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5. Write down a 5 × 5 matrix P such that multiplication of another matrix by P on the left causes
rows 2 and 5 to be exchanged.

6. (a) Write down the 4 × 4 matrix P such that multiplying a matrix on the left by P causes the
second and fourth rows of the matrix to be exchanged. (b) What is the effect of multiplying on
the right by P ? Demonstrate with an example.

7. Change four entries of the leftmost matrix to make the matrix equation correct:
⎡

⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 2 3 4
3 4 5 6
5 6 7 8
7 8 9 0

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

5 6 7 8
3 4 5 6
7 8 9 0
1 2 3 4

⎤

⎥⎥⎥⎦
.

8. Find the PA= LU factorization of the matrix A in Exercise 2.3.15. What is the largest
multiplier lij needed?

9. (a) Find the PA= LU factorization of A =

⎡

⎢⎢⎢⎣

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

⎤

⎥⎥⎥⎦
. (b) Let A be the n × n

matrix of the same form as in (a). Describe the entries of each matrix of its PA= LU
factorization.

10. (a) Assume that A is an n × n matrix with entries |aij | ≤ 1 for 1 ≤ i,j ≤ n. Prove that the
matrix U in its PA= LU factorization satisfies |uij | ≤ 2n−1 for all 1 ≤ i,j ≤ n. See
Exercise 9(b). (b) Formulate and prove an analogous fact for an arbitrary n × n

matrix A.

2 The Euler–Bernoulli Beam
The Euler–Bernoulli beam is a fundamental model for a material bending under stress.
Discretization converts the differential equation model into a system of linear equations. The
smaller the discretization size, the larger is the resulting system of equations. This example
will provide us an interesting case study of the roles of system size and ill-conditioning in
scientific computation.

The vertical displacement of the beam is represented by a function y(x), where 0 ≤ x ≤
L along the beam of length L. We will use MKS units in the calculation: meters, kilograms,
seconds. The displacement y(x) satisfies the Euler–Bernoulli equation

EIy′′′′ = f (x) (2.27)

where E, the Young’s modulus of the material, and I , the area moment of inertia, are
constant along the beam. The right-hand-side f (x) is the applied load, including the weight
of the beam, in force per unit length.

Techniques for discretizing derivatives are found in Chapter 5, where it will be shown
that a reasonable approximation for the fourth derivative is

y′′′′(x) ≈ y(x − 2h) − 4y(x − h) + 6y(x) − 4y(x + h) + y(x + 2h)

h4 (2.28)

for a small increment h. The discretization error of this approximation is proportional to
h2 (see Exercise 5.1.21.). Our strategy will be to consider the beam as the union of many
segments of length h, and to apply the discretized version of the differential equation on
each segment.
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For a positive integer n, set h = L/n. Consider the evenly spaced grid 0 = x0 < x1 <

.. . < xn = L, where h = xi − xi−1 for i = 1, . . . ,n. Replacing the differential equation
(2.27) with the difference approximation (2.28) to get the system of linear equations for the
displacements yi = y(xi) yields

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2 = h4

EI
f (xi). (2.29)

We will develop n equations in the n unknowns y1, . . . ,yn. The coefficient matrix, or
structure matrix, will have coefficients from the left-hand side of this equation. However,
notice that we must alter the equations near the ends of the beam to take the boundary
conditions into account.

Adiving board is a beam with one end clamped at the support, and the opposite end free.
This is called the clamped-free beam or sometimes the cantilever beam. The boundary
conditions for the clamped (left) end and free (right) end are

y(0) = y′(0) = y′′(L) = y′′′(L) = 0.

In particular, y0 = 0. Note that finding y1, however, presents us with a problem, since
applying the approximation (2.29) to the differential equation (2.27) at x1 results in

y−1 − 4y0 + 6y1 − 4y2 + y3 = h4

EI
f (x1), (2.30)

and y−1 is not defined. Instead, we must use an alternate derivative approximation at the
point x1 near the clamped end. Exercise 5.1.22(a) derives the approximation

y′′′′(x1) ≈ 16y(x1) − 9y(x1 + h) + 8
3 y(x1 + 2h) − 1

4 y(x1 + 3h)

h4 (2.31)

which is valid when y(x0) = y′(x0) = 0.
Calling the approximation “valid,’’ for now, means that the discretization error of the

approximation is proportional to h2, the same as for equation (2.28). In theory, this means
that the error in approximating the derivative in this way will decrease toward zero in
the limit of small h. This concept will be the focal point of the discussion of numerical
differentiation in Chapter 5. The result for us is that we can use approximation (2.31) to
take the endpoint condition into account for i = 1, yielding

16y1 − 9y2 + 8
3

y3 − 1
4

y4 = h4

EI
f (x1).

The free right end of the beam requires a little more work because we must compute
yi all the way to the end of the beam. Again, we need alternative derivative approximations
at the last two points xn−1 and xn. Exercise 5.1.22 gives the approximations

y′′′′(xn−1) ≈ −28yn + 72yn−1 − 60yn−2 + 16yn−3

17h4 (2.32)

y′′′′(xn) ≈ 72yn − 156yn−1 + 96yn−2 − 12yn−3

17h4 (2.33)

which are valid under the assumption y′′(xn) = y′′′(xn) = 0.
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Now we can write down the system of n equations in n unknowns for the diving
board. This matrix equation summarizes our approximate versions of the original differential
equation (2.27) at each point x1, . . . ,xn, accurate within terms of order h2:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 −9 8
3 − 1

4
−4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4 1

16
17 − 60

17
72
17 − 28

17

− 12
17

96
17 − 156

17
72
17

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
...

...

...

yn−1
yn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h4

EI

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x1)

f (x2)
...

...

...

f (xn−1)

f (xn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.34)

The structure matrix A in (2.34) is a banded matrix, meaning that all entries sufficiently
far from the main diagonal are zero. Specifically, the matrix entries aij = 0, except for
|i − j | ≤ 3. The bandwidth of this banded matrix is 7, since i − j takes on 7 values for
nonzero aij .

Finally, we are ready to model the clamped-free beam. Let us consider a solid wood
diving board composed of Douglas fir. Assume that the diving board is L = 2 meters long,
30 cm wide, and 3 cm thick. The density of Douglas fir is approximately 480 kg/m3. One
Newton of force is 1 kg-m/sec2, and the Young’s modulus of this wood is approximately
E = 1.3 × 1010 Pascals, or Newton/m2. The area moment of inertia I around the center of
mass of a beam is wd3/12, where w is the width and d the thickness of the beam.

You will begin by calculating the displacement of the beam with no payload, so that
f (x) represents only the weight of the beam itself, in units of force per meter. Therefore
f (x) is the mass per meter 480wd times the downward acceleration of gravity −g = −9.81
m/sec2, or the constant f (x) = f = −480wdg. The reader should check that the units match
on both sides of (2.27). There is a closed-form solution of (2.27) in the case f is constant,
so that the result of your computation can be checked for accuracy.

Following the check of your code for the unloaded beam, you will model two further
cases. In the first, a sinusoidal load (or “pile’’) will be added to the beam. In this case, there
is again a known closed-form solution, but the derivative approximations are not exact, so
you will be able to monitor the error of your modeling as a function of the grid size h,
and see the effect of conditioning problems for large n. Later, you will put a diver on the
beam.

Suggested activities:

1. Write a Matlab program to define the structure matrix A in (2.34). Then, using the
Matlab \ command or code of your own design, solve the system for the displacements yi

using n = 10 grid steps.

2. Plot the solution from Step 1 against the correct solution
y(x) = (f /24EI)x2(x2 − 4Lx + 6L2), where f = f (x) is the constant defined above.
Check the error at the end of the beam, x = L meters. In this simple case the derivative
approximations are exact, so your error should be near machine roundoff.

3. Rerun the calculation in Step 1 for n = 10 · 2k , where k = 1, . . . ,11. Make a table of the
errors at x = L for each n. For which n is the error smallest? Why does the error begin to
increase with n after a certain point? You may want to make an accompanying table of the
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condition number of A as a function of n to help answer the last question. To carry out this
step for large k, you may need to ask Matlab to store the matrix A as a sparse matrix to
avoid running out of memory. To do this, just initialize A with the command
A=sparse(n,n), and proceed as before. We will discuss sparse matrices in more detail in
the next section.

4. Add a sinusoidal pile to the beam. This means adding a function of form
s(x) = −pg sin π

L x to the force term f (x). Prove that the solution

y(x) = f

24EI
x2(x2 − 4Lx + 6L2) − pgL

EIπ

(
L3

π3 sin
π

L
x − x3

6
+ L

2
x2 − L2

π2 x

)

satisfies the Euler–Bernoulli beam equation and the clamped-free boundary conditions.

5. Rerun the calculation as in Step 3 for the sinusoidal load. (Be sure to include the weight of
the beam itself.) Set p = 100 kg/m and plot your computed solutions against the correct
solution. Answer the questions from Step 3, and in addition the following one: Is the error at
x = L proportional to h2 as claimed above? You may want to plot the error versus h on a
log–log graph to investigate this question. Does the condition number come into
play?

6. Now remove the sinusoidal load and add a 70 kg diver to the beam, balancing on the last 20
cm of the beam. You must add a force per unit length of −g times 70/0.2 kg/m to f (xi) for
all 1.8 ≤ xi ≤ 2, and solve the problem again with the optimal value of n found in Step 5.
Plot the solution and find the deflection of the diving board at the free end.

7. If we also fix the free end of the diving board, we have a “clamped-clamped’’ beam,
obeying identical boundary conditions at each end: y(0) = y′(0) = y(L) = y′(L) = 0. This
version is used to model the sag in a structure, like a bridge. Begin with the slightly
different evenly spaced grid 0 = x0 < x1 < .. . < xn < xn+1 = L, where h = xi − xi−1 for
i = 1, . . . ,n, and find the system of n equations in n unknowns that determine y1, . . . ,yn. (It
should be similar to the clamped-free version, except that the last two rows of the
coefficient matrix A should be the first two rows reversed.) Solve for a sinusoidal load and
answer the questions of Step 5 for the center x = L/2 of the beam. The exact solution for
the clamped-clamped beam under a sinusoidal load is

y(x) = f

24EI
x2(L − x)2 − pgL2

π4EI

(
L2 sin

π

L
x + πx(x − L)

)
.

8. Ideas for further exploration: If the width of the diving board is doubled, how does the
displacement of the diver change? Does it change more or less than if the thickness is
doubled? (Both beams have the same mass.) How does the maximum displacement change
if the cross-section is circular or annular with the same area as the rectangle? (The area
moment of inertia for a circular cross-section of radius r is I = πr4/4, and for an annular
cross-section with inner radius r1 and outer radius r2 is I = π(r4

2 − r4
1 )/4.) Find out the

area moment of inertia for I-beams, for example. The Young’s modulus for different
materials are also tabulated and available. For example, the density of steel is about 7850
kg/m3 and its Young’s modulus is about 2 × 1011 Pascals.

The Euler–Bernoulli beam is a relatively simple, classical model. More recent models, such
as the Timoshenko beam, take into account more exotic bending, where the beam
cross-section may not be perpendicular to the beam’s main axis.


