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Introduction

This presentation will continue to study the multiplication operator

M, given in [1]. Today, we will look at the spectrum of this
operator.

We start with a review from last week.
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Recall

Let X be a complex Banach space consisting of functions defined
onaset Q. Lety:Q — C.

» The multiplication operator with symbol 1) is defined as the
operator My, : X — X given by My (f) = 4 f.
We will be investigating the following case:
> Q is an infinite tree.

» We consider €2 as a metric space with distance given by the
length of the unique path between two vertices.

» X is the space of complex-valued Lipschitz functions on T;
i.e. complex-valued functions f for which there exists a
constant C such that, for all u,v € Q,

|f(v) — f(u)| < Cd(u,v)

We denote this space, L.
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Recall
Recall the following definitions:
» The norm of elements in £: For f € L,

Il = [f(o)l + sup_[f(v)—F(v7)|

0#veT
» Derivative at a vertex: For v e T,

Df(v) = [f(v) — f(v7)
» The little Lipschitz space Ly is the subspace of L consisting
of all functions f on T such that
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Spectrum

Definition
Let A be a bounded operator on a Banach space X. The
spectrum of A, denoted o(A), is defined as

o(A) = {\ € C|A— Al is not invertible}
where [ is the identity operator.

Note that if (A — A/)~! exists, it must be linear since (A — \/) is
linear. Also, if A— Al is a bijection, by the bounded inverse
theorem, (A — A/)~! would be bounded.
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Point Spectrum

It is therefore useful to look at when A — Al will not be injective:
Definition

Let A be a bounded linear operator on a Banach space X. The set
of eigenvalues, o,(A), is called the point spectrum of A. Recall,

op(A) = {\ € C|ker(A—\I) # 0}

i.e. A— Al is not injective.
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Approximate Point Spectrum

Definition
Let A be a bounded linear operator on a Banach space X. The

approximate point spectrum o,,(A) of A consists of all A € C
for which there exists a sequence of norm 1 vectors {x,} such that

[I(A—=A)xu|| = 0as n— oo

i.e. Ax, and Ax, converge to each other.
By this definition, o,(A) C 0ap(A) and so

7p(A) C dap(A) S o(A)
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Spectrum: Results

Spectrum Classification: Lemma |

The next two lemmas will be used to prove that
00(A) C oap(A)

These results are from [2]. | will give the first lemma without proof.

Lemma

Let A be an operator on a Banach Space X. If there exists Ag, By
such that ByAg = I and ||A — Ag|| < ||Bo|| =1, then A is left
invertible.
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Spectrum: Results

Spectrum Classification: Lemma Il

Lemma

If X\ € 90(A) and {\,} is a sequence in C\o(A) such that A\, — A,
then [|(A — \,/)7Y|| = oo as n — oo.

Proof

Suppose otherwise. Then there exists a constant M and a
subsequence {\p, } such that ||(A — A, /)7 < M for all k. Since
An, — A, we can pick k large enough so that [\, — A\ < M1
Then [[(An, — A1 = (A= A1) = (A= Ap, DI < (A= An, 1)1
which, by the above lemma, would imply (A — A/) is invertible.
This is a contradiction since A € o(A) and therefore we have the
desired result.
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Spectrum: Results

Spectrum Classification: Theorem

Theorem

Let A be a bounded linear operator on a Banach space X. Then

9o (A) C oap(A)

Proof
Let {\n} — X as we had before. Recall,

I(A=An)7H = sup [[(A =) (X)]

Now, let {x,} be a sequence in X such that ||x,|| =1 and
I(A = Xn) "l > [I(A = Xn) Y| = 07
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Spectrum: Results

Spectrum Classification: Proof of Theorem

Let ap = ||(A — An)"txy||. Then by the previous lemma, a;, — oc.
Now set y, = a; 1(A — An)"1x, (obviously ||y,|| = 1). Then we
have

(A - )‘))’n = (A - )\n)}’n ()‘ - An))’n

=aq, Tx, + (A= An)yn

This means [[(A— \)ya| < ;1 +|A—An| and so [|(A— A)ya| — 0
as n — 0o. Recall that this was the definition of an element of the
approximate point spectrum. Therefore, \ € 0, A.
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Spectrum: Our Case

Recall a Theorem

For a function ¢ on T, define
oy = sup|v|Di(v)
v#0

Note that if oy, < 00, then v € Lo.

Theorem

Let T be a tree and v a function on T, then the following are
equivalent,

(a) My is bounded on L.
(b) My is bounded on Ly.
(c) ¥ € L* and oy, is finite.
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Spectrum: Our Case

Theorem 5.1

Theorem
Let My, be a bounded multiplication operator on L or Lo. Then

@) oM =(T);
(b) o(My) = 7ap(My) = U(T)
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Spectrum: Our Case

Proof of Theorem 5.1a

Proof
Since boundedness of a multiplication operator on L implies
boundedness on Ly, we will only consider the former.

op(My) = (T)

Let A € 0p(My). Then there exists 0 # f € £ such that f = Af.
This means there exists a vertex v such that f(v) # 0 and
P(v)f(v) = Af(v). Therefore, ¢(v) = X and X € ¢(T).

Now let A € ¥(T). Then there exists v € T such that ¥(v) = A.
Thus since x, # 0 but (My, — Al)x, =0, we see (My, — /) is not
injective and therefore, A € o,(My).
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Proof of Theorem 5.1b

o(My) =4(T)
One direction is obvious. By part (a) and the fact that o(My) is
closed, we have 9)(T) C o(My).
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Spectrum: Our Case

Proof of Theorem 5.1b

Next, let A € ¢)(T). This means there exists ¢ > 0 such that
[t(v) — A| > ¢ for all v € T. Therefore, the function vy : T — C
defined by oy (v) = (1»(v) — A)~! is bounded on T. Also,

or = Sup [V| Dy, (v) = sup |v]jpa(v) — @a(v7)|
v#o v#0

= sup [v[|((v) = X) 7 = (&(v7) = A) 7Y
v#0

ool H = v)

vzo |[(0(v) = A)((vT) = A)
< sup| |Dw( )

v£0
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Proof of Theorem 5.1b

Then, using a previous theorem and the fact that

Ty < %aw < 00, we have M, is bounded on L. Therefore,
My_x = My, — Al is invertible on £ which means A & o(My).

Hence, o(My) = 9(T).

Finally, since 0o (My) C oap(My) C o(My) and by part (a), we
have o.p(My) = 0(My) = 9(T) as desired.
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Boundedness from Below

Definition

Let A be a bounded operator on a Banach space X is bounded

below if there exists C > 0 such that ||Ax|| > C||x]| for all x € X
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Spectrum: Our Case

Boundedness from Below

The following theorem is from [2].

Theorem

For a bounded operator A on a Banach space X and for A € C,
the following are equivalent,

(@) A& oap(A)
(b) A — Xl is injective and has closed range
(c) A— Al is bounded below.
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Spectrum: Our Case

Boundedness from Below

From theorem 5.1 and the previous theorem, we conclude that if
My, is bounded on L or Lo, then My, is bounded below <=~

0 ¢ ¥(t). Thus,

Theorem

The bounded operator My, on L or Lg is bounded below if and
only if
inf{|(v)|:ve T} >0
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Spectrum: Our Case
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