

Multiplication Operators on the Lipschitz Space of a Tree

Part II: Spectrum

Patrick O'Neil

イロト イヨト イヨト イヨト

æ

Part II: Spectrum

Introduction	Definitions	Spectrum: Our Case

This presentation will continue to study the multiplication operator M_{ψ} given in [1]. Today, we will look at the spectrum of this operator.

We start with a review from last week.

Recall

Let X be a complex Banach space consisting of functions defined on a set Ω . Let $\psi : \Omega \to \mathbb{C}$.

The multiplication operator with symbol ψ is defined as the operator M_ψ : X → X given by M_ψ(f) = ψf.

We will be investigating the following case:

- Ω is an infinite tree.
- We consider Ω as a metric space with distance given by the length of the unique path between two vertices.
- X is the space of complex-valued Lipschitz functions on T;
 i.e. complex-valued functions f for which there exists a constant C such that, for all u, v ∈ Ω,

$$|f(v)-f(u)|\leq Cd(u,v)$$

We denote this space, \mathcal{L} .

Part II: Spectrum

Definitions	Spectrum: Our Case

Recall

Recall the following definitions:

• The norm of elements in \mathcal{L} : For $f \in \mathcal{L}$,

$$||f|| = |f(o)| + \sup_{0 \neq v \in T} |f(v) - f(v^{-})|$$

• Derivative at a vertex: For $v \in T$,

$$Df(v) = |f(v) - f(v^-)|$$

The little Lipschitz space L₀ is the subspace of L consisting of all functions f on T such that

$$\lim_{|v|\to\infty} Df(v) = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part II: Spectrum

Definition

Let A be a bounded operator on a Banach space X. The **spectrum** of A, denoted $\sigma(A)$, is defined as

 $\sigma(A) = \{\lambda \in \mathbb{C} | A - \lambda I \text{ is not invertible} \}$

where I is the identity operator.

Note that if $(A - \lambda I)^{-1}$ exists, it must be linear since $(A - \lambda I)$ is linear. Also, if $A - \lambda I$ is a bijection, by the bounded inverse theorem, $(A - \lambda I)^{-1}$ would be bounded.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Part II: Spectrum

Point Spectrum

It is therefore useful to look at when $A - \lambda I$ will not be injective:

Definition

Let A be a bounded linear operator on a Banach space X. The set of eigenvalues, $\sigma_p(A)$, is called the **point spectrum** of A. Recall,

$$\sigma_{p}(A) = \{\lambda \in \mathbb{C} | \ker(A - \lambda I) \neq 0\}$$

i.e. $A - \lambda I$ is not injective.

ヘロト 人間 とくほ とくほ とう

Part II: Spectrum

ヘロト 人間 とくほ とくほ とう

Approximate Point Spectrum

Definition

Let *A* be a bounded linear operator on a Banach space *X*. The **approximate point spectrum** $\sigma_{ap}(A)$ of *A* consists of all $\lambda \in \mathbb{C}$ for which there exists a sequence of norm 1 vectors $\{x_n\}$ such that

$$\|(A - \lambda I)x_n\| \to 0 \text{ as } n \to \infty$$

i.e. Ax_n and λx_n converge to each other.

By this definition, $\sigma_p(A) \subseteq \sigma_{ap}(A)$ and so

$$\sigma_p(A) \subseteq \sigma_{\rm ap}(A) \subseteq \sigma(A)$$

Part II: Spectrum

イロト イ部ト イヨト イヨト 三日

Spectrum Classification: Lemma I

The next two lemmas will be used to prove that

$$\partial \sigma(A) \subseteq \sigma_{\mathrm{ap}}(A)$$

These results are from [2]. I will give the first lemma without proof.

Lemma

Let A be an operator on a Banach Space X. If there exists A_0, B_0 such that $B_0A_0 = I$ and $||A - A_0|| < ||B_0||^{-1}$, then A is left invertible.

Part II: Spectrum

Spectrum Classification: Lemma II

Lemma

If $\lambda \in \partial \sigma(A)$ and $\{\lambda_n\}$ is a sequence in $\mathbb{C} \setminus \sigma(A)$ such that $\lambda_n \to \lambda$, then $\|(A - \lambda_n I)^{-1}\| \to \infty$ as $n \to \infty$.

Proof

Suppose otherwise. Then there exists a constant M and a subsequence $\{\lambda_{n_k}\}$ such that $\|(A - \lambda_{n_k}I)^{-1}\| \leq M$ for all k. Since $\lambda_{n_k} \to \lambda$, we can pick k large enough so that $|\lambda_{n_k} - \lambda| < M^{-1}$. Then $\|(\lambda_{n_k} - \lambda)I\| = \|(A - \lambda I) - (A - \lambda_{n_k}I)\| < \|(A - \lambda_{n_k}I)^{-1}\|^{-1}$ which, by the above lemma, would imply $(A - \lambda I)$ is invertible. This is a contradiction since $\lambda \in \sigma(A)$ and therefore we have the desired result.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Spectrum Classification: Theorem

Theorem

Let A be a bounded linear operator on a Banach space X. Then

 $\partial \sigma(A) \subseteq \sigma_{\mathrm{ap}}(A)$

Proof Let $\{\lambda_n\} \to \lambda$ as we had before. Recall,

$$\|(A - \lambda_n)^{-1}\| = \sup_{\|x\|=1} \|(A - \lambda_n)^{-1}(x)\|$$

Now, let $\{x_n\}$ be a sequence in X such that $||x_n|| = 1$ and $||(A - \lambda_n)^{-1}x_n|| > ||(A - \lambda_n)^{-1}|| - n^{-1}$.

Part II: Spectrum

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Spectrum Classification: Proof of Theorem

Let $\alpha_n = \|(A - \lambda_n)^{-1}x_n\|$. Then by the previous lemma, $\alpha_n \to \infty$. Now set $y_n = \alpha_n^{-1}(A - \lambda_n)^{-1}x_n$ (obviously $\|y_n\| = 1$). Then we have

$$(A - \lambda)y_n = (A - \lambda_n)y_n + (\lambda - \lambda_n)y_n$$

= $\alpha_n^{-1}x_n + (\lambda - \lambda_n)y_n$

This means $||(A - \lambda)y_n|| \le \alpha_n^{-1} + |\lambda - \lambda_n|$ and so $||(A - \lambda)y_n|| \to 0$ as $n \to \infty$. Recall that this was the definition of an element of the approximate point spectrum. Therefore, $\lambda \in \sigma_{ap}A$.

Recall a Theorem

For a function ψ on T, define

$$\sigma_{\psi} = \sup_{\mathbf{v}\neq\mathbf{0}} |\mathbf{v}| D\psi(\mathbf{v})$$

Note that if $\sigma_{\psi} < \infty$, then $\psi \in \mathcal{L}_0$.

Theorem

Let T be a tree and ψ a function on T, then the following are equivalent,

イロト イヨト イヨト イヨト

3

(a) M_{ψ} is bounded on \mathcal{L} .

(b) M_{ψ} is bounded on \mathcal{L}_0 .

(c) $\psi \in L^{\infty}$ and σ_{ψ} is finite.

Theorem 5.1

Theorem

Let M_{ψ} be a bounded multiplication operator on \mathcal{L} or \mathcal{L}_0 . Then

(a)
$$\sigma_p(M_{\psi}) = \psi(T);$$

(b) $\sigma(M_{\psi}) = \sigma_{ap}(M_{\psi}) = \overline{\psi(T)}$

▲ロト ▲母 ト ▲臣 ト ▲臣 ト 三臣 - のへの

Part II: Spectrum

Proof of Theorem 5.1a

Proof

Since boundedness of a multiplication operator on \mathcal{L} implies boundedness on \mathcal{L}_0 , we will only consider the former.

$$\sigma_p(M_\psi) = \psi(T)$$

Let $\lambda \in \sigma_p(M_{\psi})$. Then there exists $0 \not\equiv f \in \mathcal{L}$ such that $\psi f = \lambda f$. This means there exists a vertex v such that $f(v) \neq 0$ and $\psi(v)f(v) = \lambda f(v)$. Therefore, $\psi(v) = \lambda$ and $\lambda \in \psi(T)$.

Now let $\lambda \in \psi(T)$. Then there exists $v \in T$ such that $\psi(v) = \lambda$. Thus since $\chi_v \not\equiv 0$ but $(M_{\psi} - \lambda I)\chi_v \equiv 0$, we see $(M_{\psi} - \lambda I)$ is not injective and therefore, $\lambda \in \sigma_p(M_{\psi})$.

Part II: Spectrum

Multiplication Operators on the Lipschitz Space of a Tree

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

イロト イ理ト イヨト イヨト 一座

Proof of Theorem 5.1b

$$\sigma(M_{\psi}) = \overline{\psi(T)}$$

One direction is obvious. By part (a) and the fact that $\sigma(M_{\psi})$ is closed, we have $\overline{\psi(T)} \subseteq \sigma(M_{\psi})$.

Part II: Spectrum

Proof of Theorem 5.1b

Next, let $\lambda \notin \overline{\psi(T)}$. This means there exists c > 0 such that $|\psi(v) - \lambda| \ge c$ for all $v \in T$. Therefore, the function $\varphi_{\lambda} : T \to \mathbb{C}$ defined by $\varphi_{\lambda}(v) = (\psi(v) - \lambda)^{-1}$ is bounded on T. Also,

$$\sigma_{\varphi_{\lambda}} = \sup_{v \neq o} |v| D_{\varphi_{\lambda}}(v) = \sup_{v \neq 0} |v| |\varphi_{\lambda}(v) - \varphi_{\lambda}(v^{-})|$$

$$= \sup_{v \neq 0} |v| |(\psi(v) - \lambda)^{-1} - (\psi(v^{-}) - \lambda)^{-1}|$$

$$= \sup_{v \neq 0} |v| \left| \frac{\psi(v) - \psi(v^{-})}{(\psi(v) - \lambda)(\psi(v^{-}) - \lambda)} \right|$$

$$\leq \sup_{v \neq 0} \frac{|v|}{c^{2}} D_{\psi}(v)$$

$$\leq \frac{1}{c^{2}} \sigma_{\psi}$$

Part II: Spectrum

Proof of Theorem 5.1b

Then, using a previous theorem and the fact that $\sigma_{\varphi_{\lambda}} \leq \frac{1}{c^2} \sigma_{\psi} < \infty$, we have $M_{\varphi_{\lambda}}$ is bounded on \mathcal{L} . Therefore, $M_{\psi-\lambda} = M_{\psi} - \lambda I$ is invertible on \mathcal{L} which means $\lambda \notin \sigma(M_{\psi})$. Hence, $\sigma(M_{\psi}) = \overline{\psi(T)}$.

Finally, since $\partial \sigma(M_{\psi}) \subseteq \sigma_{ap}(M_{\psi}) \subseteq \sigma(M_{\psi})$ and by part (a), we have $\sigma_{ap}(M_{\psi}) = \sigma(M_{\psi}) = \overline{\psi(T)}$ as desired.

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > のへで

Part II: Spectrum

æ

イロト イヨト イヨト イヨト

Boundedness from Below

Definition

Let A be a bounded operator on a Banach space X is *bounded* below if there exists C > 0 such that $||Ax|| \ge C||x||$ for all $x \in X$.

Part II: Spectrum

æ

イロト イ理ト イヨト イヨト

Boundedness from Below

The following theorem is from [2].

Theorem

For a bounded operator A on a Banach space X and for $\lambda \in \mathbb{C}$, the following are equivalent,

Part II: Spectrum

Boundedness from Below

From theorem 5.1 and the previous theorem, we conclude that if M_{ψ} is bounded on \mathcal{L} or \mathcal{L}_0 , then M_{ψ} is bounded below \iff $0 \notin \overline{\psi(t)}$. Thus,

Theorem

The bounded operator M_ψ on ${\cal L}$ or ${\cal L}_0$ is bounded below if and only if

 $\inf\{|\psi(v)|:v\in T\}>0$

ヘロト 人間 と 人 ヨ と 人 ヨ と

3

Part II: Spectrum

イロト イ理ト イヨト イヨト

Part II: Spectrum