P

(k )
0 },

where k is the maximized value of i that satisfies the above con-
straint. In Figure 3b, we use solid red line to represent exactly one
step, dashed red line to represent multiple steps.

3.2.2 Handling the “tail problem". Since r is a constant distance
of each step on Step-Invariant Trajectory, it is very common that
there does not exist an integer i such that i ∗ r = |P0, P1 |. We
call such problem “tail problem." Consider again the trajectory
T 1 = {P0, P1, P2} in Figure 3a. We currently have k ∗ r < |P0, P1 | <
(k + 1) ∗ r . To deal with the “tail problem", we use a substitution
P ′1 = (x ′1,y

′
1) of P1 where P ′1 is located on segment {P1, P2} and

|P
(k )
0 , P

′
1 | = r . So we can get the coordinate of P ′1 = (x ,y) by solving

the following equations:
Let the equation of line segment {P1, P2} be:

y = ax + b (7)

We have known the coordinates of P1 = (x1,y1) and P2 = (x2,y2),
so we have:

y1 = ax1 + b (8)

y2 = ax2 + b (9)

Solve (8) and (9) together, we will have following result:

a =
y2 − y1
x2 − x1

(10)

b = y1 −
y2 − y1
x2 − x1

x1 (11)

Since P ′1 is on line segment {P1, P2} and |P
(k )
0 , P

′
1 | = r , we have:
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(a) Raw trajectory: T1 = {P0, P1, P2}
(b) Adding Points to T 1 by using
linear interpolation

(c) Handling “tail problem" points in T 1
Case 1: |P (k )

0 , P2 | ≥ r

(d) Raw trajectory: T2 = {P0, P1, P2, P3} (e) Handling the tail points in T 2 Case 2: |P (k )
0 , P2 | < r

Figure 3: Translating to Speed-Invariant Trajectory

y′1 = ax ′1 + b (12)√
(x

(k)
0 − x ′1)

2 + (y(k)0 − y′1)
2 = r (13)

subject to

{
x ′1 ∈ [min(x1,x2),max(x1,x2)]

y′1 ∈ [min(y1,y2),max(y1,y2)]
(14)

So we can compute the coordinate of P ′1 by solving Equation
(12) and Equation (13) with Constraint (14). When handling “tail
problem", we may encounter two conditions. Consider trajectory
T 1 in Figure 3a,3b and 3c, in this case, |P (k )0 , P2 | ≥ r , Equation (12)
and (13) will have exactly one set of solution satisfying Constraint
(14) as the coordinate of P ′1. However, consider trajectory T2 in
Figure 3d and 3d, in this case, |P (k )0 , P2 | < r , the above equations do
not have any solution satisfying Constraint (14). The second case is
corresponding to the unnecessarily high sample rate points in raw
dataset which partially accounts for high computational complexity
and mismatched alignments when computing the distance between
two trajectories. After interpolating a set of points, we reach the last
point P (k )0 on line segement {P0, P1}. Then we could not find a point
P ′1 such that |P (k )0 , P

′
1 | = r and P ′1 is on line segment {P1, P2}. We

need to skip the line segment {P1, P2} and compute the first point
P ′2 on next segment {P2, P3} with |P

(k )
0 , P

′
2 | = r . We can translate

any raw trajectory to Speed-Invariant Trajectory by accordingly use
the above techniques.

Finally, the Step-Invariant trajectory of T 1 in Figure 3a will be:

T 1′ = {P0, P
(1)
0 , P

(2)
0 , ..., P

(k0)
0 , P ′1, P

(1)
1 , P

(2)
1 , ..., P

(k1)
1 } as in Figure

3c and the Step-Invariant trajectory of T 2 in Figure 3d will be:

T 2′ = {P0, P
(1)
0 , P

(2)
0 , ..., P

(k0)
0 , P ′2, P

(1)
2 , P

(2)
2 , ..., P

(k2)
2 } as in Figure

3e.

3.3 Step-Invariant Trajectory Distance
Measures

The Step-Invariant Trajectory provides a representation with uni-
form distributed trajectory points which can significantly reduce
the alignment error, so it dramatically improves the quality of
Euclidean distance between two equal length Step-Invariant Tra-
jectories. To measure the distance between the Step-Invariant Tra-
jectories with different lengths, we borrow a concept from time
series subsequencematching [3] to define two best-match Euclidean
distances on Step-Invariant Trajectory.

3.3.1 Best-Match Euclidean Distance (BMED). Given two Step-
Invariant trajectoriesT 1 = {P1, P2, ..., Pm } andT 2 = {Q1,Q2, ...,Qn },
wherem < n. As stated in Def.5, we use a sliding window with
the length ofm to extract a set of sub-trajectories C[s,e]

2 from T2,
then compute the Euclidean distances between T 1 and C[s,e]

2 . The
Best-Match Euclidean Distance is the minimal euclidean distances
divided by the square root ofm. The square root ofm is used to
normalize the distances computed from various lengths.

BMED(T 1,T 2) =
min(EuDist(T 1,C[s,e]

2 ))
√
m

(15)

where C2 is a subtrajectory of T2 with 1 ≤ s ≤ n − m + 1and
e = s +m − 1.
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3.3.2 Penalized Best-Match Euclidean Distance (PBMED). For
some applications, the expected distance measure should be able to
reflect the differences between the two route distances. For example,
for some classification/clustering problems, the route distance is
also an important feature (e.g. Two similar trajectories with different
route distances belong to two different classes/clusters). In this case,
the BMED will be small and will not separate the two trajectories
correctly. In this case, a Penalized Best-Match Euclidean Distance
is proposed to solve the problem. For different applications and
datasets, the user may define the penalty function accordingly. We
use two intuitive penalty factors which are: (1) Alignment Penalty
(AP) and (2) Route Distance Penalty Coefficient DPC .

PBMED(T 1,T 2) =

√
min(EuDist(T 1,C[s,e]

2 )2) +AP

n
∗ DPC (16)

where,
AP = UnmatchedHead + UnmatchedTail (17)

UnmatchedHead =
s−1∑
i=1

|P1,Qi |
2 (18)

UnmatchedTail =
n∑

i=e+1
|Pm ,Qi |

2 (19)

DPC =
n

m
(20)

The complexity of BMED and PBMED are both O(m(n −m)).
For most trajectory mining tasks, under SIT representation, the
differences betweenm and n are very small, so the computational
complexity would be close to O(m). The user can also modify the
AP and DPC functions for different applications and/or datasets.

4 EVALUATION
4.1 Datasets

4.1.1 Synthetic Highway Datasets. This set of data simulate ve-
hicles trajectories recorded by GPS devices moving along a 2,400
meters straight highway with four lanes on the same direction. The
speed limit is set to 20 meters/second (about 45 miles/hour), so
the vehicles should take about 2 minutes to pass through the high-
way segment. The Synthetic Highway Datasets include 7 datasets
with various sampling rates of k records per minute, where k ∈

{4, 6, 12, 20, 30, 60, 120} respectively. To simulate various instant
velocities, for each trajectory, we uniformly generate 2k random
numbers from 0 to 2400 as the values on X direction. The width of
each lane is 3 meters. We also add Gaussian noise with σ = 3 to sim-
ulate the minor turns on the wheel or the errors of the GPS device.
For each lane we generate 100 trajectories. The label information
was given according to the corresponding lane as the ground truth.
Finally, for each dataset there are 4 classes with 100 trajectories
in each class. Figure 4 shows one of the dataset with k = 12. The
colors on the heat map indicate the class labels.

4.1.2 Semi-Synthetic San Francisco Bay Area Taxi Dataset . To
generate the semi-synthetic dataset from unlabelled dataset, we
first randomly select 100 trajectories from the SFO Taxi datasets
[21]. For each selected trajectory, we create 10 mutative trajectories
by repeatedly performing the following transformations:

(1) adding the same number of points by random linear interpo-
lation;

(2) removing the original points;
(3) removing some points by a random decreasing sampling rate

G , where 0 < G < 50%;
(4) randomly shifting the remaining points so the trajectories

belonging to the same class will not overlap with each other.

Step (1) and Step (2) are used for generating similar trajectories
following similar routes but with non-identical coordinates. Step
(3) and Step (4) are used in [28] to test the effectiveness of different
distance measures. In [28], the result shows that none of the six
trajectory similarity measures can survive from decreasing the
sampling rate. So we create this semi-synthetic dataset showing
in Figure 5 to challenge the limitations of most existing trajectory
similarity measures.

4.1.3 CROSS Dataset [16]. The CROSS dataset, also used as the
benchmark in [14, 16], simulates four-way traffic with 19 through
and turn patterns. The dataset is divided into a training set con-
taining 1900 normal trajectories with about 100 trajectories in each
cluster, and a testing set containing 9500 normal trajectories with
about 500 trajectories in each cluster. We use the whole dataset for
classification as in [14, 16] and 1900 trajectories in training set for
clustering as in [14, 29].

4.1.4 Vehicle Motion Trajectory (VMT) dataset [5]. This dataset,
used in [5, 14, 29], contains 1500 trajectories belonging to 15 clus-
ters unevenly. The trajectories in this dataset are noisy and over-
sampled.

4.2 Trajectory Classification
For classification problems, we use 1-NN classifier on our repre-
sentation with either Best-Match Euclidean Distance (BMED) or
Penalized Best-Match Euclidean Distance (PBMED) depending on
the different classification objectives. For example, if we want to
consider two trajectories following similar routes but having dif-
ferent route distances as belonging to the same class, the BMED is
desired. Otherwise PBMED is desired.

We evaluate the effectiveness of our approach by computing
a commonly used Classification Accuracy (CA). CA is computed
as the ratio between the sum of the main diagonal element on
confusion matrix and the size of the test dataset.

We use our Highway datasets and SFO dataset to compare the CA
using our BMED or PBMED distance measure on the SIT represen-
tation, with the CA using DTW, LCSS, and DFD distance measures

Figure 4: Synthetic Highway Dataset
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Figure 5: Semi-Synthetic San Francisco Bay Area Taxi
Dataset

on raw data. In order to show the effectiveness of the SIT represen-
tation, we also add the results of BMED or PBMED on the raw data
to the experiments.

4.2.1 Classification Results onHighwayDatasets. For this datasets,
we want to classify the trajectories on different lanes, so we use
BMED as our distance measure. For each dataset in Highway data,
we randomly select 10 trajectories from each class as the train-
ing set. We use the rest of trajectories as the testing set. We use
Best-Match Euclidean Distance as our distance measure on Speed-
Invariant representation with r = 6 to compare with four popular
distance measures on raw representation. For LCSS and DTW, we
choose the window size rate w = 30%. For LCSS, we evaluate 20
different ε values and report the best classification accuracy. The
results are shown in Figure 6. Our SIT representation achieves over
95% accuracy in all cases. All the other distance measures on raw
trajectories do not work when the sampling rate is less than 20
per minute. As explained in Section 1, other distance measures will
not perform well on raw trajectories when the alignment error
dominates the basic distance LCSS works relatively well when the
sampling rate is greater than 20 samples per minutes, but notice
that LCSS distance is sensitive to the choice of parameter ε . For this
dataset the best ε exists because the interval between the neighbor
lanes is a constant number. However, for other datasets, such best
constant ε may not exist, as we will show in the SFO dataset. DTW
seems to only work when the sampling rate is greater than 120
samples per minute. However, the high sampling rates result in
shorter battery life, which is fatal shortage on GPS devices.

4.2.2 Classification Results on SFO dataset. The settings of this
experiment are the same as the Highway datasets except we use
Penalized Best-Match Euclidean Distance (PBMED) for this dataset
since a trajectory similar to some sub-trajectory of a longer tra-
jectory is considered to belong to different classes. The results are
shown in Figure 7. We use 100 to 500 trajectories for training and
the rest of the 1000 trajectories in the dataset for testing. We can
clearly see that our PBMED on the SIT representation is superior

Figure 6: Classification Accuracy on Highway Dataset with
Increasing Sampling Rate

than other measures on raw data. Moreover, even using a very small
size training set, e.g., 1 trajectory for each class, our approach can
still achieve about 90% accuracy. This is very important because in
real world datasets, labelled data are very precious, and using less
training data in 1-NN classifier needs less time for classification.

Figure 7: Classification Accuracy on SFO dataset with In-
creasing Training Size

4.2.3 Classification Results on CROSS Dataset [16]. This dataset
has fixed training set and testing set, so we can directly compare our
method with the original method: 3-Stage Hierarchical Learning
[16], and the state of the art approach: Tube-and-Droplet based
representation [14]. We also add the BMED and DTW distance
measures using 1-NN classifier on raw data as the baseline method.
The results are shown in Table 2. We can see that our method
performs as good as the state of the art methods [14]. The Tube-
Droplet method outperforms other methods except ours, however,
it requires careful tuning of the parameters, and it takes a long time
to build the model.
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Method Accuracy
Raw+BMED+1-NN 93.1
Raw+DTW+1-NN 95.6
3-Stage Hierarchical Learning Process[16] 96.8
tDPMM [5] 98.0
Tube-Droplet[14] 98.6
SIT+BMED+1-NN (Our Method) 98.6

Table 2: Classification Accuracy on CROSS[16] dataset

Figure 8: Classification Accuracy on VMT Dataset with In-
creasing Training Size

4.2.4 Classification Results on VMT dataset. We randomly se-
lect t trajectories from each class in original VMT dataset as the
training set and use the remaining part as the testing set, where
t ∈ {2, 4, 6, 8, 10, 12, 14, 16}. There are 15 classes, so the sizes of the
training set are between 30 and 240. Then we classify the dataset
using BMED,DTW,maxLCSS,DFD with raw data, Euclidean Distance
with Tube-and-Droplet representation and BMED with our SIT
representation. We repeat above experiments 30 times and record
the average classification accuracy. The results are shown in Figure
8. We can see that even though there is only limited amount of
labelled data available, our approach can still achieve above 90%
accuracy.

4.3 Trajectory Clustering
We compare the effectiveness of our SIT representation with two
mean-shift based methods: Mean Shift (MS) and Manifold Blurring
Mean Shift (MBMS), and 2 state of the art representations, Adaptive
Multi-Kernel-based Shrinkage(AMKS) [29] and Tube-and-Droplet
[14].

In recent studies [5, 14, 29], the authors use the learning accuracy
measure defined in [5] to evaluate the effectiveness of clustering
results. The learning accuracy measure makes sense when the num-
ber of learned clusters is different from the number of clusters in

Figure 9: Best Match Accuracy on CROSS Dataset with In-
creasing G Value

Figure 10: Best Match Accuracy on VMT Dataset with In-
creasing G values

the ground truth. For experiments where the number of clusters is
given. The learning accuracy will not reflect the actual effectiveness
of the clustering results because the definition of learning accuracy
does not require one-to-one mapping. To compute the actual accu-
racy with one-to-one mapping, we first build a confusion matrix by
randomly assigning the cluster Id to the learned clusters. Then we
apply the Hungarian algorithm [7] and adjust the permutation of
the learned cluster Ids to maximize the sum of the main diagonal
on the confusion matrix. We call the optimal confusion matrix the
Best Match Confusion Matrix (BMCM). After that, we can define the
Best Match Accuracy as:

BestMatchAccuracy =
sum(diaдonal(BMCM))

totalnumbero f trajectories
(21)

Some previous work [14, 29] employing K-means clustering al-
gorithm to compare different representations/distance measures.
K-means algorithm usually has large variance of clustering accu-
racy with various initial centroids which may cause the inaccurate
results when evaluate the effectiveness of various representations
and/or distance measures. So we cluster the trajectories by using
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agglomerative clustering algorithm which is a stable algorithm.
Then we cut the dendrogram into the desired number of clusters
(based on the number of clusters in the ground truth) to evaluate the
effectiveness of various representations and/or distance measures.
We use six linkages 2 including single,complete,average, weighted
average, centroid, Ward’s method to cluster the datasets, and report
the best accuracy over the six linkages.

In addition, according to Wang’s conclusion [28], decreasing
sampling has the most significant influence on the accuracy. We
also test the robustness by randomly removing some points. We
randomly remove G percent points from each trajectory in the
dataset.

The result for the CROSS dataset show in Figure 9. We can see
that the Tube-and-Droplet[14] and our method are less sensitive to
the value of G. However, no matter how we adjust the parameters,
the accuracy for the Tube-and-Droplet[14] method is still worse
than our method.

Figure 10 shows the results for the VMT dataset. Our method
and the Tube-and-Droplet method still perform better than other
methods, but Tube-and-Droplet method needs a lot of effort on
tuning various parameters. All methods are insensitive to the G
values in this dataset, because as mentioned before, the VMT dataset
is oversampling and noisy. Even if we remove 80% points (i.e. G =
80%) from each trajectory, there are still enough points (about 10
to 40 points) remaining to represent the trajectory. Furthermore,
some noisy points may be removed.

4.4 Sensitivity Test on Parameter Settings and
Running Time

Unlike other approaches which usually require careful tuning of
three or more parameters to achieve good results, our approach
only requires one parameter–the step distance r which decides the
granularity of the trajectory. We tried ten different Step Distances
with Step Distance= i ∗minR, where i ∈ [1, 10] and minR is the
smallest step distance we choose. For Highway dataset, we choose
minR = 1; for SFO dataset we chooseminR = 0.001; for CROSS [16]
we chooseminR = 10 and VMT [5] we chooseminR = 3. The results
for classification accuracy and clustering accuracy with different
Step Distances setting are shown in Figure 11 and 12 respectively.
We can see that our SIT representation is insensitive to Step Distance
settings. Step Distance can be chosen from a wide range values. The
accuracy for clustering varies within about ±5% range when using
different Step Distance since smaller Step Distances are able to keep
more details of the raw trajectory, but it is also more sensitive to
the noises in the raw data.

We use a Macbook Pro with i7 CPU and 16G memory to evaluate
the efficiency of translating to our representation and comput-
ing the BMED distance. Table 3 shows the running time spent on
translating to AMKS representation, T-D representation and our
SIT representation respectively. It only takes less than 4 seconds
to translate to our Speed-Invariant Trajectory representation. Our
representation achieves 115 time faster on average than the model-
based approaches [14, 29] on translating to the representations.
We also evaluate the running time spent on computing the BMED

2we do not use the linkage of centroid and Ward’s method for raw and SIT representa-
tions because they are not matrix-based representations

Figure 11: Classification Accuracy with Different Step Dis-
tance x ∗ r

Figure 12: Best Match Clustering Accuracy and Running
Time Using SIT representation on Computing the Distance
Matrix with Different Step Distance on CROSS Dataset

matrices with different Step Distances for clustering. For CROSS
dataset, the differences between SIT and raw representation are not
significant since the average length of the trajectories in CROSS
dataset is about 8. It is thus difficult to reduce the length when using
SIT representation and preserve the accuracy at the same time. For
VMT dataset, it takes 180.79 seconds to compute the BMED on
raw trajecotries, while our method only needs about 10 seconds.
Because the VMT dataset is over-sampled, the average length of the
trajecotries is about 135. Using SIT representation can significantly
reduce the length while keeping high accuracy. We can see that
smaller Step Distances do not guarantee higher accuracy, but require
higher computational cost.

5 CONCLUSION
In this work, we propose a linear time Step-Invariant Trajectory
representation to automatically unify the uncertain sampled tra-
jectory data. The experimental results show the superiority of our
approach comparing to other distance measures on the raw data.
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Representation CROSS Speed Up VMT Speed Up
AMKS (20 iterations) 286s 91.96 262s 192.64

Tube-Droplet 268s 86.17 184s 135.29
Our SIT (r = 3) 3.11s 1 1.36s 1

Table 3: Running Time for translating to new Representa-
tion

Our approach also achieves competitive results compared with the
state of the art trajectory representations on effectiveness. The
experiments show that when the raw dataset contains a lot of miss-
ing data, as long as the missing data points do not significantly
change the shape of the original trajectory, our approach can still
achieve high accuracy while the accuracy using other distance
measures/representations degrades significantly. Furthermore, on
average, translating to our Step-Invariant Trajectory representation
is 115 times faster than using the model-based approaches[14, 29].
Finally, it is important that a good representation can be easily
used on other datasets and algorithms. Our approach only needs
to set one intuitive parameter while other representations need
to carefully tune more than three parameters. In addition to us-
ing Step-Invariant Trajectory representation with BMED/PBMED
as a standalone method, the SIT representation can also be in-
tegrated with other methods. Specifically, our method can unify
the data distribution and improve the distance measure after the
trajectory reconstruction step. Our method can also be used as a pre-
processing step to provide high quality input data for model-based
representations.
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