Dynamic, Covert Network Simulation

Patrick O'Neil oneil.patrick@geoeye.com

GeoEye Analytics

April 5, 2012

Introduction	Model Description	Results	Conclusion
•		0	00
Motivation			

Problems

- There is a lack of open source covert network data.
- Any data on covert networks is almost certainly incomplete.
- Data we do have corresponds to one specific network with unique evolution.

Motivation

Problems

- There is a lack of open source covert network data.
- Any data on covert networks is almost certainly incomplete.
- Data we do have corresponds to one specific network with unique evolution.

Solution

• Generating data with DCNS allows us to test network analysis algorithms on a wide variety of networks, for which we know the ground truth.

Motivation

Problems

- There is a lack of open source covert network data.
- Any data on covert networks is almost certainly incomplete.
- Data we do have corresponds to one specific network with unique evolution.

Solution

• Generating data with DCNS allows us to test network analysis algorithms on a wide variety of networks, for which we know the ground truth.

Objective: Generate a dynamic network which grows and evolves in response to internal characteristics as well as external intervention.

• In this simulation, nodes are given the ability to communicate and work with other nodes to accomplish randomly generated objectives.

- In this simulation, nodes are given the ability to communicate and work with other nodes to accomplish randomly generated objectives.
- Nodes operate in a covert manner and from this local behavior, a globally secretive network is simulated.

- In this simulation, nodes are given the ability to communicate and work with other nodes to accomplish randomly generated objectives.
- Nodes operate in a covert manner and from this local behavior, a globally secretive network is simulated.
- To begin, an undirected network structure, G(V, E), forms the foundation upon which the network will build.

- In this simulation, nodes are given the ability to communicate and work with other nodes to accomplish randomly generated objectives.
- Nodes operate in a covert manner and from this local behavior, a globally secretive network is simulated.
- To begin, an undirected network structure, G(V, E), forms the foundation upon which the network will build.
- The network nodes, V, are leaders and subordinates

- In this simulation, nodes are given the ability to communicate and work with other nodes to accomplish randomly generated objectives.
- Nodes operate in a covert manner and from this local behavior, a globally secretive network is simulated.
- To begin, an undirected network structure, G(V, E), forms the foundation upon which the network will build.
- The network nodes, V, are leaders and subordinates
- The network edges, *E*, are weighted edges which reflect when two nodes have the ability to communicate and work together. Large edge weights indicate the connected members work well together.

Introduction	Model Description	Results	Conclusion
O		0	00
Model Overview:	Operations		

Tasks

Tasks involve one leader and a subset of that leader's subordinates. These nodes work together to recruit new members to the network and collect resources. At the end of the task, the members travel to a "target location".

Model Overview: Operations

Tasks

Tasks involve one leader and a subset of that leader's subordinates. These nodes work together to recruit new members to the network and collect resources. At the end of the task, the members travel to a "target location".

Cooperative Tasks (co-Ops)

Cooperative tasks involve up to three leaders and a subset of those leaders' subordinates. co-Ops are designed to mimic the activities of real terror cells leading up to attacks that have occured in the past. In this presentation, the co-Op discussed is based upon the 2002 terror attacks in Mombasa, Kenya.

Introduction	Model Description	Results	Conclusion
O		O	00
Member Attr	ributes: Overview		

Members of the network are assigned a set of attributes and roles that define their behavior within the network.

Introduction	Model Description	Results	Conclusion
0		0	00
Member At	tributes: Overview		

Members of the network are assigned a set of attributes and roles that define their behavior within the network.

Attributes

- Leadership: A node may be a leader or a subordinate. Leaders can organize cells and begin operations while subordinates are members of cells and participate in the operations.
- Roles: Determines the node's available actions.
- Chance of Discovery: How exposed the member is to external intervention (capture, kill).
- **Radical**: Indicates the devotion of the member to the network. Used for promotion/demotion.

Introduction	Model Description	Results	Conclusion
0		0	00
Member Attr	ributes: Roles		

Member roles were selected from the JJATT dataset. There are two ways for a node to obtain a role, it can enter the network with the role or it can be given the role during the simulation.

Introduction	Model Description	Results	Conclusion
O		0	00
Member Attr	ibutes: Roles		

Member roles were selected from the JJATT dataset. There are two ways for a node to obtain a role, it can enter the network with the role or it can be given the role during the simulation.

A	Available Upon Recruitment		
Sympathizer	Does not do much to help the network		
Logistician	Needed for successful task completion		
Bomb Maker	Needed for successful task completion		
Bomber	Needed for successful task completion		
Foot Soldier	Needed for successful task completion		
Financier	Collects resources needed for tasks		
Weapons	Collects resources needed for tasks		
	Acquired		
Trainer	Gives nodes new roles		
Recruiter	Recruits new members for tasks		

A member's chance of discovery $x_d \in [0, 1]$ (CoD) indicates how exposed it is to external intervention. A threshold value λ may be set so that any node x with $x_d > \lambda$ is captured or killed.

A member's chance of discovery $x_d \in [0, 1]$ (CoD) indicates how exposed it is to external intervention. A threshold value λ may be set so that any node x with $x_d > \lambda$ is captured or killed.

CoD Influences

- Neighbors: As captured nodes may yield information about other nodes, when a node x is captured or killed, the CoD of all x's neighbors increases by the parameter ρ (i.e. ∀y ∈ N_x, y_d(t + 1) = y_d(t) + ρ).
- Location: At any time, a member may be located in one of three types of locations: hostile (increases x_d), neutral, and friendly (decreases x_d).
- Secrecy: Each member is assigned a secrecy score, x_s . Every round, x_s is subtracted from x_d (i.e. $x_d(t+1) = x_d(t) x_s$). This reflects the fact that some nodes are harder to track than others.

GeoEye **Analytics**

Introduction	Model Description	Results	Conclusion
0		0	00
Member Att	ributes: Radical		

A member's Radical score, $x_r \in [0, 1]$, indicates how committed it is to the success of the network.

Introduction	Model Description	Results	Conclusion
O		0	00
Member Att	ributes: Radical		

A member's Radical score, $x_r \in [0, 1]$, indicates how committed it is to the success of the network.

Radical

- High Score: Results in promotion after which the node can begin operations.
- Low Score: Demotion and eventually the node abandons the network.

Introduction	Model Description	Results	Conclusion
0		O	00
Member Att	tributes: Radical		

A member's Radical score, $x_r \in [0, 1]$, indicates how committed it is to the success of the network.

Radical

- High Score: Results in promotion after which the node can begin operations.
- Low Score: Demotion and eventually the node abandons the network.

Radical Influences

- Increases when engaged in an operation
- Receives a bonus for successful completion
- Decreases when not involved in an operation

GeoEye **Analytics**

Introduction	

Results 0

Network Attributes

Network Security

Network Security, $NS(c_m, k_m)$, is dependent upon the number of members captured/killed, $c_m, k_m \in \mathbb{N}$ in the past $m \in \mathbb{N}$ rounds. Higher NS values result in lower connectivity rates.

Results 0

Network Attributes

Network Security

Network Security, $NS(c_m, k_m)$, is dependent upon the number of members captured/killed, $c_m, k_m \in \mathbb{N}$ in the past $m \in \mathbb{N}$ rounds. Higher NS values result in lower connectivity rates.

Operation Generation Rate

The probability of a new operation being generated, $P_O(c_m, k_m, r_c, r_k)$, depends on the number of members captured/killed in the past *m* rounds and the reaction to members being captured or killed, $r_c, r_k \in [-1, 1]$. For example, if $r_c < 0$, then the network will generate fewer operations in response to members being captured.

GeoEye **Analytics**

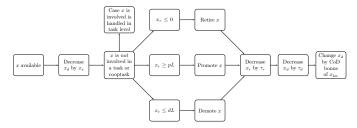


Figure: Node Update Process

Nodes are updated each round in the above process. When a node is involved in an operation, their attributes are updated in the operation update process. Thus, nodes can only be promoted/demoted when they are *not* involved in operations.

• Connections reflect when two nodes can communicate with each other.

- Connections reflect when two nodes can communicate with each other.
- If nodes *i* and *j* are connected, then e_{ij} ∈ E. The strength of this connection is given by w : E → [-1, 1]. When an edge, e_{ij}, is first created, w(e_{ij}) = 0.1.

- Connections reflect when two nodes can communicate with each other.
- If nodes i and j are connected, then e_{ij} ∈ E. The strength of this connection is given by w : E → [-1, 1]. When an edge, e_{ij}, is first created, w(e_{ij}) = 0.1.
- For all remaining time,

$$w_{t+1}(e_{ij}) = w_t(e_{ij}) + qO_c + sL_c,$$

where q = 1 when i, j are involved in the same operation (0 otherwise), s = 1 when i, j are in the same location (0 otherwise), and $O_c, L_c \in [0, 0.1]$.

- Connections reflect when two nodes can communicate with each other.
- If nodes i and j are connected, then e_{ij} ∈ E. The strength of this connection is given by w : E → [-1, 1]. When an edge, e_{ij}, is first created, w(e_{ij}) = 0.1.
- For all remaining time,

$$w_{t+1}(e_{ij}) = w_t(e_{ij}) + qO_c + sL_c,$$

where q = 1 when i, j are involved in the same operation (0 otherwise), s = 1 when i, j are in the same location (0 otherwise), and $O_c, L_c \in [0, 0.1]$.

• Connection rates are determined by *C_n* (mutual neighbor), *C_t* (same task), *C_c* (same co-Op). These rates are modified based on *NS*.

- Connections reflect when two nodes can communicate with each other.
- If nodes i and j are connected, then e_{ij} ∈ E. The strength of this connection is given by w : E → [-1, 1]. When an edge, e_{ij}, is first created, w(e_{ij}) = 0.1.
- For all remaining time,

$$w_{t+1}(e_{ij}) = w_t(e_{ij}) + qO_c + sL_c,$$

where q = 1 when i, j are involved in the same operation (0 otherwise), s = 1 when i, j are in the same location (0 otherwise), and $O_c, L_c \in [0, 0.1]$.

- Connection rates are determined by C_n (mutual neighbor), C_t (same task), C_c (same co-Op). These rates are modified based on NS.
- When a node x is captured/killed, the neighbors of this node may disconnect from x.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Tas	ks		

• Tasks consist of one leader and a number of subordinates working to accomplish a goal.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Ta	isks		

- Tasks consist of one leader and a number of subordinates working to accomplish a goal.
- When a task is generated it is given the following attributes,

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Tas	sks		

- Tasks consist of one leader and a number of subordinates working to accomplish a goal.
- When a task is generated it is given the following attributes,
 - T_{rec} : the required number of members to successfully complete the task.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Ta	sks		

- Tasks consist of one leader and a number of subordinates working to accomplish a goal.
- When a task is generated it is given the following attributes,
 - T_{rec} : the required number of members to successfully complete the task.
 - *T_{res}*: the required number of resources to successfully complete the task.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Tas	iks		

- Tasks consist of one leader and a number of subordinates working to accomplish a goal.
- When a task is generated it is given the following attributes,
 - T_{rec} : the required number of members to successfully complete the task.
 - T_{res} : the required number of resources to successfully complete the task.
 - $T_{\Delta t}$: the amount of time until the task ends. This value is subject to $T_{\Delta t} \ge \max(T_{rec}, T_{res}) + opTime$ where opTime is the duration of the operational stage of a task.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Tas	sks		

- Tasks consist of one leader and a number of subordinates working to accomplish a goal.
- When a task is generated it is given the following attributes,
 - T_{rec} : the required number of members to successfully complete the task.
 - T_{res} : the required number of resources to successfully complete the task.
 - $T_{\Delta t}$: the amount of time until the task ends. This value is subject to $T_{\Delta t} \ge \max(T_{rec}, T_{res}) + opTime$ where opTime is the duration of the operational stage of a task.
 - T_d : the amount each member's *CoD* increases each round.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: Tas	sks		

- Tasks consist of one leader and a number of subordinates working to accomplish a goal.
- When a task is generated it is given the following attributes,
 - T_{rec} : the required number of members to successfully complete the task.
 - T_{res} : the required number of resources to successfully complete the task.
 - $T_{\Delta t}$: the amount of time until the task ends. This value is subject to $T_{\Delta t} \ge \max(T_{rec}, T_{res}) + opTime$ where opTime is the duration of the operational stage of a task.
 - T_d : the amount each member's *CoD* increases each round.
 - T_r : the amount each member's radical increases each round.

Introduction	Model Description	Results	Conclusion
O		0	00
Operations:	Tasks		

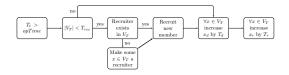


Figure: Preparation Stage

Introduction	Model Description	Results	Conclusion
O		0	00
Operations: -	Tasks		

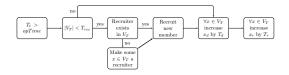


Figure: Preparation Stage

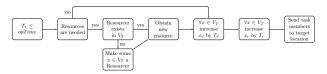


Figure: Operational Stage

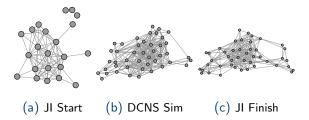
Results 0

Operations: Tasks

End of Task

- For a task to qualify for success, it must have met the recruitment and resource requirements.
- The probability of success is determined by a utility function U(T).
- The utility function used in this simulation averages the edge weights of all involved members using weights of 0 when an edge does not exist.
- Since edge weights grow over time and inexperienced members would have low edge weights, U(T) indirectly captures the experience of the members involved.
- If the task is successful, all of the task members receive bonuses to their edge weights.

Figure: Mombasa co-Op Attack Sequence


• co-Ops are similar to tasks except they have up to three leaders and the behavior of those involved is more specific.

GeoEye Analytics

Introduction	Model Description	Results	Conclusion
O		●	00
Results			

Although the primary advantage to using DCNS is the ability to generate a wide range of networks, accurately recreating a real, historical network more readily demonstrates the tunability of DCNS. We begin with Jemaah Islamiyah's (JI) network structure in 1995 and simulate the network up to 2005.

Real Start 22 83 14 7.55 0.36	
DCNS Sim 44 236 15 10.72 0.25 Real Finish 45 233 14 10.36 0.24	1.60 2.02 2.07

Introduction	Model Description	Results	Conclusion
O		0	●○
Conclusion			

• DCNS can be tuned to generate a wide variety of dynamic networks.

- DCNS can be tuned to generate a wide variety of dynamic networks.
- The simulator reacts to external intervention and acts in a cover manner.

- DCNS can be tuned to generate a wide variety of dynamic networks.
- The simulator reacts to external intervention and acts in a cover manner.
- Realistic networks can be generated using the correct parameters.

- DCNS can be tuned to generate a wide variety of dynamic networks.
- The simulator reacts to external intervention and acts in a cover manner.
- Realistic networks can be generated using the correct parameters.
- Networks with dynamics we have not yet encountered can be investigated and network analysis algorithms can be tested on these networks.

Introduction	Model Description	Results	Conclusion
O		0	●○
Conclusion			

- DCNS can be tuned to generate a wide variety of dynamic networks.
- The simulator reacts to external intervention and acts in a cover manner.
- Realistic networks can be generated using the correct parameters.
- Networks with dynamics we have not yet encountered can be investigated and network analysis algorithms can be tested on these networks.
- DCNS allows a researcher to determine the sensitivity of their algorithms to the input networks they test upon.

Introduction	Model Description	Results	Conclusion
			0•
Conclusion			

Questions?

