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1 Introduction

1.1 What Marina is and is not

Marina is a GUI software tool for identifying over–represented transcription factor binding sites (TFBS)
through the use of several knowledge–discovery / data–mining metrics. These metrics quantify and nor-
malize TFBS abundance, ultimately producing a standardized rank of each TFBS and its magnitude of
over–representation. Since multiple metrics are involved, a normalization algorithm known as Iterative Pro-
portional Fitting (IPF) is used to yield “agreement” across all metrics as–to which TFBSs are truly the most
over–represented.

Marina is not a centralized database of TFBSs much like that of TRANSFAC, AthaMap, AGRIS,
amongst others. Rather, Marina is built for an investigator to efficiently mine promoter sequences and
find statistically–sound and over–represented TFBSs across multiple groups of promoter-sequence sets.

1.2 Marina prerequisites

Prior to version 1.00, Marina was built using the Python programming language. Since then, this software
has been re–built from the ground up using the Java programming language. Several major fixes are present
in this latest build and we encourage usage of this over prior Python builds.

- Java (version 7+ recommended) http://www.java.com

- x86 or x64 system with Linux, Mac or Windows OS.

1.2.1 Abbreviations

Abbreviation Full name
CF Confidence (metric)
CM Contingency Matrix
CO Cosine (metric)
IPF Iterative Proportional Fitting
JAC Jaccard Index (metric)
JM J-Measure (metric)
K Kappa Coefficient (metric)
LI Lift (metric)

PHI Phi Coefficient (metric)
PWM Position Weight Matrix
TFBS Transcription Factor Binding Site

Table 1: List of abbreviations for commonly used terms

2 TFBS Quantification and Derivation of Over-Representation

2.1 Contingency Matrix

Central to deriving magnitude of TFBS over–representation to utilization of a contingency matrix (CM).
Such a structure is used to model multivariate frequencies, in our case, TFBS abundance between a baseline
and control set of promoter sequences. Since this data–structure contains discretized counts, these matrices
are frequently used to model magnitude of relationships between a given set of categorical variables.

As illustrated in table 2, frequency counts can be used to derive relationships given both a variable of
interest (x) and a specific categorical variable (C). The cumulative sum per row as well as each column
therefore equals that of the entire matrix. Indeed a contingency matrix could be extended to have i ∗ j rows
and columns respectively, however Marina utilizes a 2 ∗ 2 contingency matrix.
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C ¬C
x n(x,C) n(x,¬C) n(x)
¬x n(¬x,C) n(¬x,¬C) n(¬x)

n(C) n(¬C) N

Table 2: A contingency matrix given a variable of interest, x, and a categorical variable, C

2.1.1 Iterative Proportional Fitting (IPF) algorithm

An option in Marina is to normalize counts in a contingency matrix so as to better extract underlying patterns
and trends. One algorithm for such a purpose is Iterative Proportional Fitting (IPF). 1 The purpose behind
IPF standardization is to adjust cell frequencies in such a way that both row and column counts are equal
to one another (see table 3).

C ¬C
x c(0, 0) c(1, 0) N/2
¬x c(0, 1) c(1, 1) N/2

N/2 N/2 N

Table 3: IPF adjusts counts in a matrix, c, to aide in identifying inherent patterns and associations.

Upon successful frequency adjustments, a contingency matrix, c, would exhibit counts satisfying the
following patterns: c1,1 = c0,0, and c0,1 = c1,0. This equality pattern is represented in table 4. Note the
monotonic nature of this matrix given x and ¬x.

C ¬C
x a N/2− a N/2
¬x N/2− a a N/2

N/2 N/2 N

Table 4: Adjusting a contingency matrix using IPF yields frequency counts to aide inherent pattern identi-
fication

As shown in table 4 and supported by the two earlier equality patterns, two equations are needed to
populate this matrix 2:

c1,0 = c0,0 = a =
N
√
c1,1c0,0

2(
√
c1,1c0,0 +

√
c1,0c0,1)

(1)

c0,1 = c1,0 = N/2− a (2)

Equations 1 and 2 present solutions for populating a matrix all–while satisfying not only previous equality
patterns but also the monotonic nature of the matrix.

2.2 Metrics for evaluating TFBS over-representation

An association rule models dependency between a set of variables, X and Y , defined as X → Y . We assert
that both X and Y occur beyond a user-defined or default threshold. Association rules can oftentimes model
weak dependencies and as a result, provide very little novel insight. Strong dependencies on the other hand
deem themselves worthy of detailed attention and may warrant domain expertise. In other words, a strong
association rule implies occurrence of a variable, Y , if X is present. Contingency matrices can model these
very relationships assuming X and Y are discretized variables.

A total of 7 statistical metrics are implemented in Marina to help infer what TFBSs are over–represented
and what are not. Each of the seven metrics are discussed below, however for an in–depth review of such
metrics, please see [GH06].

1Developed by W. E. Demming. On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal
Totals are Known. Annals of Mathematical Statistics, 1940

2As presented by T., P-N. et. al., ’Selecting the right interestingness measure for association patterns’, SIGKDD 2002.
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2.2.1 Support (SP) & Confidence (CF)

• Metric range: 0 . . . 1

Support and confidence are two incredibly useful knowledge–discovery metrics. Both support and confi-
dence were developed by [AIS93] and have come to be one of the most widely–used metrics in data–mining.

SUPP =
n(x,C)

N
= P (x,C) (3)

CONF =
P (x,C)

P (x)
= P (C|x) (4)

Many published measures such as Jaccard and Klosgen incorporate both support and confidence. Utiliza-
tion of both these measures was initially proposed by [KT]. Support and confidence can however generate a
large set of association rule candidates, and unfortunately, many may not have any significant level of value.

2.2.2 Laplace Correction (LP)

• Metric range: 0 . . . 1

Laplace correction aims to quantify magnitude of accuracy for a particular association rule. The k variable
in the denominator represents the matrix dimension. As is the case for a 2x2 contingency matrix, k = 2.
Marina sets a default Laplace correction cutoff of 0.3; adjusted via the -l or --lapl flag. Items bearing
higher correction scores would certainly attract more domain–expertise than lower correction scores.

LP (x,C) =
n(x,C) + 1

n(x) + k
(5)

2.2.3 Lift (LI)

Otherwise known as interest, lift is a metric developed by [BMUT97]. Lift computes the probability behind x
and C occurring together in comparison to if they were independent of one another. Therefore lift quantifies
the reliability behind x → C. For example: a lift of 3 implies that x is three times as likely to yield C in
comparison to what would be sought under a null hypothesis.

• Metric range: 0 . . .∞

LI(x,C) =
P (x,C)

P (x)P (C)
(6)

2.2.4 Jaccard (JAC)

• Metric range: 0 . . . 1

The Jaccard measure [TKS02] is quite appealing as it incorporates both support and confidence. When two
variables are compared against one another, if they exhibit similar patterns, the Jaccard metric returns a
value close–to or equal to 1. On the contrary, if the variables are different from one another, the Jaccard
metric yields a much lesser value in the vicinity of 0. The definition for this metric is shown below:

JAC =
P (x,C)

P (x) + P (C)− P (x,C)
(7)
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2.2.5 Phi coefficient (PHI)

• Metric range: -1 . . . 1

The phi (φ)–coefficient is a metric to quantitate magnitude of association given two variables. It is important
to note the difference between “association” and “correlation”. The former implies dependency while the
latter implies a linearly–bound relationship binding two variables. The equation for computing φ-coefficient
given a contingency matrix like that in table 2 is defined below.

Since the range of this metric is ±1, results at these polar–boundaries represent high association between
two variables. If however a coefficient of zero was obtained, this would represents no inherent relationship.

φ(x) =
n(x,C)n(¬x,¬C)− n(x,¬C)n(¬x,C)√

n(x)n(C)n(¬x)n(¬C)
(8)

2.2.6 Kappa Coefficient (K)

• Metric range: -1 . . . 1

P (x,C) + P (x,C)− P (x)P (C)− P (x)P (C))

1− P (x)P (C)− P (x)P (C)
(9)

2.2.7 Cosine (CO)

• Metric range: 0 . . . 1

Cosine [KT], also known as Interest–Support (IS), is an interesting metric for discerning variability given
two variables against a null hypothesis.

CO =
P (x,C)√
P (x)P (C)

(10)

3 Data Representation

3.1 Accepted TFBS Models

As mentioned earlier, a TFBS can modeled in one of two ways (or both, if TFBS models are available for
each). The first representation is in the form of fixed–length DNA sequences, hence the name “DNA motif”.
The second model, and most preferred, is known as Position Weight Matrices (PWMs). Skeleton templates
(schemas) for supplying your own TFBS models are described in section 4.

3.2 TFBS counts and the hypergeometric distribution (optional)

Given the hypergeometric distribution and a TFBS–specific contingency matrix, a p-value can be evaluated
given TFBS counts across groupa and groupa+1. The hypergeometric probability distribution function is as
follows:

P (X = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) (11)

As defined in equation 11, x represents the random variable, N is the total population size, M represents
the number of successes given the total population, and n represents the sample size drawn. As a result,
this distribution aims to quantify the probability of x successes from amongst n samples, from population,
N . Since we have a populated contingency matrix like that in table 2, we can work with this matrix to yield
a hypergeometric distribution probability (table 5).

Our random variable, k, represents the frequency at which x is in group G. On the contrary, n(¬x,G)
represents the difference between the number of trials and the number of successes obtained. Modelling
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n(x,¬G) is however more complicated since this represents the differences between the number of successes
in the population and number of successes obtained. Marginals can now be deduced which can aide in filling
in the rest of this matrix.

G ¬G
x k M − k M
¬x n− k N + k − n−M N −M

k N − n N

Table 5: Transforming a contingency matrix to be modeled by the hypergeometric distribution [URL]

4 Providing custom PWMs or DNA motifs

Marina does not come pre-packaged with TFBS models, be–it in the form of PWMs or DNA motifs.Thankfully,
many resources exist containing both these models. In plants, for instance, several online resources contain
useful models which can be imported into Marina: AthaMap [URL], JASPAR [URL], TRANSFAC [URL],
AGRIS [URL], and PLACE [URL]. Investigators can therefore create their own custom TFBS models given
these resources, assuming licensing and registration requirements are met.

4.1 Schema for DNA Motifs

As discussed earlier, there are two models for representing a TFBS. The first being in the form of a linear
string of nucleotide characters, and the latter being as a PWM. In this section, we discuss the schema of the
the former model, DNA motifs.

Listing 1: Three-column DNA-motif schema.

bHLH OsIRO2 CACGTGG
WHIRLY StWhy1 GTCAAAAA
ARF ARF1 TGTCTC
TRIHELIX GT1−BOX GTGTGGTTAATATG
TRIHELIX GT2−BOX GCGGTAATTAA
TRIHELIX GT3−BOX GAGGTAAATCCGCGA

As shown in listing 1, DNA motifs are represented in a three–column tab–delimited file. The first column
must be a TF family and the second must represent the TF gene–name. Lastly, the third column represents
the actual TF gene DNA motif (binding site). A collection of literature–derived DNA motifs are available
in the /demo/ folder.

4.2 Schema for PWMs

The second way to model a TFBS is through PWMs. Below is an arbitrary example of a PWM whereby
frequency counts are masked as “x”, cushioned by flanking braces. These flanking braces are purely optional
and are present in the example below to separate counts in the actual matrix from its respective nucleotide.
PWM data–points are separated from one another by either a space or a tab. All elements must also have
a corresponding value otherwise an exception will be thrown at runtime. Similar to sample–DNA motifs,
several sample–PWMs are also available in the /demo/ folder.

>PWM_1

A [ x x x x x x x x x ]

C [ x x x x x x x x x ]

G [ x x x x x x x x x ]

T [ x x x x x x x x x ]

...

>PWM_N
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A [ x x x x x x x ]

C [ x x x x x x x ]

G [ x x x x x x x ]

T [ x x x x x x x ]

5 Tutorial

Assuming Marina was successfully downloaded and all prerequisites have been met, Marina can be executed
simply by double–clicking on the “Marina.jar” icon or manual execution by issuing the command “java -jar
Marina.jar”. The main GUI will then appear, ready for analysis (Figure 1).

To begin analysis, two input conditions must be met:

• 2x FASTA files are required. One of the two will serve as the baseline while the other serves as a query,
however both files must contain promoter sequences. In both files, promoter sequences do not have
to be the same length. Similarly, input FASTA files do not have to have the same number of FASTA
entries.

• Either DNA motifs or PWMs (or both). These TFBS models are to be mapped onto the 2x user–
provided FASTA files.

Sample FASTA files are provided. These files represent promoter sequences of the most-induced and most-
suppressed genes during a Soybean–Soybean Rust RNA–Seq study(Tremblay et. al, 2012). Sample DNA
motifs and PWMs are also provided. If you wish to supply your owm motifs, please follow section 4 which
outlines the required schema for providing custom TFBS models. Both input FASTA files and TFBS models
can be supplied through the File → Load FASTA and File → Load TFBSs respectively.

Figure 1: GUI upon launching Marina

.

5.1 Runtime Options

The investigator can tweak options by going to File → Options (Figure 2). Definition of these parameters
are provided in Table 6. For this tutorial, we will use default arguments.
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Figure 2: Options can be modified to provide a more strict or lenient mode of analysis
.

Name Default Range Description

Difference 4 0 . . . 100 Represents the difference when a graph node’s count
is compared to its equivalent node in another group.
Graph nodes with differences less than this are removed.

Length 6 0 . . . 100 Remove TFBSs that are less than this length.
Count 0 0 . . . 100 Each TFBS is modeled as a graph node which is part of

a group–specific acyclic graph. Each node has “count”
property which is simply the #/TFBSs mapping to this
very node. Graph nodes with counts less than this are
removed.

Support 0 0 . . . 100 Represents probability a TFBS, ti, is in a group, Ga.
This is otherwise written as P (ti, Ga). All graph nodes
having supports less than this are removed.

PWM cutoff 0.80 0 . . . 0.99 Pertains only to when PWMs are supplied. When
PWMs are mapped onto TFBSs, a probabilistic score
is produced; akin to sequence identity. Fragments with
scores ≥ this cutoff are kept.

Laplace 0.30 0 . . . 0.99 Several statistical metrics are used for evaluating TFBS
over–representation. One such metric is Laplace correc-
tion (see section 2.2 for details). This parameter filters
TFBSs based on their Laplace probability. Lowering
this flag may yield many TFBSs that may not be over–
represented.

p-value 0.05 0 . . . 0.99 For each over–represented TFBS, an accompanying p-
value from the hypergeometric distribution is derived.
Please refer to section 3.2 for detailed workings of this
distribution. All TFBSs with p-values over this p-value
cutoff are filtered–out.

IPF--standardize False N/A Contingency matrices are used to model raw–abundance
per TFBS given Ga and Ga+1. Standardizing counts
within this matrix could shed light on inherent asso-
ciations which TFBS abundance between two groups.
Such normalization is performed via the Iterative Pro-
portional Fitting (IPF) algorithm (see section 2.1.1).

Table 6: Marina parameters and their respective arguments
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5.2 Running Sample Data

For this tutorial, we will use files present in the /demo/ folder. We will use both sample motifs and PWMs
for this example (Table 7). You do not need both PWMs and DNA motifs to begin analysis. This example
uses both models solely to illustrate the ability of Marina to quantify different TFBS profiles. As long as
one of these two models are provided, that will suffice.

File name entries Represents
most induced.fasta 556 Query

most suppressed.fasta 585 Baseline
sample motifs.txt 16 DNA motifs
sample pwms.txt 3 PWMs

Table 7: Sample files used for the tutorial

For each of these four files, a success dialog will appear if parsing the respective file was a success.
Exceptions are caught and the investigator is alerted if the input file was not of an acceptable format. Once
these files have been provided, selecting File → Run → Align will initiate alignment. If only PWMs were
provided, an implementation of the P–MATCH algorithm will be invoked. Similarly if only DNA motifs were
provided, an implementation of the Rabin–Karp algorithm will be invoked. Since both models are provided,
both alignment algorithms will be executed, back–to–back. Please note that prior Marina versions utilized
the Boyer–Moore–Horspool algorithm for DNA motif alignment.

During analysis, alignment will take place in the background and a progress–bar will be updated to reflect
degree of alignment completion (Figure 3). Eventually, alignment will reach completion and the status–bar
will display “Alignments OK. Ready for quantification.”

Figure 3: TFBS models being aligned to all provided promoter sequences
.

Upon alignment completion, we now have reference as to what TFBSs mapped to what promoter se-
quences. Given such mappings, we can model TFBS abundances between the two groups and quantify
TFBS magnitude of over–representation. By selecting File → Run → Quantify, TFBSs are fed through
the various options and those which pass all of them are fed into the 7 statistical metrics (Figure 4). Output
generated per metric is ranked from 1.0 . . .N , where N represents the total number of over–represented
TFBSs.
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Figure 4: TFBSs with ranks close to 1 are most over–represented and vice–versa
.

Various metrics may not reach unanimous concensus as–to the magnitude of over–representation. For
instance, “2QHB 3DTF” is ranked 1st by 2/7 metrics but ranked 4th by 4/7 and 5th by 1/7. Indeed this
lack of concensus can make identifying the most over–represented TFBSs an analytical challenge. Had we
selected “IPF–standardize” in the Options dialog (Figure 2), the rank per TFBS would be unanimously
agreed–upon by each and every metric (Figure 5). Results obtained from quantification can saved as a
tab–delimited file via. the File → Save option.

Figure 5: IPF enables all metrics to agree as to which TFBSs are the most over–represented
.

6 Questions and Comments

Please contact Parsa Hosseini (Parsa.Hosseini@ars.usda.gov) if you have questions or comments about Marina
or wish to report a bug.
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Useful Resources & Reading

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. ACM SIGMOD international conference on Management of data, pages 207 – 216,
1993.

[BMUT97] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication
rules for market basket data. SIGMOD, pages 255 – 264, 1997.

[GH06] L. Geng and H. J. Hamilton. Interestingness Measures for data mining: a survey. ACM Com-
puting Surveys, 38(3), September 2006.

[KT] V. Kumar and P. Tan. Interestingness Measures for Association Patterns: A Perspective. Uni-
versity of Minnesota.

[TKS02] P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association
patterns. SIGKDD, 2002.
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