
Machine Learning Notes

Patrick O’Neil

April 24, 2014

Abstract

These notes provide a quick and dirty exploration of several areas of machine learning. The focus
of these notes is on implementation as opposed to theory. Very little background material is covered
and it is assumed the reader has a decent grasp of probability theory and statistics. Most of these
notes are derived from the Pattern Recognition notes available on the TAMU PSI lecture notes page
(http://psi.cse.tamu.edu/teaching/lecture_notes/). I will be periodically expanding the notes.

Contents

1 Decision Theory 2

2 Density Estimation 2
2.1 Kernel Density Estimation . 2
2.2 k-Nearest Neighbor Estimation . 3
2.3 Mixture Models . 4

3 Dimensionality Reduction 4
3.1 Principle Component Analysis (PCA) . 5
3.2 Linear Discriminant Analysis (LDA) . 5
3.3 Feature Subset Selection . 6
3.4 Mainfold Learning: ISOMAP . 7

4 Classification 7
4.1 Näıive Bayes Classifier . 7

5 Cross-Validation 7
5.1 Holdout Method . 7

6 Artifical Neural Networks 8
6.1 Multilayer Perceptron . 8
6.2 Other Versions . 10

7 Genetic Algorithms 11
7.1 Crossover . 11
7.2 Mutation . 11
7.3 Fitness Function . 12

8 Time-Series Analysis 12
8.1 Fourier Analysis . 12

1

http://psi.cse.tamu.edu/teaching/lecture_notes/

9 Additional Notes 13
9.1 Expectation Minimization Algorithm . 14
9.2 Similarity Measures . 14

1 Decision Theory

Likelihood Ratio

Λ(x) =
p(x|ω1)

p(x|ω2)

Likelihood Ratio Test To classify x into classes ω1 or ω2 using the likelihood ratio,

Λ(x) > P (ω2)/P (ω1)⇒ ω1

Λ(x) < P (ω2)/P (ω1)⇒ ω2

Bayes Error Rate is the probability of error.

P (error) =

∫ ∞
−∞

P (error|x)p(x)dx

Bayes Risk Let Cij represent the cost of choosing class ωi when ωj is the true class.

R = E[C] =
∑

CijP (choose ωi and x ∈ ωj) =
∑

CijP (x ∈ Ri|ωj)P (ωj)

2 Density Estimation

General expression for non-parametric density estimation is given by p(x) ∼= k
NV where V is the volume

surrounding x, k is the number of samples found within V , and N is the total number of samples. Fixing V
and approximating k leads to Kernel Density Estimation. Fixing k and approximating V leads to k-Nearest
Neighbors Estimation.

2.1 Kernel Density Estimation

Definition The Parzen Window is a kernel function defined on the unit hypercube of dimension d given by
K(u) = 1 if |uj | < 1

2 ∀j and K(u) = 0 otherwise. Then

K

(
x− xn

h

)
=

{
1 xn ∈ Hh(x)
0 else

where Hh(x) is a hypercube of side length h centered at x. Using this, we can define a kernel-density estimate
based on Parzen windows:

pKDE(x) =
1

NhD

N∑
n=1

K

(
x− xn

h

)
The Parzen window approach yields discontinuities and does not differentiate between points that are

close to the estimation point and points that are far (but still fall within the window). Thus, we often use
smooth kernels.

Definition The Gaussian Kernel is given by

K(x) =

(
1

2π

)D
2

e−
1
2x
T x

2

This is a smooth and radially symmetric kernel. The associated KDE estimate is given by

pKDE(x) =
1

NhD

N∑
n=1

K

(
x− xn

h

)
the smoothing parameter h is referred to as the bandwidth.

Note that we are using a single smoothing parameter for all directions. This is not always appropriate
(for example, there may be more variance in certain directions). To cope with this, one may,

• Pre-scale: normalize each axis to unit variance.

• Pre-whitening: lineary transform data so that the covariance matrix is the identity matrix. This
transform is given by y = Λ−

1
2MTx where Λ is the vector of eigenvalues of the covariance matrix and

M is the matrix of eigenvectors of the covariance matrix.

Definition A good alternative for multivariate KDE (dimension D) is the Product Kernel,

p(x) =
1

N

N∑
n=1

K(x, x(n), h1, ..., hD)

where

K(x, x(n), h1, ..., hD) =
1

h1...hD

D∏
d=1

Kd

(
xd − x(n)d

hd

)

2.2 k-Nearest Neighbor Estimation

Definition Recall that the general form of the non-parametric density estimation is given by p(x) ∼= k/NV .
The k-Nearest Neighbor Estimate is given by

pkNN (x) =
k

NcDRDk (x)

where RDk (x) is the distance between the estimation point x and its k-th nearest neighbor. Also, cD is the
volume of the unit D-dimensional sphere.

Notice that this will produce discontinuous probability estimates.

Definition Assume a dataset with N samples, Ni from class ωi. The kNN Bayes Classifier is given by

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
=

ki
NiV
· NiN
k
NV

=
ki
k

Thus, our decision rule reduces to choosing the class ωi such that the largest percentage of the k-nearest
neighbors of x are from class ωi.

Since the kNN approach is based on Euclidean distance, it is highly sensitive to noise. Instead of using
plain Euclidean distance, we can use a weighted Euclidean distance

dw(xu, x) =

√√√√ D∑
k=1

[wk(xu,k − xk)]2

where wk is a weight assigned to the k-th dimension of the data.
The follwing includes two approaches to computing kNN :

3

• Bucketing (Elias’s Algorithm)

1. Divide space into identical cells. For each cell, store data points in a list.

2. Examine cells in order of increasing distance from query point. For each cell, distance is computed
between internal points and query point.

3. Terminate search when distance from query point to cell exceeds distance to closest point already
visited.

• k-d Trees: k-dimensional generalization of a binary search. See Figure 1.

Figure 1: k − d Tree Example

2.3 Mixture Models

A mixture models seeks to model the presence of subpopulations within the overall population. The general
set up is as follows:

• N random variables (observations) each assumed to be distrubuted according to a mixture of K
components.

• Each of the K components belongs to the same family of distributions (eg all Gaussian) but with
different parameters.

• K different parameters (or sets of parameters) for the distributions.

• N latent variables indicating the identity to which component each observation belongs.

• A set of K non-negative mixture weights which sum to 1.

3 Dimensionality Reduction

Two approaches are available for dimensionality reduction:

• Feature Extraction: Create set of new features (smaller in dimension) by combinations of existing
features.

• Feature Selection: Choose a subset of all the features.

For feature selection methods we want to do one of

• Signal Representation: Goal is to represent the samples accurately in a lower-dimensional space. (ex-
ample: PCA)

• Signal Classification: Goal is to enhance the class-discriminatory information in the lower-dimensional
space. (example: LDA)

4

3.1 Principle Component Analysis (PCA)

Principle Component Analysis: Linear mapping of data to a lower dimensional space such that the variance
of the data in low-dimensional representation is best preserved. In practice, the correlation matrix of the
data is constructed and the eigenvectors on this matrix are computed. The eigenvectors that correspond to
the largest eigenvalues (the principal components) can now be used to reconstruct a large fraction of the
variance of the original data. (See Also: Kernel-PCA for non-linear application)

Kernel Principle Component Analysis: Perform a kernel trick Φ to the data and compute covariance
matrix C of m× n matrix Φ(X). Compute eigenvectors of C and project data onto these eigenvectors.

Kernel Trick : For data points {x1, x2, ..., xn} pick and inner product k(x, y) and compute the inner
product space structure for the data. That is compute (K)ij = k(xi, xj). Now project data onto the
principle components.

3.2 Linear Discriminant Analysis (LDA)

In the case of two-dimensions, we can think of LDA as finding the line where the projected data best separates
the classes. See Figure 2 for an example. The left figure is a poor choice while the right figure separates the
classes very effectively.

Figure 2: 2-dimensional LDA example

Definition For each class, the scatter is given as

s̃2i =
∑
y∈ωi

(y − µ̃i)2

where µ̃i = 1
|ωi|
∑
y∈ωi y = 1

|ωi|w
Tx = wTµi. The Fisher Linear Discriminant is the linear function wTx

that maximizes the criterion function

J(w) =
|µ̃1 − µ̃2|2

s̃21 + s̃22

The above definition implies we are looking for a projection where examples from the same class are projected
very close to each other and, at the same time, the projected means are as far apart as possible.

Definition The Fisher Linear Discriminant is given by

w∗ = S−1W (µ1 − µ2)

where SW = S1 + S2 is called the Within-Class Scatter and

Si =
∑
x∈ωi

(x− µi) · (x− µi) =
∑
x∈ωi

(x− µi)(x− µi)T

5

For the case when the number of classes is C, we seek C − 1 projections [y1, y2, ..., yC−1] by means of
C − 1 projection vectors wi arranged by columns into a projection matrix W = [w1|w2|...|wC−1] and so

yi = wTi x⇒ y = WTx. We now have Within-Class Scatter given by SW
∑C
i=1 Si and

Si =
∑
x∈ωi

(x− µi)(x− µi)T

SB =

C∑
i=1

Ni(µi − µ)(µi − µ)T

Then ST = SB + SW is called the Total Scatter. The projected versions, µ̃i, µ̃, S̃W , S̃B are defined in the
obvious way. Then our objective function becomes

J(W) =
|S̃B |
|S̃W |

=
|WTSBW |
|WTSWW |

where | · | denotes the determinant. We seek W ∗ that maximizes J . The optimal projection W ∗ is the one
whose columns are the eigenvectors corresponding the the largest eigenvalues of the following generalized
eigenvalue problem,

W ∗ = [w∗1 |w∗2 |...|w∗C−1]⇒ (SB − λiSW)w∗i = 0

Variants:

• Non-Parametric LDA (Fukunaga): Computes SB using local information and kNN. Able to preserve
structure of the date more closely. Can find more than C − 1 features.

• Orthonormal LDA (Okada and Tomita): Computes projections that maximize Fischer criterion and are
pair-wise orthonormal. Combines eigenvalue solution of S−1W SB and Gram-Schmidt orthonormalization
procedure. Can find more than C − 1 features.

• Generalized LDA (Lowe): Incorporates a cost function Cij to weigh importance of separating certain
classes.

• Multilayer Perceptrons (Webb and Lowe)

3.3 Feature Subset Selection

The following are some search algorithms for determining a subset of features to use.

Definition The Plus-L Minus-R Selection begins with either the full set of features (L < R) or the empty
set (L > R). Then we iteratively add L features and remove R features. If L < R, we begin by removing
features and if L > R, we begin by adding features. To determine which feature to add or remove, we test
the resulting subset with an objective function (filter or wrapper). Floating selection methods generalize
this and allow L and R to vary during execution.

Filters: Distance between classes (Euclidean, Mahalanobis, etc), Determinant of S−1W SB matrix1, correlation

coefficient (
∑M
i=1 ρiC/

∑M
i=1

∑M
j=i+1 ρij)

2, information theoretic measures (mutual information is usually slow
and replaced by a Heuristic).
Wrappers: Some sort of classifier. Train a classifier on the subset of features and check performance.

1see LDA section for definition
2ρiC is the correlation coefficient between the i-th feature and the class labels

6

3.4 Mainfold Learning: ISOMAP

1. Build sparse graph G of the data using only the k-nearest neighbors.

2. Build distance matrix by finding shortest paths along G (Dijkstra’s algorithm).

3. Build low-D embedded space to best preserve the complete distance matrix. That is, minimize

E = ‖τ(DG)− τ(DY)‖L2

The solution is to project points to the top n eigenvectors of DG. (The smaller the eigenvalue, the
more clumped the data is along the projection of that eigenvector)

4 Classification

4.1 Näıive Bayes Classifier

The näıve Bayes classifier assumes that the features are class-conditionally independent,

p(x|ωi) =

D∏
d=1

p(xd|ωi)

5 Cross-Validation

In this section, we present some cross-validation techniques.

5.1 Holdout Method

Definition The Random Subsampling method performs K data splits of the entire dataset. Each split
selects a fixed number of samples randomly without replacement for use in testing. See Figure 3.

Definition The K-fold Cross Validation method creates a K-fold partition of the data. For each of K
experiements, use the K − 1 folds for training and a different fold for testing. Advantage of this approach
over Random Subsampling is that all samples are guaranteed to be used.3 See Figure 4.

Definition The Bootstrap method is a resampling technique with replacement. Given N samples, randomly
select N samples (with replacement) for training. Use the left out samples for testing. Repeat this process
K times. For each bootstrapped sample, compute the desired statistic. Then combine the results for each
bootstrap iteration (via averaging, etc) and use this result to analyze the bias or variance in the original
statistic estimate.

Bootstrap Example: Given X = {3, 5, 2, 1, 7}, We seek to compute the bias of the sample mean µ′ = 3.6.
We generate the following bootstrap samples

X1 = {7, 3, 2, 3, 1} ⇒ µ1 = 3.2

X2 = {5, 1, 1, 3, 7} ⇒ µ2 = 3.4

X3 = {2, 2, 7, 1, 3} ⇒ µ3 = 3.0

This yields a bootstrap average value of µB = 3.2. Thus, Bias(µ′) = 3.2− 3.6 = −0.4 and so there is a −0.4
bias in our sample mean. Thus, an unbiased estimate would be µU = 3.6 + 0.4 = 4.0.

3If K = 1, this is referred to as leave-one-out cross validation

7

Figure 3: Random Subsampling Method

Figure 4: K-Fold Cross Validation

6 Artifical Neural Networks

6.1 Multilayer Perceptron

Definition A Multilayer Perceptron consists of multiple layers of nodes in a directed graph, with each layer
fully connected to the next one. All nodes except input nodes are hidden nodes with nonlinear activation
functions. The Multilayer perceptron uses backpropagation for learning. Since it contains at least three
layers (input, output, hidden), it is considered a deep neural network. See the notation in Table 1.

Figure 5: Simple Multilayer Perceptron

Activation Functions and Weights: Commonly used activation functions include tanh(vi) and (1 +
+e−vi)−1 where vi is the weighted sum of the input synapses. Other activation functions include, the
rectifier function, max(0, x), and the softplus function, log(1 + ex). The softplus function is a smooth ap-
proximation of the rectifier function. The weights are given by a matrix at each layer W = (wij) where wij
is the weight of the directed edge from input node i to processing node j.

Learning : The learning stage involves finding appropriate weights for the edges. Suppose the error in
output node j is given by ej(n) = tj(n)− yj(n). Then the total error is given by

J(W) =
1

2

N∑
j

(tk − yk)2

8

n,m,N Number of input, hidden, and output nodes respectively
xi ith input
w1
ij weight of edge connecting xi to hj

ĥ1j (x1, x2, ..., xn) · (w1j , w2j , ..., wnj)
hj output of the jth hidden node
w2
jk weight of edge connecting hj to yk

ŷk (h1, ..., hm) · (w1k, w2k, ..., wmk)
yk output of the kth output node
tk target value of the kth output node

Table 1: Multi-Layer Perceptron Notation

We proceed using gradient decent. Thus, we have

wn+1 = wn + ∆wn = wn − η
∂J(W)

∂wn

where η is the learning rate, or step-size. In the case of the output weights, we have,

∂J(W)

∂w2
jk

=
∂J(W)

∂yk

∂yk
∂ŷk

∂ŷk
∂w2

jk

where

∂J(W)

∂yk
=

∂

∂yk

(
N∑
i=1

(yi − ti)2
)

= (yk − tk)

ŷk
∂w2

jk

=
∂

∂w2
jk

(
m∑
i=1

w2
ikhi

)
= hj

and the middle partial derivative is the derivative of the nonlinear activation function.

Example 1. For the case the activation function being

φ(x) =
1

1 + e−x

we have yk = φ(ŷk) and so

∂yk
∂ŷk

=
∂

∂ŷk

(
1

1 + e−ŷk

)
=

e−ŷk

(1 + e−ŷk)2
=

(
e−ŷk

1 + e−ŷk

)(
1

1 + e−ŷk

)
= (1− yk)yk

So for this activation function, we have

∂J(W)

∂w2
jk

= (yk − tk)(1− yk)ykhj

Now we turn to the case of the hidden weights. We have

∂J(W)

∂w1
ij

=
∂J(W)

∂hj

∂hj

∂ĥj

∂ĥj
∂w1

ij

where
∂ĥj
∂w1

ij

= xi

9

and the middle derivative is the derivative of the activation function as before. However, the first derivative
is not so straight forward since we don’t have target variables for the hidden units. This is referred to as
the credit assignment problem. We must propagate the error and compare to the target values at the output
stage. That is,

∂J(W)

∂hj
=

N∑
i=1

∂J(W)

∂yi

∂yi
∂ŷi

∂ŷi
∂hj

From earlier, we have
∂J(W)

∂yi

∂yi
∂ŷi

= (yi − ti)
∂yi
∂ŷi

where the derivative on the RHS is the derivative of the activation function. The last term is

∂ŷi
∂yj

= w2
ji

Therefore,

∂J(W)

∂hj
=

N∑
i=1

(yi − ti)w2
ji

∂yi
∂ŷi

Note 1. (Momentum Gradient Descent) Encountering local minima while performing gradient descent is
not uncommon. A popular method to avoid local minimia is to compute a temporal average direction. An
easy implementation is to use an exponential average,

∆w(n) = µ[∆w(n− 1)] + (1− µ)

[
η
∂J(w)

∂w

]
the term µ ∈ (0, 1) is called the momentum.

There are also methods which use adaptive learning rates. These work by increasing the learning rate if
the gradient direction has remained unchanged and decreasing the learning rate if the direction is changing.

Note 2. Tricks of the trade:

(a) MLPs train faster with anti-symmetric activation functions (f(−x) = −f(x)).

(b) Target values must be within range of activation functions. Recommended target values are not the
asymptotic values of the activation function.

(c) Input variables should have mean 0, same variance (Fukunaga’s whitening transform), and uncorrelated
(PCA).

(d) Initial weights shold be small. H-O weights whould be larget than I-H weights since they carry the
back-propagated error.

(e) Weight Updates: The weights may be updated online (update after running each example through) or in
batch (update after running all examples, calculate ∆w after each example and sum at the end). Batch
training is recommended. Online training is sensitive to the ordering of the examples.

6.2 Other Versions

• Restrictive Boltzman Machine: To be added.

• Convolution Neural Network : Consists of multiple layers of small neuron collections which look at
small portions of the input image. The results of these collections are then tiled so that they overlap
to obtain a better representation of the original image (repeated for every layer).

• Radial Basis Function Network : To be added.

10

7 Genetic Algorithms

An example genetic algorithm is available (”GeneticAlgorithm.R”). It uses one point crossover and no
mutation.

The solutions need to be encoded as genetic informations (bits commonly). Randomly generate a large
first generation of solutions. Then perform the following process iteratively

1. Evaluate the population (or a sample) using a fitness function.

2. Choose pairs of the most fit.

3. Create offspring for new generation. (Mutation and Crossover)

until a stopping condition is reached.

7.1 Crossover

Here are some images of crossover techniques. In the uniform crossover scheme (UX) individual bits in the

(a) One Point (b) Two Point (c) Cut & Splice

Figure 6: Crossover Methods

string are compared between two parents. The bits are swapped with a fixed probability, typically 0.5. In
the half uniform crossover scheme (HUX), swaps half the hamming distance number of chromosomes.

Three Parent Crossover : Choose 3 parents. Compare triples of chromosomes. Offspring gets most
common bit value in the triple.

7.2 Mutation

The classic example of a mutation operator involves a probability that an arbitrary bit in a genetic sequence
will be changed from its original state.

Mutation Methods

• Non-Uniform: The probability that amount of mutation will go to 0 with the next generation is
increased by using non-uniform mutation operator.It keeps the population from stagnating in the early
stages of the evolution.It tunes solution in later stages of evolution.This mutation operator can only
be used for integer and float genes.

• Uniform: This operator replaces the value of the chosen gene with a uniform random value selected
between the user-specified upper and lower bounds for that gene. This mutation operator can only be
used for integer and float genes.

• Gaussian: This operator adds a unit Gaussian distributed random value to the chosen gene. If it falls
outside of the user-specified lower or upper bounds for that gene,the new gene value is clipped. This
mutation operator can only be used for integer and float genes.

11

7.3 Fitness Function

Human created function to rate the ’fitness’ of solutions. Computational complexity is an issue to bear in
mind when creating fitness functions. Approximating the fitness may be necessary. The graph of a fitness
function is the Fitness Landscape.

8 Time-Series Analysis

Autocorrelation For a repeatable process X, the autocorrelation between times r as s is given by

R(s, t) =
E[(Xt − µt)(Xs − µs)]

σtσs

If Xt is a second-order stationary process, then µ and σ2 are time independent and we get

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2

8.1 Fourier Analysis

Cross-correlation: Given two time series x(t), y(t), we define the cross-correlation as

〈x(t), y(t+ τ)〉 =

N∑
k=1

x(tk)y(tk + τ)

where τ is a time shift. The autocorrelation of x(t) is then 〈x(t), x(t + τ)〉, i.e. the cross-correlation of x
with itself.

Definition The Fourier Transform of a time-series x(t) is defined as

X(f) =

∫ ∞
−∞

x(t)e−2πiftdt

where f is referred to as the frequency. The Reverse Fourier Transform is given by

x(t) =

∫ ∞
−∞

X(f)ej2πiftdf

The Discrete Fourier Transform (DFT) is given by

X(n) =

N−1∑
k=0

x(k)e−
2πi
N nk

In the example in Figure 7, the signal is given by x(t) = 10 sin(2π10t) + 3 sin(2π100t). Notice the peaks
occuring at the frequencies of 10 and 100.

Applying the Fourier transform is only meaningful for stationary processes (mean and variance are static).
For more dynamic time-series, one uses the DFT on windows of the data. This is known as Short-Time
Fourier Transform. This process is given by

• Define analysis window size and overlap.

• Define a windowing function (eg Hann, Gaussian, etc). These functions must be chosen so that when
overlapped, their sum is unity. Notice the windowing function sums to 1 across all time interval in
Figure 8 (except for the ends).

12

Figure 7: Discrete Fourier Transform Example

Figure 8: Short-Time Fourier Transform

• Multiply the signal with the windowing function.

• Apply Fast Fourier Transform to each segment.

The short-time fourier transform is then given as

X(fn, ti) =

N−1∑
k=0

x[k]w[k − i]e− 2πi
N nk

where fn is the n−th discrete frequency and ti is the starting time of the i-th analysis window. (w is the
windowing function).

9 Additional Notes

Maximum Likelihood Estimator (MLE):

Y predict = arg max
v

P (X1 = u2, ..., Xm = um|Y = v)

Maximum A-Posteriori Estimator (MAP):

Y predict = arg max
v

P (Y = v|X1 = u2, ..., Xm = um)

13

For computing high dimensional joint probablities, use logs to prevent system underflow, i.e.

n∏
j=1

P (Xj = uj |Y = v) vs

n∑
j=1

logP (Xj = uj |Y = v)

Mahalanobis Distance Let x = (x1, x2, ..., xN)T be a multivariate random variable from a group of values
with mean µ = (µ1, µ2, ..., µN)T and covariance matrix S. The Mahalanobis distance is defined as:

DM (x) =
√

(x− µ)TS−1(x− µ)

9.1 Expectation Minimization Algorithm

Assume a dataset contains two types of features: (1) a set of features X whose values are known, and (2),
a set of features Z whose values are unknown. Now define the complete-data likelihood to be the joint pdf
p(X,Z|θ). The following two steps are then repeated iteratively on the data.

• Expectation: Find the expected value of log p(X,Z|θ) with respect to the unknown data Z, given the
data X and the current parameter estimate θi−1:

Q(θ|θi−1) = EZ [log p(X,Z|θ)|X, θi−1]

where θ are the new parameters that we seek to optimize to increase Q. Note here that Z is a random
variable defined by p(Z|X, θi−1).

• Maximization: Find the argument that maximizes the expected value Q(θ|θi−1), i.e.

θi = argmaxQ(θ|θi−1)

In a nutshell, since Z is unknown, the best we can do is maximize the average log-likelihood across all
possible values of Z. See Figure 9.

Figure 9: Expectation-Maximization Visualization

9.2 Similarity Measures

Cosine Similarity : The cosine similarity of u, v ∈ Rn is given by

u · v
‖u‖‖v‖

14

	Decision Theory
	Density Estimation
	Kernel Density Estimation
	k-Nearest Neighbor Estimation
	Mixture Models

	Dimensionality Reduction
	Principle Component Analysis (PCA)
	Linear Discriminant Analysis (LDA)
	Feature Subset Selection
	Mainfold Learning: ISOMAP

	Classification
	Naïive Bayes Classifier

	Cross-Validation
	Holdout Method

	Artifical Neural Networks
	Multilayer Perceptron
	Other Versions

	Genetic Algorithms
	Crossover
	Mutation
	Fitness Function

	Time-Series Analysis
	Fourier Analysis

	Additional Notes
	Expectation Minimization Algorithm
	Similarity Measures

