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Profile Hidden Markov Models (PHMM) are statistical 

techniques for modeling multiple sequence alignments; 

useful in protein family modeling and homology analysis. 

Given a multiple sequence alignment (MSA), PHMMs can 

probabilistically represent an MSA consensus column in the 

form of ‘states’ (Figure 1b). The probability of transitioning 

from a consensus column to the next is driven by the 

‘transition state’ of moving from one state (i.e. insertion) to 

another (i.e. deletion). (Figure 1a).

Profile Hidden Markov Models
Very little is known about transposons and their role within 

plant-pathogenic fungi. What is known however is that with 

probabilistic models, we can create statistical solutions to 

predict plant-pathogenic fungal transposable elements.

We present a probabilistic model for the prediction of 

transposable elements in plant-pathogenic fungi. 

Data and literature mining retrieved a set of 35 biotrophic 

plant fungal transposons, ranging from A. bisporus to T. 

inflatum. Homology and sequence analysis was performed 

for each pathogen, resulting in a multiple-sequence 'profile' 

model. This profile model, made up of sequence families, 

represents conserved regions in the sequence alignment and 

probabilistic states for each nucleotide. 

Given a query sequence, calculations can be made as to how 

probable motifs within this sequence compare to each 

profile model.

Introduction

Literature mining was used to create a set of 35 unique plant-

pathogenic fungal TEs. For each transposon, tools such as 

COGEME and RepeatMasker were used to create a family of 

homologous sequences per TE. Family sizes varied for each 

TE, from 1 - 50 sequences. Transposons with < 5 sequences 

(n=25) were filtered to prevent weak model creation. Of the 

remaining 10 transposons (Table 1), multiple sequence 

alignments were created using MAFFT. The output CLUSTALW 

Model development

Figure 1a. Multiple sequence alignment states.

Creating a model of an MSA and using its transition-probabilities to 

move onto consecutive states.

alignments were created using MAFFT. The output CLUSTALW 

file was converted to Stockholm 1.0 format using custom 

Python scripts. For each Stockholm MSA, HMMER v3.0, a 

sequence homology software tool, was used to create a 

HMM model. Python scripts were made to facilitate iteration 

of a user-defined fasta file against each model as well as 

output the best-scoring hit (based on e-value).

Figure 1b. States in an HMM.

An HMM model makes use of frequency-counts (in this case, amino-

acid frequencies) to help guide transition states from state X -> Y

ID Pathogen TE_Name #/sequences

1 Agaricus Bisporus ABR1 7

2 Botryotinia Fuckeliana FLIPPER 6

3 Botrytis Cinerea BOTY1 9

4 Fusarium Oxysporum FOT1 13

5 Fusarium Oxysporum IMPALA 16

6 Magnaporthe Grisea MAGGY 22

7 Magnaporthe Grisea MGR583 32

8 Magnaporthe Grisea MGR586 20

9 Magnaporthe Grisea POT2 50

10 Magnaporthe Grisea SINE 5

Table 1. TE details

For each of the 10 

transposon sequence 

families, multiple 

sequence alignment 

and PHMM model 

generation were 

executed.

For evaluation, 74,671 contigs were used from a Glycine max

illumina mRNA-Seq study 7hrs after infection. Reads making 

up such contigs did not map to the Soybean genome. All 

contigs were queried against all 10 models in an average of 

6.23 seconds, with 233 contigs mapping to at least 1 model 

with an e-value threshold 1e-3. 

Evaluation and Performance

We illustrate a fast probabilistic model for predicting 

pathogenic fungal TEs. Our models shall help advance plant 

fungi TE research knowing it to be in its infancy.
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