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Motivation

We can create point clouds via sampling. An important question then
concerns finding a condition which guarantees the original object can be
reconstructed accurately.
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Definition

The distance function RK of a compact set K of Rn associates to each
point x ∈ Rn its distance to K ,

RK (x) = min
y∈K

d(x , y)

Note that RK completely characterizes K since K = {x ∈ Rn|RK (x) = 0}.
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Definition

For a positive number α, define the α−offset of K , denoted Kα to be the
set

Kα = {x ∈ Rn|RK (x) ≤ α}

Definition

The Hausdorff distance dH(K ,K ′) between two compact sets
K ,K ′ ⊂ Rn is the minimum α for which K ⊂ (K ′)α and K ′ ⊂ Kα. Note
that this is equivalent to

dH(K ,K ′) = sup
x∈Rn
|RK (x)− RK ′(x)|
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Definition

The Medial Axis of an compact set K is the set of all points having more
than one closest point on the boundary of K .
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Gradient and Flow of Distance Functions

Given a compact set K of Rn, its associated distance function RK is not
differentiable on the medial axis of Rn\K .

To overcome this issue, we seek a Generalized Gradient function
∇K : Rn → Rn which agrees with the usual gradient of RK at points
where RK is differentiable.
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Generalized Gradient Flow
Flurry of definitions:
ΓK (x): set of points in K closest to x (i.e. {y ∈ K |d(x , y) = RK (x)})
σK (x): unique smallest ball enclosing ΓK (x).
ΘK (x): center of σK (x).
FK (x): radius of σK (x).
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Definition

The generalized gradient flow ∇K of RK is defined as

∇K (x) =
x −ΘK (x)

RK (x)

We define ∇K (x) = 0 for all x ∈ K . Note that ‖∇K (x)‖ ≤ 1 for all
x ∈ Rn.
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A few technical points

Although ∇K is not continuous, it can be shown that Euler shcemes using
∇K converge uniformly toward a continuous flow C : R+ × Rn → Rn.

Parameterizing an integral line of this flow by arc length, we get a map
s 7→ C(t(s), x) and so we can express the value of RK at the point
C(t(`), x) by integration along the curve with length `,

RK (C(t(`), x)) = RK (x) +

∫ `

0
‖∇K (C(t(s), x)‖ds

It can be shown that FK and RK increase along trajectories of the flow.

Patrick O’Neil (GMU) Sampling Theory March 24, 2014 9 / 19



Critical Points for Distance Functions

Definition

A point x ∈ K is a critical point of RK if ∇K (x) = 0.

The topology of Kα are closely related to the critical values of RK .

Definition

The weak feature size of K , denoted wfs(K ), is the infimum of the
positive critical values of RK . Equivalently, it is the minimum distance
between K and the set of critical points of RK .

The next lemma shows wfs may be viewed as the “minimum size of the
topological features” of the set K .
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Lemma

If 0 < α, β < wfs(K ), then Kα and Kβ are homeomorphic and even
isotopic. The same holds for the complements of Kα and Kβ.

Isotopic: roughly speaking, two subspaces of Rn are isotopic if they can be
deformed one into each other without tearing or self-intersection.

Theorem

Let K and K ′ be compact subsets of Rn and ε such that wfs(K ) > 2ε,
wfs(K ′) > 2ε, and dH(K ,K ′) < ε. Then

(i) Rn\K and Rn\K ′ have the same homotopy type.

(ii) If 0 < α ≤ 2ε then Kα and (K ′)α have the same homotopy type.
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We can generalize the notion of critical point.

Definition

A µ-critical point of the compact set K is a point x such that
‖∇K (x)‖ ≤ µ.

µ critical points exhibit some stability.

Critical Point Stability Theorem

Let K and K ′ be two compact subsets of Rn and dH(K ,K ′) ≤ ε. For any
µ-critical point x of K , there is a (2

√
ε/RK (x) + µ)-critical point of K ′ a

distance of at most 2
√
εRK (x) from x .
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Definition

Given a compact set K ⊂ Rn, its critical function χK : (0,+∞)→ R+ is
given by

χK (d) = min
x∈R−1

K (d)
‖∇K (x)‖

Note that R−1K (d) are all the points which are a distance d from K and so
χK (d) is the minimum norm of the gradient at these points.

Like µ-critical points, the critical function also has stability.
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Critical Function Stability Theorem

Let K and K ′ be two compact subsets of Rn and dH(K ,K ′) ≤ ε. For all
d ≥ 0, we have:

inf{χK ′(u)|u ∈ I (d , ε)} ≤ χK (d) + 2

√
ε

d

where I (d , ε) = [d − ε, d + 2χK (d)
√
εd + 3ε].

Critical function of a square with side length 50 in R3 (left) and the
critical function of a sampling of the square (right).
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Defintion

The µ-reach rµ(K ) of a compact set K ⊂ Rn is defined as

rµ(K ) = inf{d |χK (d) < µ}

and one last definition...

Definition

Given two non-negative real numbers κ and µ, we say that a compact set
K ⊂ Rn is a (κ, µ)-approximation of a compact set K ′ ⊂ Rn if the
Hausdorff distance between K and K ′ does not exceed κ times the µ-reach
of K ′.
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Reconstruction Theorem

Let K ⊂ Rn be a (κ, µ)-approximation of a compact set K ′. Let α be such
that

4dH(K ,K ′)

µ2
≤ α < rµ(K ′)− 3dH(K ,K ′)

If

κ <
µ2

5µ2 + 12

then the complement of Kα is homotopy equivalent to the complement of
K ′, and Kα is homotopy equivalent to (K ′)η for sufficiently small η.
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Example

The distance function to a sampling of an equilateral triangle. If the offset
parameter is appropriately chosen, then the offset of the sampling (tis
boundary is shown in bold), is homotopy equivalent to the triangle.
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Future Work

Do the sampling conditions allow for the recovery of differential
information?

This approach assumes the magnitude of ther perturbation is uniform
over the object, since we use Hausdorff distance. Can the ideas be
generalized to design a non-uniform sampling theory?

What if the ambient metric space is non-Euclidean?
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