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Data Analysis
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Point Clouds
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What is a Simplex?

A simplex is a generalization of a triangle to arbitrary dimensions.

Definition

A k-simplex is a k-dimensional polytope which is the convex hull of k + 1
vertices.

For lower dimensions, these have familiar names: vertex (0), edge (1),
triangle (2), tetrahedron (3).

Figure: 3-simplex
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Simplex: Abstract Representation

Given k + 1 vertices {v0, v1, ..., vk}, we can denote the k-simplex formed
by these vertices as σ = (v0, v1, ..., vk). A face of σ is any subset of σ.

Example: the 2-simplex (v0, v1, v3) is a face of the 4-simplex
(v0, v1, v2, v3, v4)

Note that given an abstract k-simplex σ, it is possible to form a geometric
realization of the complex. The result will be the convex hull of the
vertices in σ, embedded in Rd , d ≥ k .
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What is a Simplicial Complex?

One can form a Simplicial Complex by joining simplicies in a certain way.

Definition

A Simplicial Complex K is a set of simplicies such that

a) K is closed under the subset relation: If τ ⊆ σ ∈ K, then τ ∈ K.

b) (∗) If σ1, σ2 ∈ K, then σ1 ∩ σ2 is a face of both σ1 and σ2.

We only need (∗) when discussing a geometric realization of a simplicial
complex.
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Simplicial Complex Example
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Simplicial Complex Non-Example
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Cover and Nerve: Definition
We now define an open cover and the associated nerve of the open cover:

Definition

Given a topological space X, an open cover O of a set S ⊆ X is

O = {Ui}i∈I

where Ui ⊆ X and I is an indexing set, such that S ⊆
⋃

i∈I Ui

Definition

Given an open cover O = {Ui}i∈I , the nerve N of O is a subset of P(I )
such that

a) ∅ ∈ N

b) If ∩j∈JUj 6= ∅ for J ⊆ I , then J ∈ N

From these definitions, it is clear that the nerve of an open cover is a
simplicial complex!
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Cover and Nerve: Example

Pretty simple simplicial complex.
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Open Cover Dependence

The simplicial complex given by the nerve is completely dependent upon
the open cover that is chosen.

There are many ways to choose an open cover. We will present the
Voronoi Diagram which produces the Delaunay Complex.

We will then present the Alpha complex which allows us to analyze the
data at different levels of detail.
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Delaunay Complex: Definition

Given a subset S of a metric space X = (X , d), we define the Voronoi
Region R(x) of a point x ∈ S to be

R(x) = {y ∈ X |d(x , y) ≤ d(s, y),∀s ∈ S\{x}}

and the Voronoi Diagram of S , V (S), to be the set

V (S) = {R(x)|x ∈ S}

The Voronoi Diagram forms a closed cover of S and so we can consider
the nerve of V (S), which is called the Delaunay Complex.
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Delaunay Complex: Example

(a) Voronoi Region (b) Delaunay Complex

This is a very “filled” simplicial complex. Is there a way to capture more
of the intricacies of the data?
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Alpha Complex: Example

The Alpha complex is obtained by taking ε-balls around each point in S ,
intersecting these balls with the Voronoi regions, and taking the nerve of
this cover.

(c) Alpha Balls and Nerve (d) Alpha Complex

Notice that the Alpha complex is a subcomplex of the Delaunay complex.
If ε =∞, then the alpha complex is the Delaunay complex.
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nth Chain Group

We now turn to simplicial homology to analyze the shape of a given
simplicial complex. Here, we do not want to differentiate between different
orientations of simplicies and so we will denote an oriented simplex as [σ]
for simplex σ.

Definition

Given a simplicial complex K, the nth Chain Group Cn(K) is the free
Abelian group on K’s oriented n-simplicies.

Thus, elements in Cn(K) can be expressed as finite sums...

c =
∑
i

ci [σi ]

where σi ∈ K are n-simplicies and ci ∈ Z for all i .
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Boundary Homomorphism

Given the Chain Groups, we can define the n-boundary homomorphism
∂n : Cn → Cn−1 to be,

∂n[v0, ..., vn] =
n∑

i=0

(−1)i [v0, ..., v̂i , ..., vn]

where v̂i denotes removing vi from the vertex sequence.

Example: Triangle (on board)

∂1([a, c]− [b, c] + [b, a]) = ([c]− [a])− ([c]− [b]) + ([a]− [b]) = 0

Thus, [a, c]− [b, c] + [b, a] ∈ ker ∂1.
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Simplicial Homology

Note that ∂n ◦ ∂n+1 ≡ 0 (exercise) and therefore, the boundary operator
connects the chain groups into a chain complex:

...→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → ...

on which we can analyze the nth homology group Hn,

Hn = ker ∂n/im∂n+1

Elements in ker ∂n are cycles and elements in im∂n+1 are boundaries.
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Betti Numbers

We can consider the Betti Number of the nth homology group,

βn = rank(Hn) = min{|X | : X ⊆ Hn, 〈X 〉Hn}

This gives the number of n-dimensional holes in our space. Note that βn
will be non-zero for only finitely many n. Additionally, since K is finite, Hn

is finitely generated and therefore βn <∞ for all n.

A nice feature due to the Euler-Poincaré formula states that

χ(X) =
∞∑
n=1

(−1)nβn

where χ is the Euler characteristic.
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Single-Scale to Multi-Scale

Recall that we derived the alpha complex from a single parameter ε. That
is, we constructed balls of radius ε around our data points and intersected
these balls with the Voronoi regions at each point. Taking the nerve of
this cover yielded the alpha complex.

Therefore, the invariants we calculated were dependent on our choice of ε.
Persistence Homology allows one to vary the value of ε and look for
simplicies and invariants which do not change with varying ε. That is,
features which persist through changes in scale.
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Discussion of persistence homology will be left for another talk.

Thanks!
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