Challenges and strategies in the analysis and quantification of mRNA-Seq datasets.

School of Systems Biology Research Day

Parsa Hosseini Bioinformatics/Computational Biology Ph.D.

- RNA-Seq Overview
 - RNA-Seq vs. Affymetrix GeneChips
- RNA-Seq dataset organization
- Normalization, Differential Expression

- RNA-Seq Overview
 - RNA-Seq vs. Affymetrix GeneChips
- RNA-Seq dataset organization
- Normalization, Differential Expression

RNA-Seq Overview

- New transcriptomics tool for rapid parallel sequencing, referred to as 'high throughout sequencing'.
- RNA-Seq is part of an umbrella of technologies known as 'next-generation sequencing'
 - Faster sequencing than Sanger
 - Safer than Maxam-Gilbert

RNA-Seq Overview

Technology	Read (bp; approx)	\$ / Mb	Error %	Throughput (Mb/day)
illumina GAIIx	75 - 100	2	2 0.1 - 1	~400
Roche 454 Titanium	340	55	5 4 - 5	~300
SOLiD v3	50	1	. < 1	~600
Helicos HeliScope	25 - 50	1	. < 1	>1,100
Polonator	13 - 26	1	< 1	4,000 - 5,000

Potential Uses:

- Re-sequencing, de-novo sequencing.
- Alternative splice analysis, SNPs.
- Transcriptome profiling.
- Multiplexed sequencing.
- miRNA, gene discovery.
- Drive treatment of cancer patients (Sci. Trans. Med, 2011)

RNA-Seq vs. Affymetrix GeneChips

RNA-Seq

- Low amount of RNA required.
- Quantifying less-abundant transcripts.
- Throughput orders or magnitude higher.
- Low background noise.
- Single-base pair resolution.
- Alternative splicing / novel isoforms.
- Though cost is expensive, costs are dropping rapidly; differential against microarrays will be minimal.

Illumina sequencing -1/3

Illumina sequencing -2/3

Illumina sequencing -3/3

- Multiplex sequencing (upto 96 samples / flowcell)
 - 7bp tag identifies each sample.

- RNA-Seq
 - RNA-Seq vs. Affymetrix GeneChips
- RNA-Seq dataset organization
- Normalization, Differential Expression

RNA-Seq dataset organization

- From 2010 on, TIFF replaced with thumbnails.
 - Flow-cell = 100 120 tiles.
 - After laser-emission, an thumbnail is captured for each nucleotide for each tile (hence 4x per tile; 0.04 MB each).
 - = > 7 (#/lanes) * 80 (#/cycles) * 4 (bases) * 0.04 (#/MB per image) * 120 (#/tiles)
 - ~ 11 GB (storage drops 2x order-of-magnitude)
- But as costs drop, throughput increases, longer reads.

RNA-Seq dataset organization

- 2x popular NGS repositories:
 - 1. Sequence Read Archive (SRA)
 - 2. European Nucleotide Archive (ENA)
- February 2011: SRA set for closure
 - October 2011 (<u>1.34 PB</u>)
 - September 2010 (<u>100 TB</u>)
 - Budgetary constraints, storage/management issues
 - A centralized DB for all terabyte-sized NGS datasets?

RNA-Seq dataset organization

Reads are represented with 'quality (Q) scores'

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*(((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

- Q-scores determine P(base=incorrectly called)
 - Fastq quality ASCII -> integer determines Q-score

Q-value	% incorrect	% correct		
1	79.433	20.567	$Q = -10\log(P)$	
10	10	90	0	
15	3.162	96.838	$\frac{Q}{-10} = \log(P)$	
20	1	99	-10	
25	0.316	99.684	$P = 10^{\frac{-Q}{10}}$	
30	0.1	99.9		
35	0.032	99.968		
40	0.01	99.99		
45	0.003	99.997		

$$Q = -10\log(P) \tag{1}$$

$$\frac{Q}{-10} = \log(P) \tag{2}$$

$$P = 10^{\frac{-Q}{10}} \tag{3}$$

- RNA-Seq Overview
 - RNA-Seq vs. Affymetrix GeneChips
- RNA-Seq dataset organization
- Normalization, Differential Expression

Normalization, Differential Expression

- Early normalization = Divide read-counts by #/ sequence reads. Drawback = Two datasets may have differing depth, coverage.
- Popular normalization approaches:
 - RPKM (reads per kilobase per million of mapped reads); (Mortazavi, 2008)
 - TMM (trimmed mean of M scores); (Oshlack, 2010)
 - Log-transform read counts and treat like microarray dataset (t-test, etc)

Normalization, Differential Expression

- Utilizing statistical testing and models will help infer differential expressed genes (DEGs).
- Poisson distribution can be used to find DEGs
 - Image: Marioni, 2008), (Wang, 2010)
- Caveat = Poisson has been shown to predict smaller variance from read-count datasets.
 - Result = extra variance from replicates is often goes unappreciated, hence 'over-dispersion' (more variance in dataset than from model).
 - Conclusion = not harnessing variance makes it hard to find false-positive DEGs.
- Modeling count data using Negative Binomial Distribution (NB) can address the over-dispersion.
 - (Robinson, 2010), (Anders, 2010); tools such as edgeR, DESeq.

Normalization, Differential Expression

