Preliminaries	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results

Event Based Community Detection for Networks

Patrick A. O'Neil Michael D. Porter

GeoEye Analytics

May 1, 2012

- Problem Description
- Assumptions
- Network & Event Notation
- 2 Event Participation Detection
 - Structural
 - Metric-EPD
- 3 Tie-Strength Clustering
 - Tie-Strength
 - Clustering
- 4 Network Activity Score
 NAS Model
 NAS Prediction

Preliminaries ●○○	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score	Results
Problem	Description			

Motivation

Given a dynamic network and a set of events for which the network is known to be responsible, it is natural to ask questions about which nodes participated in the events. Uncovering this information reveals details about the network's activity, such as which nodes are most responsible for the network's past activity.

Preliminaries ●○○	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results
Problem	Description			

Motivation

Given a dynamic network and a set of events for which the network is known to be responsible, it is natural to ask questions about which nodes participated in the events. Uncovering this information reveals details about the network's activity, such as which nodes are most responsible for the network's past activity.

Objective

Given a dynamic network and a set of events, for each node, we would like to determine a subset of events in which that node participated.

Preliminaries ○●○	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results
Assumpti	ions			

- Our primary assumption is that nodes who are involved with an event will have an anomalous neighborhood network structure around the time of the event.
- The event set will be sparse (i.e. there will be few events).
- Nodes who have worked together in the past will likely work together again at some point in the future.
- A node's usual behavior remains relatively constant during the course of observation.

Preliminaries ○○●	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results
Network	& Event Notation	า		

- Let $G_t(V, E)$ be a weighted graph at time $t \in \{1, 2, ..., T\}$ with a set of nodes V and edges E.
- Let $w_t(\{v_1, v_2\}) \in \mathbb{N}$ denote the weight of the edge between nodes $v_1, v_2 \in V$ at time t, 0 if nodes v_1 and v_2 are not actually connected.
- For v ∈ V let N_t(v) be the set of neighbors of v and E_t(v) be the set of edges connected to v at time t.
- Let $A = \{a_1, a_2, ..., a_{|A|}\}$ be an event set where a_i denotes the time of event *i*.

Preliminaries	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results

- Problem Description
- Assumptions
- Network & Event Notation
- 2 Event Participation Detection
 - Structural
 - Metric-EPD
 - 3 Tie-Strength Clustering
 - Tie-Strength
 - Clustering
- Network Activity Score
 NAS Model
 NAS Prediction

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score	Results
Structura	al-EPD			

Structural Event-Participation Detection

Seeks to find anomalous neighborhood structure by looking for times when a node either changed who it was communicating with or the frequency with which it was communicating with other nodes.

Thus, for node v, we are looking for anomalies in the set $N_t(v)$ and/or the set $\{w_t(v, u) : u \in V(G)\}$ for t near event times.

Preliminaries	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results
Methods	for S-EPD			

There are many ways to model the communication of a node's neighborhood. Two methods will be discussed here.

- Counting Process for each potential edge
- Distance from Median Graph

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score	Results
Counting	g Process			

- This approach models the communication between a pair of nodes *during non-event times* as a counting process.
- Since most nodes do not communicate with each other, we will employ a hurdle model.
- For nodes *u* and *v*, let $C_t(u, v)$ be the number of times *u* and *v* communicated during time *t*.
- We model C_t(u, v) = 0 and C_t(u, v) > 0 using a binomial distribution.
- For $C_t(u, v) > 0$, we model C using a geometric distribution setting

GeoEve Analytics

$$\rho = \frac{1}{1 + E[C_s(u, v)]} \text{ with } s \in \{t : C_t(u, v) > 0\}$$

0000000000	ation Detection	00	000	Results
Counting Proces	SS			

Below is an example of the counting process model for communication between two nodes.

GeoEye Analytics

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score	Results
Counting	Process			

- For node u, let $C_t(u) = \{c_{v_1}, c_{v_2}, ..., c_{v_k}\}$ represent the number of times u communicated with each $v_i \in V$ at time t.
- For each c_{v_i} , we calculate $P(C_t(u, v_i) = c_{v_i})$, the probability that u communicates with node $v_i c_{v_i}$ times.
- Assuming communication rates from node to node are independent, we find the joint probability $P(C(u) = C_t(u)) = \prod P(C_t(u, v_i))$, the probablity that this communication structure would occur.
- Unusually low probabilities are considered indicative of anomalous neighborhood network structure.

Event Participation Detection

Tie-Strength Clustering

Network Activity Score

Results

S-EPD: Distance from Median Graph

Definition: Edit Distance

Given two graphs G and G', each with the same number of vertices, the edit distance $D : G \times G \to \mathbb{N}$ between G and G' is defined as $D(G, G') = |E(G) \bigtriangleup E(G')|$.

Event Participation Detection

Tie-Strength Clustering

Network Activity Score

Results

S-EPD: Distance from Median Graph

Definition: Edit Distance

Given two graphs G and G', each with the same number of vertices, the edit distance $D : G \times G \to \mathbb{N}$ between G and G' is defined as $D(G, G') = |E(G) \bigtriangleup E(G')|$.

Definition: Median Graph

GeoEye Analytics

The median graph \overline{G}_H of a set of graphs $H = \{G_1, G_2, ..., G_m\}$ each with *n* vertices is defined as,

$$\overline{G}_{H} = \operatorname*{argmin}_{G \in \mathbb{G}_{n}} \sum_{G_{i} \in H} D(G, G_{i})$$

where \mathbb{G}_n is the set of all graphs constructible from *n* vertices.

🔹 🗆 🕨 🔹 🛱 GeoEye Proprietary. 🖉 2017 GeoEye, Inc. All Right's Reserved

Event Participation Detection

Tie-Strength Clustering

Network Activity Score

Results

S-EPD: Distance from Median Graph

Framed for our problem,

- Let *H* be the set of graphs during which events did not occur. We first calculate the median graph, \overline{G}_H , of *H*.
- Then for every graph G_t with $t \in \{1, 2, ..., T\}$, we calculate $D(G_t, \overline{G}_H)$, the edit-distance between the graph and the median graph.
- Times with significantly large edit-distances are considered anomalous. We search for nodes which exhibit anomalous neighborhood structure around the time of events.

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score	Results
S-EPD E	xample			

In this example, the plots show the communication rates of two nodes. The node on the left was involved with an activity (going on vacation) around times 32-38 while the node at the right acted normally during the period of interest.

Prelin	aries	

Results

Metric-EPD

Metric Event-Participation Detection

While structural EPD examines the communication behavior of a particular node, metric EPD determines how the role of a node changes through time. Using SNA metrics, we can look for anomalous positioning in the network as well as local neighborhood structure.

A variety of multivariate time-series anomaly detection methods exist and can be utilized for M-EPD.

Preliminaries	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results

- Problem Description
- Assumptions
- Network & Event Notation
- 2 Event Participation Detection
 - Structural
 - Metric-EPD
- 3 Tie-Strength Clustering
 - Tie-Strength
 - Clustering
- 4 Network Activity Score
 NAS Model
 - NAS Prediction

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering ●○	Network Activity Score	Results
Tie-Stre	ngth Metrics			

- Given a set of network members N and a set of events A, we can construct a bipartite graph EP = G(V, E) with $V \subseteq N \cup A$ and $E \subseteq N \times A$.
- An edge exists between a network member and an event when the network member is believed to have participated in that event.
- For tie-strength, we use the Adamic & Adar tie-strength metric,

$$TS(u,v) = \sum_{e \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(e)|},$$

where $\Gamma(u)$ is the neighborhood of node u (i.e. the events in which u participated).

Event Participation Detection

Tie-Strength Clustering

Network Activity Score

Results

Event-Based Clustering

- We construct a weighted graph G_{TS} where the nodes are the members of the network and where the weight of an edge {v₁, v₂} of G_{TS} is the tie-strength between v₁, v₂.
- Running a clustering algorithm on this weighted graph produces a list of clusters of nodes who participated in the same events.

Preliminaries	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results

- Problem Description
- Assumptions
- Network & Event Notation
- 2 Event Participation Detection
 - Structural
 - Metric-EPD
- 3 Tie-Strength Clustering
 - Tie-Strength
 - Clustering

NAS Model
 NAS Prediction

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering	Network Activity Score ●00	Results
Network	Activity Score Mo	odel		

So far we have the following;

- Anomaly scores for each node at each time period.
- For each event, a list of nodes that are predicted to have participated in that event.
- Clusters of nodes that work together.

The obvious next step is to track how anomalous these clusters are behaving in the hope of predicting when the cluster might produce another event.

Cluster Anomaly Scores

For each cluster *i*, we aggregate the anomaly scores of the involved nodes to get a cluster anomaly score $CS_i(\mathbf{y})$ where \mathbf{y} is the set of anomaly scores of each node in cluster *i*.

Network Anomaly Score

Then for the Network Activity Score, we aggregate the cluster anomaly scores to obtain the Network Activity Score, NS(z), where z are the cluster scores.

Preliminaries 000	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score ○○●	Results
Network	Activity Predictio	n		

Tracking these scores over time will hopefully give us an indication of when future events might occur (i.e. some important clusters are beginning to act anomalously).

Preliminaries	Event Participation Detection	Tie-Strength Clustering	Network Activity Score	Results

- Problem Description
- Assumptions
- Network & Event Notation
- 2 Event Participation Detection
 - Structural
 - Metric-EPD
- 3 Tie-Strength Clustering
 - Tie-Strength
 - Clustering
- 4 Network Activity Score
 NAS Model
 NAS Prediction

Dynamic, Covert Network Simulation

- DCNS is a covert network simulation tool which seeks to mimic real world covert networks.
- The network seeks to remain secretive while accomplishing various objectives.
- The network is composed of "cells" which carry out the tasks (aquisition of resources, attacks, etc).
- There are external interventions (members captured/killed) and the network responds to these interventions by changing its structure.

 Preliminaries
 Event Participation Detection
 Tie-Strength Clustering
 Network Activity Score
 Results

 Preliminary Results: DCNS
 Construction
 Constru

Image: A transformed and the second seco

Preliminaries	Event Participation Detection	Tie-Strength Clustering 00	Network Activity Score	Results
Prelimina	ry Results: DCNS	5		

The following shows the percent of event based communities who were actually involved in the same events. Each cluster had around 10 members.

