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2. Solve the initial-boundary value problems in Exercise 2 on 0 ≤ x ≤ 1,0 ≤ t ≤ 1 by the Finite
Difference Method with h = 0.05 and k small enough to satisfy the CFL condition. Plot the
solution.

3. For the wave equations in Exercise 1, make a table of the approximation and error at
(x, t) = (1/4,3/4) as a function of step sizes h = ck = 2−p for p = 4, . . . ,8.

4. For the wave equations in Exercise 2, make a table of the approximation and error at
(x, t) = (1/4,3/4) as a function of step sizes h = ck = 2−p for p = 4, . . . ,8.

8.3 ELLIPTIC EQUATIONS

The previous sections deal with time-dependent equations. The diffusion equation models
the flow of heat as a function of time, and the wave equation follows the motion of a
wave. Elliptic equations, the focus of this section, model steady states. For example, the
steady-state distribution of heat on a plane region whose boundary is being held at specific
temperatures is modeled by an elliptic equation. Since time is usually not a factor in elliptic
equations, we will use x and y to denote the independent variables.

DEFINITION 8.6 Let u(x,y) be a twice-differentiable function, and define the Laplacian of u as

!u = uxx + uyy.

For a continuous function f (x,y), the partial differential equation

!u(x,y) = f (x,y) (8.37)

is called the Poisson equation. The Poisson equation with f (x,y) = 0 is called the Laplace
equation. A solution of the Laplace equation is called a harmonic function. ❒

Comparing with the normal form (8.1), we compute B2 − 4AC < 0, so the Poisson
equation is elliptic. The extra conditions given to pin down a single solution are typically
boundary conditions. There are two common types of boundary conditions applied. Dirichlet
boundary conditions specify the values of the solution u(x,y) on the boundary ∂R of a region
R. Neumann boundary conditions specify values of the directional derivative ∂u/∂n on the
boundary, where n denotes the outward unit normal vector.

! EXAMPLE 8.7 Show that u(x,y) = x2 − y2 is a solution of the Laplace equation on [0,1] × [0,1] with
Dirichlet boundary conditions

u(x,0) = x2

u(x,1) = x2 − 1

u(0,y) = −y2

u(1,y) = 1 − y2.

The Laplacian is !u = uxx + uyy = 2 − 2 = 0. The boundary conditions are
listed for the bottom, top, left, and right of the unit square, respectively, and are easily
checked by substitution. "

The Poisson and Laplace equations are ubiquitous in classical physics because their
solutions represent potential energy. For example, an electric field E is the gradient of an
electrostatic potential u, or

E = −∇u.
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The gradient of the electric field, in turn, is related to the charge density ρ by Maxwell’s
equation

∇E = ρ

ϵ
,

where ϵ is the electrical permittivity. Putting the two equations together yields

!u = ∇(∇u) = −ρ

ϵ
,

the Poisson equation for the potential u. In the special case of zero charge, the potential
satisfies the Laplace equation !u = 0.

Many other instances of potential energy are modeled by the Poisson equation. The
aerodynamics of airfoils at low speeds, known as incompressible irrotational flow, are a
solution of the Laplace equation. The gravitational potential u generated by a distribution
of mass density ρ satisfies the Poisson equation

!u = 4πGρ,

where G denotes the gravitational constant. A steady-state heat distribution, such as the
limit of a solution of the heat equation as time t → ∞, is modeled by the Poisson equation.
In Reality Check 8, a variant of the Poisson equation is used to model the heat distribution
on a cooling fin.

We introduce two methods for solving elliptic equations. The first is a Finite Difference
Method that closely follows the development for parabolic and hyperbolic equations. The
second generalizes the Finite Element Method for solving boundary value problems in
Chapter 7. In most of the elliptic equations we consider, the domain is two-dimensional,
which will cause a little extra bookkeeping work.

8.3.1 Finite Difference Method for elliptic equations

We will solve the Poisson equation !u = f on a rectangle [xl,xr ] × [yb,yt ] in the plane,
with Dirichlet boundary conditions

u(x,yb) = g1(x)

u(x,yt ) = g2(x)

u(xl,y) = g3(y)

u(xr ,y) = g4(y)

A rectangular mesh of points is shown in Figure 8.12(a), using M = m − 1 steps in the
horizontal direction and N = n − 1 steps in the vertical direction. The mesh sizes in the x

and y directions are h = (xr − xl)/M and k = (yt − yb)/N , respectively.
A finite difference method involves approximating derivatives by difference quo-

tients. The centered-difference formula (8.4) can be used for both second derivatives in
the Laplacian operator. The Poisson equation !u = f has finite difference form

u(x − h,y) − 2u(x,y) + u(x + h,y)

h2 + O(h2)

+ u(x,y − k) − 2u(x,y) + u(x,y + k)

k2 + O(k2) = f (x,y),

and in terms of the approximate solution wij ≈ u(xi,yj ) can be written

wi−1,j − 2wij + wi+1,j

h2 + wi,j−1 − 2wi,j + wi,j+1

k2 = f (xi,yj ) (8.38)

where xi = xl + (i − 1)h and yj = yb + (j − 1)k for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Figure 8.12 Mesh for finite difference solver of Poisson equation with Dirichlet boundary

conditions. (a) Original numbering system with double subscripts. (b) Numbering system

(8.39) for linear equations, with single subscripts, orders mesh points across rows.

Since the equations in the wij are linear, we are led to construct a matrix equation
to solve for the mn unknowns. This presents a bookkeeping problem: We need to relabel
these doubly indexed unknowns into a linear order. Figure 8.12(b) shows an alternative
numbering system for the solution values, where we have set

vi+(j−1)m = wij . (8.39)

Next, we will construct a matrix A and vector b such that Av = b can be solved for v,
and translated back into the solution w on the rectangular grid. Since v is a vector of length
mn, A will be an mn × mn matrix, and each grid point will correspond to its own linear
equation.

By definition, the entry Apq is the qth linear coefficient of the pth equation of
Av = b. For example, (8.38) represents the equation at grid point (i,j), which we call
equation number p = i + (j − 1)m, according to (8.39). The coefficients of the terms
wi−1,j ,wij , . . . in (8.38) are also numbered according to (8.39), which we collect together in
Table 8.1.

x y Equation number p

i j i + (j − 1)m

x y Coefficient number q

i j i + (j − 1)m

i + 1 j i + 1 + (j − 1)m

i − 1 j i − 1 + (j − 1)m

i j + 1 i + jm

i j − 1 i + (j − 2)m

Table 8.1 Translation table for two-dimensional domains. The equation at grid point (i, j) is

numbered p, and its coefficients are Apq for various q, with p and q given in the right column

of the table. The table is simply an illustration of (8.39).

According to Table 8.1, labeling by equation number p and coefficient number q, the
matrix entries Apq from (8.38) are

Ai+(j−1)m,i+(j−1)m = − 2
h2 − 2

k2 (8.40)

Ai+(j−1)m,i+1+(j−1)m = 1
h2
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Ai+(j−1)m,i−1+(j−1)m = 1
h2

Ai+(j−1)m,i+jm = 1
k2

Ai+(j−1)m,i+(j−2)m = 1
k2 .

The right-hand side of the equation corresponding to (i,j) is

bi+(j−1)m = f (xi,yj ).

These entries of A and b hold for the interior points 1 < i < m,1 < j < n of the grid in
Figure 8.12.

Each boundary point needs an equation as well. Since we assume Dirichlet boundary
conditions, they are quite simple:

Bottom wij = g1(xi) for j = 1, 1 ≤ i ≤ m

Top side wij = g2(xi) for j = n, 1 ≤ i ≤ m

Left side wij = g3(yj ) for i = 1, 1 < j < n

Right side wij = g4(yj ) for i = m, 1 < j < n

The Dirichlet conditions translate via Table 8.1 to

Bottom Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g1(xi) for j = 1, 1 ≤ i ≤ m

Top side Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g2(xi) for j = n, 1 ≤ i ≤ m

Left side Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g3(yj ) for i = 1, 1 < j < n

Right side Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g4(yj ) for i = m, 1 < j < n

All other entries of A and b are zero. The linear system Av = b can be solved with
appropriate method from Chapter 2. We illustrate this labeling system in the next example.

! EXAMPLE 8.8 Apply the Finite Difference Method with m = n = 5 to approximate the solution of the
Laplace equation !u = 0 on [0,1] × [1,2] with the following Dirichlet boundary condi-
tions:

u(x,1) = ln(x2 + 1)

u(x,2) = ln(x2 + 4)

u(0,y) = 2ln y

u(1,y) = ln(y2 + 1).

Matlab code for the Finite Difference Method follows:

% Program 8.5 Finite difference solver for 2D Poisson equation
% with Dirichlet boundary conditions on a rectangle
% Input: rectangle domain [xl,xr]x[yb,yt] with MxN space steps
% Output: matrix w holding solution values
% Example usage: w=poisson(0,1,1,2,4,4)
function w=poisson(xl,xr,yb,yt,M,N)
f=@(x,y) 0; % define input function data
g1=@(x) log(x.ˆ2+1); % define boundary values
g2=@(x) log(x.ˆ2+4); % Example 8.8 is shown
g3=@(y) 2*log(y);
g4=@(y) log(y.ˆ2+1);
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Figure 8.13 Finite Difference Method solution for the elliptic PDE in Example 8.8.

(a) M = N = 4, mesh sizes h = k = 0.25 (b) M = N = 10, mesh sizes h = k = 0.1.

m=M+1;n=N+1; mn=m*n;
h=(xr-xl)/M;h2=hˆ2;k=(yt-yb)/N;k2=kˆ2;
x=xl+(0:M)*h; % set mesh values
y=yb+(0:N)*k;
A=zeros(mn,mn);b=zeros(mn,1);
for i=2:m-1 % interior points

for j=2:n-1
A(i+(j-1)*m,i-1+(j-1)*m)=1/h2;A(i+(j-1)*m,i+1+(j-1)*m)=1/h2;
A(i+(j-1)*m,i+(j-1)*m)=-2/h2-2/k2;
A(i+(j-1)*m,i+(j-2)*m)=1/k2;A(i+(j-1)*m,i+j*m)=1/k2;
b(i+(j-1)*m)=f(x(i),y(j));

end
end
for i=1:m % bottom and top boundary points

j=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g1(x(i));
j=n;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g2(x(i));

end
for j=2:n-1 % left and right boundary points

i=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g3(y(j));
i=m;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g4(y(j));

end
v=A\b; % solve for solution in v labeling
w=reshape(v(1:mn),m,n); %translate from v to w
mesh(x,y,w’)

We will use the correct solution u(x,y) = ln(x2 + y2) to compare with the approxima-
tion at the nine mesh points in the square. Since m = n = 5, the mesh sizes are h = k = 1/4.

The solution finds the following nine interior values for u:

w24 = 1.1390 w34 = 1.1974 w44 = 1.2878
w23 = 0.8376 w33 = 0.9159 w43 = 1.0341
w22 = 0.4847 w32 = 0.5944 w42 = 0.7539

The approximate solution wij is plotted in Figure 8.13(a). It compares well with the exact
solution u(x,y) = ln(x2 + y2) at the same points:
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Figure 8.14 Electrostatic potential from the Laplace equation. Boundary conditions set in

Example 8.9.

u( 1
4 , 7

4 ) = 1.1394 u( 2
4 , 7

4 ) = 1.1977 u( 3
4 , 7

4 ) = 1.2879

u( 1
4 , 6

4 ) = 0.8383 u( 2
4 , 6

4 ) = 0.9163 u( 3
4 , 6

4 ) = 1.0341

u( 1
4 , 5

4 ) = 0.4855 u( 2
4 , 5

4 ) = 0.5947 u( 3
4 , 5

4 ) = 0.7538

Since second-order finite difference formulas were used, the error of the Finite Dif-
ference Method poisson.m is second order in h and k. Figure 8.13(b) shows a more
accurate approximate solution, for h = k = 0.1. The Matlab code poisson.m is written
for a rectangular domain, but changes can be made to shift to more general domains. "

For another example, we use the Laplace equation to compute a potential.

! EXAMPLE 8.9 Find the electrostatic potential on the square [0,1] × [0,1], assuming no charge in the
interior and assuming the following boundary conditions:

u(x,0) = sin πx

u(x,1) = sin πx

u(0,y) = 0

u(1,y) = 0.

The potential u satisfies the Laplace equation with Dirichlet boundary conditions.
Using mesh size h = k = 0.1, or M = N = 10 in poisson.m results in the plot shown in
Figure 8.14. "

8 Heat distribution on a cooling fin
Heat sinks are used to move excess heat away from the point where it is generated. In this
project, the steady-state distribution along a rectangular fin of a heat sink will be modeled.
The heat energy will enter the fin along part of one side. The main goal will be to design
the dimensions of the fin to keep the temperature within safe tolerances.

The fin shape is a thin rectangular slab, with dimensions Lx × Ly and width δ cm,
where δ is relatively small. Due to the thinness of the slab, we will denote the temperature
by u(x,y) and consider it constant along the width dimension.

Heat moves in the following three ways: conduction, convection, and radiation.
Conduction refers to the passing of energy between neighboring molecules, perhaps due to
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the movement of electrons, while in convection the molecules themselves move. Radiation,
the movement of energy through photons, will not be considered here.

Conduction proceeds through a conducting material according to Fourier’s first law

q = −KA∇u, (8.41)

where q is heat energy per unit time (measured in watts), A is the cross-sectional area of the
material, and ∇u is the gradient of the temperature. The constant K is called the thermal
conductivity of the material. Convection is ruled by Newton’s law of cooling,

q = −HA(u − ub), (8.42)

where H is a proportionality constant called the convective heat transfer coefficient
and ub is the ambient temperature, or bulk temperature, of the surrounding fluid (in this
case, air).

The fin is a rectangle [0,Lx] × [0,Ly] by δ cm in the z direction, as illustrated in
Figure 8.15(a). Energy equilibrium in a typical !x × !y × δ box interior to the fin, aligned
along the x and y axes, says that the energy entering the box per unit time equals the energy
leaving. The heat flux into the box through the two !y × δ sides and two !x × δ sides is by
conduction, and through the two !x × !y sides is by convection, yielding the steady-state
equation

−K!yδux(x,y) + K!yδux(x + !x,y) − K!xδuy(x,y)

+K!xδuy(x,y + !y) − 2H!x!yu(x,y) = 0. (8.43)

Here, we have set the bulk temperature ub = 0 for convenience; thus, u will denote the
difference between the fin temperature and the surroundings.

Dividing through by !x!y gives

Kδ
ux(x + !x,y) − ux(x,y)

!x
+ Kδ

uy(x,y + !y) − uy(x,y)

!y
= 2Hu(x,y),

and in the limit as !x,!y → 0, the elliptic partial differential equation

uxx + uyy = 2H

Kδ
u (8.44)

results.

Lx

L

Ly

Power

!y
!x

(a)

!y

!x
"

Conduction

Convection

(b)

Figure 8.15 Cooling fin in Reality Check 8. (a) Power input occurs along interval [0,L] on

left side of fin. (b) Energy transfer in small interior box is by conduction along the x and y

directions, and by convection along the air interface.
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Similar arguments imply the convective boundary condition

Kunormal = Hu

where unormal is the partial derivative with respect to the outward normal direction n⃗. The
convective boundary condition is known as a Robin boundary condition, one that involves
both the function value and its derivative. Finally, we will assume that power enters the fin
along one side according to Fourier’s law,

unormal = P

LδK
,

where P is the total power and L is the length of the input.
On a discrete grid with step sizes h and k, respectively, the finite difference approxi-

mation (5.8) can be used to approximate the PDE (8.44) as

ui+1,j − 2uij + ui−1,j

h2 + ui,j+1 − 2uij + ui,j−1

k2 = 2H

Kδ
uij .

This discretization is used for the interior points (xi,yj ) where 1 < i < m,
1 < j < n for integers m, n. The fin edges obey the Robin conditions using the first deriva-
tive approximation

f ′(x) = −3f (x) + 4f (x + h) − f (x + 2h)

2h
+ O(h2).

To apply this approximation to the fin edges, note that the outward normal direction trans-
lates to

unormal = −uy on bottom edge

unormal = uy on top edge

unormal = −ux on left edge

unormal = ux on right edge

Second, note that the second-order first derivative approximation above yields

uy ≈ −3u(x,y) + 4u(x,y + k) − u(x,y + 2k)

2k
on bottom edge

uy ≈ −3u(x,y) + 4u(x,y − k) − u(x,y − 2k)

−2k
on top edge

ux ≈ −3u(x,y) + 4u(x + h,y) − u(x + 2h,y)

2h
on left edge

ux ≈ −3u(x,y) + 4u(x − h,y) − u(x − 2h,y)

−2h
on right edge

Putting both together, the Robin boundary condition leads to the difference equations

−3ui1 + 4ui2 − ui3

2k
= −H

K
ui1 on bottom edge

−3uin + 4ui,n−1 − ui,n−2

2k
= −H

K
uin on top edge

−3u1j + 4u2j − u3j

2h
= −H

K
u1j on left edge

−3umj + 4um−1,j − um−2,j

2h
= −H

K
umj on right edge.
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If we assume that the power enters along the left side of the fin, Fourier’s law leads to the
equation

−3u1j + 4u2j − u3j

2h
= − P

LδK
. (8.45)

There are mn equations in the mn unknowns uij , 1 ≤ i ≤ m, 1 ≤ j ≤ n to solve.
Assume that the fin is composed of aluminum, whose thermal conductivity is

K = 1.68 W/cm ◦C (watts per centimeter-degree Celsius). Assume that the convective heat
transfer coefficient is H = 0.005 W/cm2 ◦C, and that the room temperature is ub = 20◦C.

Suggested activities:

1. Begin with a fin of dimensions 2 × 2 cm, with 1 mm thickness. Assume that 5W of power is
input along the entire left edge, as if the fin were attached to dissipate power from a CPU
chip with L = 2 cm side length. Solve the PDE (8.44) with M = N = 10 steps in the x and
y directions. Use the mesh command to plot the resulting heat distribution over the
xy-plane. What is the maximum temperature of the fin, in ◦C ?

2. Increase the size of the fin to 4 × 4 cm. Input 5W of power along the interval [0,2] on the
left side of the fin, as in the previous step. Plot the resulting distribution, and find the
maximum temperature. Experiment with increased values of M and N . How much does the
solution change?

3. Find the maximum power that can be dissipated by a 4 × 4 cm fin while keeping the
maximum temperature less than 80◦C. Assume that the bulk temperature is 20◦C and the
power input is along 2 cm, as in steps 1 and 2.

4. Replace the aluminum fin with a copper fin, with thermal conductivity K = 3.85 W/cm ◦C.
Find the maximum power that can be dissipated by a 4 × 4 cm fin with the 2 cm power
input in the optimal placement, while keeping the maximum temperature below 80 ◦C.

5. Plot the maximum power that can be dissipated in step 4 (keeping maximum temperature
below 80 degrees) as a function of thermal conductivity, for 1 ≤ K ≤ 5 W/cm◦C.

6. Redo step 4 for a water-cooled fin. Assume that water has a convective heat transfer
coefficient of H = 0.1 W/cm2 ◦C, and that the ambient water temperature is maintained at
20◦C.

7. Cut a rectangular notch from the right side of the fin, and redo step 4. Does the notched fin
dissipate more, or less, power than the original?

The design of cooling fins for desktop and laptop computers is a fascinating engineering
problem. To dissipate ever greater amounts of heat, several fins are needed in a small
space, and fans are used to enhance convection near the fin edges. The addition of fans
to complicated fin geometry moves the simulation into the realm of computational fluid
dynamics, a vital area of modern applied mathematics.

8.3.2 Finite Element Method for elliptic equations

A somewhat more flexible approach to solving partial differential equations arose from
the structural engineering community in the mid-20th century. The Finite Element Method
converts the differential equation into a variational equivalent called the weak form of
the equation, and uses the powerful idea of orthogonality in function spaces to stabilize
its calculations. Moreover, the resulting system of linear equations can have considerable
symmetry in its structure matrix, even when the underlying geometry is complicated.
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We will apply finite elements by using the Galerkin Method, as introduced in Chapter 7
for ordinary differential equation boundary value problems. The method for PDEs follows
the same steps, although the bookkeeping requirements are more extensive. Consider the
Dirichlet problem for the elliptic equation

!u + r(x,y)u = f (x,y) in R

u = g(x,y) on S (8.46)

where the solution u(x,y) is defined on a region R in the plane bounded by a piecewise-
smooth closed curve S.

We will use an L2 function space over the region R, as in Chapter 7. Let

L2(R) =
{

functions φ(x,y) on R
∣∣∣
∫ ∫

R
φ(x,y)2 dx dy exists and is finite

}
.

Denote by L2
0(R) the subspace of L2(R) consisting of functions that are zero on the boundary

S of the region R.
The goal will be to minimize the squared error of the elliptic equation in (8.46) by forcing

the residual !u(x,y) + r(x,y)u(x,y) − f (x,y) to be orthogonal to a large subspace of
L2(R). Let φ1(x,y), . . . ,φP (x,y) be elements of L2(R). The orthogonality assumption
takes the form

∫ ∫

R
(!u + ru − f )φp dx dy = 0,

or
∫ ∫

R
(!u + ru)φp dxdy =

∫ ∫

R
f φp dx dy (8.47)

for each 1 ≤ p ≤ P . The form (8.47) is called the weak form of the elliptic equation (8.46).

The version of integration by parts needed to apply the Galerkin Method is contained
in the following fact:

THEOREM 8.7 Green’s First Identity. Let R be a bounded region with piecewise smooth boundary S. Let
u and v be smooth functions, and let n denote the outward unit normal along the boundary.
Then

∫ ∫

R
v!u =

∫

S
v

∂u

∂n
dS −

∫ ∫

R
∇u · ∇v. #

The directional derivative can be calculated as

∂u

∂n
= ∇u · (nx,ny),

where (nx,ny) denotes the outward normal unit vector on the boundary S of R. Green’s
identity applied to the weak form (8.47) yields
∫

S
φp

∂u

∂n
dS −

∫ ∫

R
(∇u · ∇φp) dx dy +

∫ ∫

R
ruφp dx dy =

∫ ∫

R
f φp dx dy. (8.48)

The essence of the Finite Element Method is to substitute

w(x,y) =
P∑

q=1

vqφq(x,y) (8.49)
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for u into the weak form of the partial differential equation, and then determine the unknown
constants vq . Assume for the moment that φp belongs to L2

0(R), that is, φp(S) = 0. Substi-
tuting the form (8.49) into (8.48) results in

−
∫ ∫

R

⎛

⎝
P∑

q=1

vq∇φq

⎞

⎠ · ∇φp dx dy +
∫ ∫

R
r

⎛

⎝
P∑

q=1

vqφq

⎞

⎠φp dx dy =
∫ ∫

R
f φp dx dy

for each φp in L2
0(R). Factoring out the constants vq yields

P∑

q=1

vq

[∫ ∫

R
∇φq · ∇φp dx dy −

∫ ∫

R
rφqφp dx dy

]
= −

∫

R
f φpdx dy. (8.50)

For each φp belonging to L2
0(R), we have developed a linear equation in the unknowns

v1, . . . ,vP . In matrix form, the equation is Av = b, where the entries of the pth row of A

and b are

Apq =
∫ ∫

R
∇φq · ∇φp dx dy −

∫ ∫

R
rφqφp dx dy (8.51)

and

bp = −
∫ ∫

R
f φp dx dy. (8.52)

We are now prepared to choose explicit functions for the finite elements φp and plan a
computation. We follow the lead of Chapter 7 in choosing linear B-splines, piecewise-linear
functions of x,y that live on triangles in the plane. For concreteness, let the region R be a
rectangle, and form a triangulation with nodes (xi,yj ) chosen from a rectangular grid. We
will reuse the M × N grid from the previous section, shown in Figure 8.16(a), where we
set m = M + 1 and n = N + 1. As before, we will denote the grid step size in the x and y

directions as h and k, respectively. Figure 8.16(b) shows the triangulation of the rectangular
region that we will use.

xl x
r

y
b

y
t

w11 w21 w31 w
m1

w12 w22 w32 w
m2

w1n w2n w3n w
mn

x l xr

y
b

y
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w
m1

w
m2

w1n
w2n

w3n
w

mn

Figure 8.16 Finite element solver of elliptic equation with Dirichlet boundary conditions.

(a) Mesh is same as used for finite difference solver. (b) A possible triangulation of the region. Each

interior point is a vertex of six different triangles.
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Our choice of finite element functions φp from L2(R) will be the P = mn piecewise-
linear functions, each of which takes the value 1 at one grid point in Figure 8.16(a) and zero
at the other mn − 1 grid points. In other words, φ1, . . . ,φmn are determined by the equality
φi+(j−1)m(xi,yj ) = 1 and φi+(j−1)m(xi′ ,yj ′) = 0 for all other grid points (xi′ ,yj ′), while
being linear on each triangle in Figure 8.16(b). We are once again using the numbering
system of Table 8.1, on page 400. Each φp(x,y) is differentiable, except along the triangle
edges, and is therefore a Riemann-integrable function belonging to L2(R). Note that for
every nonboundary point (xi,yj ) of the rectangle R, φi+(j−1)m belongs to L2

0(R). Moreover,
due to assumption (8.49), they satisfy

w(xi,yj ) =
m∑

i=1

n∑

j=1

vi+(j−1)mφi+(j−1)m(xi,yj ) = vi+(j−1)m

for i = 1, . . . ,m,j = 1, . . . ,n. Therefore, the approximation w to the correct solution u at
(xi,vj ) will be directly available once the system Av = b is solved. This convenience is
the reason B-splines are a good choice for finite element functions.

It remains to calculate the matrix entries (8.51) and (8.52) and solve Av = b. To cal-
culate these entries, we gather a few facts about B-splines in the plane. The integrals of the
piecewise-linear functions are easily approximated by the two-dimensional Midpoint Rule.
Define the barycenter of a region in the plane as the point (x,y) where

x =
∫ ∫

R x dx dy∫ ∫
R 1 dx dy

, y =
∫ ∫

R y dx dy∫ ∫
R 1 dx dy

.

If R is a triangle with vertices (x1,y1), (x2,y2), (x3,y3), then the barycenter is (see
Exercise 8)

x = x1 + x2 + x3

3
, y = y1 + y2 + y3

3
.

LEMMA 8.8 The average value of a linear function L(x,y) on a plane region R is L(x,y), the value at
the barycenter. In other words,

∫ ∫
R L(x,y) dx dy = L(x,y) · area (R). #

Proof. Let L(x,y) = a + bx + cy. Then
∫ ∫

R
L(x,y) dx dy =

∫ ∫

R
(a + bx + cy) dx dy

= a

∫ ∫

R
dx dy + b

∫ ∫

R
x dx dy + c

∫ ∫

R
y dx dy

= area (R) · (a + bx + cy).

❒

Lemma 8.8 leads to a generalization of the Midpoint Rule of Chapter 5 that is useful
for approximating the entries of (8.51) and (8.52). Taylor’s Theorem for functions of two
variables says that

f (x,y) = f (x,y) + ∂f

∂x
(x,y)(x − x) + ∂f

∂y
(x,y)(y − y)

+O((x − x)2, (x − x)(y − y),(y − y)2)

= L(x,y) + O((x − x)2, (x − x)(y − y),(y − y)2).
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Therefore,
∫ ∫

R
f (x,y) dx dy =

∫ ∫

R
L(x,y) dx dy +

∫ ∫

R
O((x − x)2, (x − x)(y − y),(y − y)2) dx dy

= area (R) · L(x,y) + O(h4) = area (R) · f (x,y) + O(h4),

where h is the diameter of R, the largest distance between two points of R, and where we
have used Lemma 8.8. This is the Midpoint Rule in two dimensions.

Midpoint Rule in two dimensions

∫ ∫

R
f (x,y) dx dy = area (R) · f (x,y) + O(h4), (8.53)

where (x,y) is the barycenter of the bounded region R and h = diam(R).

The Midpoint Rule shows that to apply the Finite Element Method with O(h2) con-
vergence, we need to only approximate the integrals in (8.51) and (8.52) by evaluating
integrands at triangle barycenters. For the B-spline functions φp, this is particularly easy.
Proofs of the next two lemmas are deferred to Exercises 9 and 10.

LEMMA 8.9 Let φ(x,y) be a linear function on the triangle T with vertices (x1,y1), (x2,y2), (x3,y3),
satisfying φ(x1,y1) = 1,φ(x2,y2) = 0, and φ(x3,y3) = 0. Then φ(x,y) = 1/3. #

LEMMA 8.10 Let φ1(x,y) and φ2(x,y) be the linear functions on the triangle T with vertices
(x1,y1), (x2,y2), and (x3,y3), satisfying φ1(x1,y1) = 1,φ1(x2,y2) = 0, φ1(x3,y3) = 0,
φ2(x1,y1) = 0,φ2(x2,y2) = 1, and φ2(x3,y3) = 0. Let f (x,y) be a twice-differentiable
function. Set

d = det

⎡

⎣
1 1 1
x1 x2 x3
y1 y2 y3

⎤

⎦ .

Then

(a) the triangle T has area |d|/2

(b) ∇φ1(x,y) =
(

y2 − y3

d
,

x3 − x2

d

)

(c)
∫ ∫

T ∇φ1 · ∇φ1 dx dy = (x2 − x3)2 + (y2 − y3)2

2|d|

(d)
∫ ∫

T ∇φ1 · ∇φ2 dx dy = −(x1 − x3)(x2 − x3) − (y1 − y3)(y2 − y3)

2|d|
(e)

∫ ∫
T f φ1φ2 dx dy = f (x,y)|d|/18 + O(h4) =

∫ ∫
T f φ2

1 dx dy

(f )
∫ ∫

T f φ1 dx dy = f (x,y)|d|/6 + O(h4)

where (x,y) is the barycenter of T and h = diam(T ). #

We can now calculate the matrix entries of A. Consider a vertex (xi,yj ) that is not
on the boundary S of the rectangle. Then φi+(j−1)m belongs to L2

0(R), and according to
(8.51) with p = q = i + (j − 1)m, the matrix entry Ai+(j−1)m,i+(j−1)m is composed of
two integrals. The integrands are zero outside of the six triangles shown in Figure 8.17.
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Figure 8.17 Detail of the (i, j) interior point from Figure 8.16(b). Each interior point (xi ,yj)

is surrounded by six triangles, numbered as shown. The B-spline function φi+(j−1)m is linear,

takes the value 1 at the center, and is zero outside of these six triangles.

The triangles have horizontal and vertical sides h and k, respectively. For the first integral,
summing from triangle 1 to triangle 6, respectively, we can use Lemma 8.10(c) to sum the
six contributions

k2

2hk
+ h2

2hk
+ h2 + k2

2hk
+ k2

2hk
+ h2

2hk
+ h2 + k2

2hk
= 2(h2 + k2)

hk
. (8.54)

For the second integral of (8.51), we use Lemma 8.10(e).Again, the integrals are zero except
for the six triangles shown. The barycenters of the six triangles are

B1 = (xi − 2
3

h,yj − 1
3

k)

B2 = (xi − 1
3

h,yj − 2
3

k)

B3 = (xi + 1
3

h,yj − 1
3

k)

B4 = (xi + 2
3

h,yj + 1
3

k)

B5 = (xi + 1
3

h,yj + 2
3

k)

B6 = (xi − 1
3

h,yj + 1
3

k). (8.55)

The second integral contributes −(hk/18)[r(B1) + r(B2) + r(B3) + r(B4) + r(B5) +
r(B6)], and so summing up (8.54) and (8.55),

Ai+(j−1)m,i+(j−1)m = 2(h2 + k2)

hk
− hk

18
[r(B1) + r(B2) + r(B3)

+r(B4) + r(B5) + r(B6)]. (8.56)

Similar usage of Lemma 8.10 (see Exercise 12) shows that

Ai+(j−1)m,i−1+(j−1)m = − k

h
− hk

18
[r(B6) + r(B1)]

Ai+(j−1)m,i−1+(j−2)m = −hk

18
[r(B1) + r(B2)]

Ai+(j−1)m,i+(j−2)m = −h

k
− hk

18
[r(B2) + r(B3)]

Ai+(j−1)m,i+1+(j−1)m = − k

h
− hk

18
[r(B3) + r(B4)]

Ai+(j−1)m,i+1+jm = −hk

18
[r(B4) + r(B5)]
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Ai+(j−1)m,i+jm = −h

k
− hk

18
[r(B5) + r(B6)] (8.57)

Calculating the entries bp makes use of Lemma 8.10(f), which implies that for
p = i + (j − 1)m,

bi+(j−1)m = −hk

6
[f (B1) + f (B2) + f (B3) + f (B4) + f (B5) + f (B6)]. (8.58)

For finite element functions on the boundary, φi+(j−1)m does not belong to L2
0(R), and the

equations

Ai+(j−1)m,i+(j−1)m = 1

bi+(j−1)m = g(xi,yj ) (8.59)

will be used to guarantee the Dirichlet boundary condition vi+(j−1)m = g(xi,yj ), where
(xi,yj ) is a boundary point.

With these formulas, it is straightforward to build a Matlab implementation of the finite
element solver on a rectangle with Dirichlet boundary conditions. The program consists of
setting up the matrix A and vector b using (8.56) – (8.59), and solving Av = b. Although the
Matlab backslash operation is used in the code, for real applications it might be replaced
by a sparse solver as in Chapter 2.

% Program 8.6 Finite element solver for 2D PDE
% with Dirichlet boundary conditions on a rectangle
% Input: rectangle domain [xl,xr]x[yb,yt] with MxN space steps
% Output: matrix w holding solution values
% Example usage: w=poissonfem(0,1,1,2,4,4)
function w=poissonfem(xl,xr,yb,yt,M,N)
f=@(x,y) 0; % define input function data
r=@(x,y) 0;
g1=@(x) log(x.ˆ2+1); % define boundary values on bottom
g2=@(x) log(x.ˆ2+4); % top
g3=@(y) 2*log(y); % left side
g4=@(y) log(y.ˆ2+1); % right side
m=M+1; n=N+1; mn=m*n;
h=(xr-xl)/M; h2=hˆ2; k=(yt-yb)/N; k2=kˆ2; hk=h*k;
x=xl+(0:M)*h; % set mesh values
y=yb+(0:N)*k;
A=zeros(mn,mn); b=zeros(mn,1);
for i=2:m-1 % interior points
for j=2:n-1
rsum=r(x(i)-2*h/3,y(j)-k/3)+r(x(i)-h/3,y(j)-2*k/3)...

+r(x(i)+h/3,y(j)-k/3);
rsum=rsum+r(x(i)+2*h/3,y(j)+k/3)+r(x(i)+h/3,y(j)+2*k/3)...

+r(x(i)-h/3,y(j)+k/3);
A(i+(j-1)*m,i+(j-1)*m)=2*(h2+k2)/(hk)-hk*rsum/18;
A(i+(j-1)*m,i-1+(j-1)*m)=-k/h-hk*(r(x(i)-h/3,y(j)+k/3)...

+r(x(i)-2*h/3,y(j)-k/3))/18;
A(i+(j-1)*m,i-1+(j-2)*m)=-hk*(r(x(i)-2*h/3,y(j)-k/3)...

+r(x(i)-h/3,y(j)-2*k/3))/18;
A(i+(j-1)*m,i+(j-2)*m)=-h/k-hk*(r(x(i)-h/3,y(j)-2*k/3)...

+r(x(i)+h/3,y(j)-k/3))/18;
A(i+(j-1)*m,i+1+(j-1)*m)=-k/h-hk*(r(x(i)+h/3,y(j)-k/3)...

+r(x(i)+2*h/3,y(j)+k/3))/18;
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A(i+(j-1)*m,i+1+j*m)=-hk*(r(x(i)+2*h/3,y(j)+k/3)...
+r(x(i)+h/3,y(j)+2*k/3))/18;

A(i+(j-1)*m,i+j*m)=-h/k-hk*(r(x(i)+h/3,y(j)+2*k/3)...
+r(x(i)-h/3,y(j)+k/3))/18;

fsum=f(x(i)-2*h/3,y(j)-k/3)+f(x(i)-h/3,y(j)-2*k/3)...
+f(x(i)+h/3,y(j)-k/3);

fsum=fsum+f(x(i)+2*h/3,y(j)+k/3)+f(x(i)+h/3,y(j)+2*k/3)...
+f(x(i)-h/3,y(j)+k/3);

b(i+(j-1)*m)=-h*k*fsum/6;
end

end
for i=1:m % boundary points
j=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g1(x(i));
j=n;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g2(x(i));

end
for j=2:n-1
i=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g3(y(j));
i=m;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g4(y(j));

end
v=A\b; % solve for solution in v numbering
w=reshape(v(1:mn),m,n);
mesh(x,y,w’)

! EXAMPLE 8.10 Apply the Finite Element Method with M = N = 4 to approximate the solution of the
Laplace equation !u = 0 on [0, 1] × [1, 2] with the Dirichlet boundary conditions:

u(x,1) = ln(x2 + 1)

u(x,2) = ln(x2 + 4)

u(0,y) = 2ln y

u(1,y) = ln(y2 + 1)

Since M = N = 4, there is a mn × mn linear system to solve. Sixteen of the 25 equations
are evaluation of the boundary conditions. Solving Av = b yields

w24 = 1.1390 w34 = 1.1974 w44 = 1.2878
w23 = 0.8376 w33 = 0.9159 w43 = 1.0341
w22 = 0.4847 w32 = 0.5944 w42 = 0.7539

agreeing with the results in Example 8.8. "

! EXAMPLE 8.11 Apply the Finite Element Method with M = N = 16 to approximate the solution of the
elliptic Dirichlet problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

!u + 4π2u = 2sin 2πy

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = sin 2πy for 0 ≤ y ≤ 1

We define r(x,y) = 4π2 and f (x,y) = 2sin 2πy. Since m = n = 17, the grid is 17 × 17,
meaning that the matrix A is 289 × 289. The solution is computed approximately within a
maximum error of about 0.023, compared with the correct solution u(x,y) = x2 sin 2πy.
The approximate solution w is shown in Figure 8.18. "
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Figure 8.18 Finite element solution of Example 8.11. Maximum error on [0,1] × [0,1] is

0.023.

8.3 Exercises

1. Show that u(x,y) = ln(x2 + y2) is a solution to the Laplace equation with Dirichlet boundary
conditions of Example 8.8.

2. Show that (a) u(x,y) = x2y − 1/3 y3 and (b) u(x,y) = 1/6 x4 − x2y2 + 1/6 y4 are
harmonic functions.

3. Prove that the functions (a) u(x,y) = e−πy sin πx, (b) u(x,y) = sinh πx sin πy are solutions
of the Laplace equation with the specified boundary conditions:

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = sin πx for 0 ≤ x ≤ 1
u(x,1) = e−π sin πx for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = sinh π sin πy for 0 ≤ y ≤ 1

4. Prove that the functions (a) u(x,y) = e−xy , (b) u(x,y) = (x2 + y2)3/2 are solutions of the
specified Poisson equation with the given boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u = e−xy(x2 + y2)

u(x,0) = 1 for 0 ≤ x ≤ 1
u(x,1) = e−x for 0 ≤ x ≤ 1
u(0,y) = 1 for 0 ≤ y ≤ 1
u(1,y) = e−y for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u = 9
√

x2 + y2

u(x,0) = x3 for 0 ≤ x ≤ 1
u(x,1) = (1 + x2)3/2 for 0 ≤ x ≤ 1
u(0,y) = y3 for 0 ≤ y ≤ 1
u(1,y) = (1 + y2)3/2 for 0 ≤ y ≤ 1

5. Prove that the functions (a) u(x,y) = sin π
2 xy, (b) u(x,y) = exy are solutions of the specified

elliptic equation with the given Dirichlet boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u + π2

4 (x2 + y2)u = 0
u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = sin π

2 x for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = sin π

2 y for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u = (x2 + y2)u

u(x,0) = 1 for 0 ≤ x ≤ 1
u(x,1) = ex for 0 ≤ x ≤ 1
u(0,y) = 1 for 0 ≤ y ≤ 1
u(1,y) = ey for 0 ≤ y ≤ 1

6. Prove that the functions (a) u(x,y) = ex+2y , (b) u(x,y) = y/x are solutions of the specified
elliptic equation with the given Dirichlet boundary conditions:
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(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u = 5u

u(x,0) = ex for 0 ≤ x ≤ 1
u(x,1) = ex+2 for 0 ≤ x ≤ 1
u(0,y) = e2y for 0 ≤ y ≤ 1
u(1,y) = e2y+1 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

!u = 2u

x2

u(x,0) = 0 for 1 ≤ x ≤ 2
u(x,1) = 1/x for 1 ≤ x ≤ 2
u(1,y) = y for 0 ≤ y ≤ 1
u(2,y) = y/2 for 0 ≤ y ≤ 1

7. Prove that the functions (a) u(x,y) = x2 + y2, (b) u(x,y) = y2/x are solutions of the
specified elliptic equation with the given Dirichlet boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

!u + u

x2 + y2 = 5

u(x,1) = x2 + 1 for 1 ≤ x ≤ 2
u(x,2) = x2 + 4 for 1 ≤ x ≤ 2
u(1,y) = y2 + 1 for 1 ≤ y ≤ 2
u(2,y) = y2 + 4 for 1 ≤ y ≤ 2

(b)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

!u − 2u

x2 = 2
x

u(x,0) = 0 for 1 ≤ x ≤ 2
u(x,2) = 4/x for 1 ≤ x ≤ 2
u(1,y) = y2 for 0 ≤ y ≤ 2
u(2,y) = y2/2 for 0 ≤ y ≤ 2

8. Show that the barycenter of a triangle with vertices (x1,y1), (x2,y2), (x3,y3) is
x = (x1 + x2 + x3)/3, y = (y1 + y2 + y3)/3.

9. Prove Lemma 8.9.

10. Prove Lemma 8.10.

11. Derive the barycenter coordinates of (8.55).

12. Derive the matrix entries in (8.57).

13. Show that the Laplace equation !T = 0 on the rectangle [0,L] × [0,H ] with Dirichlet
boundary conditions T = T0 on the three sides x = 0,x = L, and y = 0, and T = T1 on the
side y = H has solution

T (x,y) = T0 +
∞∑

k=0

Ck sin
(2k + 1)πx

L
sinh

(2k + 1)πy

L

where

Ck = 4(T1 − T0)

(2k + 1)π sinh (2k+1)πH
L

.

8.3 Computer Problems

1. Solve the Laplace equation problems in Exercise 3 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the Finite
Difference Method with h = k = 0.1. Use Matlab’s mesh command to plot the solution.

2. Solve the Poisson equation problems in Exercise 4 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the Finite
Difference Method with h = k = 0.1. Plot the solution.

3. Use the Finite Difference Method with h = k = 0.1 to approximate the electrostatic potential
on the square 0 ≤ x,y ≤ 1 from the Laplace equation with the specified boundary conditions.
Plot the solution.

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = sin πx for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = sin π
2 x for 0 ≤ x ≤ 1

u(x,1) = cos π
2 x for 0 ≤ x ≤ 1

u(0,y) = sin π
2 y for 0 ≤ y ≤ 1

u(1,y) = cos π
2 y for 0 ≤ y ≤ 1
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4. Use the Finite Difference Method with h = k = 0.1 to approximate the electrostatic potential
on the square 0 ≤ x,y ≤ 1 from the Laplace equation with the specified boundary conditions.
Plot the solution.

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = x3 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = y2 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = x sin π

2 x for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = y for 0 ≤ y ≤ 1

5. Hydrostatic pressure can be expressed as the hydraulic head, defined as the equivalent height u

of a column of water exerting that pressure. In an underground reservoir, steady-state
groundwater flow satisfies the Laplace equation !u = 0. Assume that the reservoir has
dimensions 2 km×1 km, and water table heights

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0.01 for 0 ≤ x ≤ 2
u(x,1) = 0.01 + 0.003x for 0 ≤ x ≤ 2
u(0,y) = 0.01 for 0 ≤ y ≤ 1
u(1,y) = 0.01 + 0.006y2 for 0 ≤ y ≤ 1

on the reservoir boundary, in kilometers. Compute the head u(1,1/2) at the center of the
reservoir.

6. The steady-state temperature u on a heated copper plate satisfies the Poisson equation

!u = −D(x,y)

K
,

where D(x,y) is the power density at (x,y) and K is the thermal conductivity. Assume that
the plate is the shape of the rectangle [0,4] × [0,2] cm whose boundary is kept at a constant
30◦C, and that power is generated at the constant rate D(x,y) = 5 watts/cm3. The thermal
conductivity of copper is K = 3.85 watts/cm◦C. (a) Plot the temperature distribution on the
plate. (b) Find the temperature at the center point (x,y) = (2,1).

7. For the Laplace equations in Exercise 3, make a table of the finite difference approximation
and error at (x,y) = (1/4,3/4) as a function of step sizes h = k = 2−p for p = 2, . . . ,5.

8. For the Poisson equations in Exercise 4, make a table of the finite difference approximation
and error at (x,y) = (1/4,3/4) as a function of step sizes h = k = 2−p for p = 2, . . . ,5.

9. Solve the Laplace equation problems in Exercise 3 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the
Finite Element Method with h = k = 0.1. Use Matlab’s mesh command to plot the
solution.

10. Solve the Poisson equation problems in Exercise 4 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the Finite
Element Method with h = k = 0.1. Plot the solution.

11. Solve the elliptic partial differential equations in Exercise 5 by the Finite Element Method with
h = k = 0.1. Plot the solution.

12. Solve the elliptic partial differential equations in Exercise 6 by the Finite Element Method with
h = k = 1/16. Plot the solution.

13. Solve the elliptic partial differential equations in Exercise 7 by the Finite Element Method with
h = k = 1/16. Plot the solution.
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14. Solve the elliptic partial differential equations with Dirichlet boundary conditions by the Finite
Element Method with h = k = 0.1. Plot the solution.

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u + sin πxy = (x2 + y2)u

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!u + (sin πxy)u = e2xy

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

15. For the elliptic equations in Exercise 5, make a table of the Finite Element Method
approximation and error at (x,y) = (1/4,3/4) as a function of step sizes h = k = 2−p for
p = 2, . . . ,5.

16. For the elliptic equations in Exercise 6, make a log–log plot of the maximum error of the Finite
Element Method as a function of step sizes h = k = 2−p for p = 2, . . . ,6.

17. For the elliptic equations in Exercise 7, make a log–log plot of the maximum error of the Finite
Element Method as a function of step sizes h = k = 2−p for p = 2, . . . ,6.

18. Solve the Laplace equation with Dirichlet boundary conditions from Exercise 13 on
[0,1] × [0,1] with T0 = 0 and T1 = 10 using (a) a finite difference approximation and (b) the
Finite Element Method. Make log–log plots of the error at particular locations in the rectangle
as a function of step sizes h = k = 2−p for p as large as possible. Explain any simplifications
you are making to evaluate the correct solution at those locations.

8.4 NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

In the previous sections of this chapter, finite difference and finite element methods have
been analyzed and applied to linear PDEs. For the nonlinear case, an extra wrinkle is
necessary to make our previous methods appropriate.

To make matters concrete, we will focus on the implicit Backward Difference Method
of Section 8.1 and its application to nonlinear diffusion equations. Similar changes can be
applied to any of the methods we have studied to make them available for use on nonlinear
equations.

8.4.1 Implicit Newton solver

We illustrate the approach with a typical nonlinear example

ut + uux = Duxx, (8.60)

known as Burgers’ equation. The equation is nonlinear due to the product term uux . This
elliptic equation, named after J.M. Burgers (1895–1981), is a simplified model of fluid flow.
When the diffusion coefficient D = 0, it is called the inviscid Burgers’ equation. Setting
D > 0 corresponds to adding viscosity to the model.

This diffusion equation will be discretized in the same way as the heat equation in
Section 8.1. Consider the grid of points as shown in Figure 8.1. We will denote the approx-
imate solution at (xi, tj ) by wij . Let M and N be the total number of steps in the x and t

directions, and let h = (b − a)/M and k = T /N be the step sizes in the x and t directions.
Applying backward differences to ut and central differences to the other terms yields
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wij − wi,j−1

k
+ wij

(
wi+1,j − wi−1,j

2h

)
= D

h2 (wi+1,j − 2wij + wi−1,j ),

or

wij + k

2h
wij (wi+1,j − wi−1,j ) − σ (wi+1,j − 2wij + wi−1,j ) − wi,j−1 = 0 (8.61)

where we have set σ = Dk/h2. Note that due to the quadratic terms in the w variables, we
cannot directly solve for wi+1,j ,wij ,wi−1,j , explicitly or implicitly. Therefore, we call on
Multivariate Newton’s Method from Chapter 2 to do the solving.

To clarify our implementation, denote the unknowns in (8.61) by zi = wij . At time step
j , we are trying to solve the equations

Fi(z1, . . . , zm) = zi + k

2h
zi(zi+1 − zi−1) − σ (zi+1 − 2zi + zi−1) − wi,j−1 = 0

(8.62)
for the m unknowns z1, . . . , zm. Note that the last term wi,j−1 is known from the previous
time step, and is treated as a known quantity.

The first and last equations will be replaced by appropriate boundary conditions. For
example, in the case of Burgers’ equation with Dirichlet boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

ut + uux = Duxx

u(x,0) = f (x) for xl ≤ x ≤ xr

u(xl, t) = l(t) for all t ≥ 0
u(xr , t) = r(t) for all t ≥ 0,

(8.63)

we will add the equations

F1(z1, . . . , zm) = z1 − l(tj ) = 0

Fm(z1, . . . , zm) = zm − r(tj ) = 0. (8.64)

Now there are m nonlinear algebraic equations in m unknowns.
To apply Multivariate Newton’s Method, we must compute the Jacobian DF(z⃗) =

∂F⃗ /∂ z⃗, which according to (8.62) and (8.64) will have the tridiagonal form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · ·

−σ − kz2

2h
1 + 2σ + k(z3 − z1)

2h
−σ + kz2

2h

−σ − kz3

2h
1 + 2σ + k(z4 − z2)

2h
−σ + kz3

2h

. . .
. . .

. . .

−σ − kzm−1

2h
1 + 2σ + k(zm − zm−2)

2h
−σ + kzm−1

2h

· · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The top and bottom rows of DF will in general depend on boundary conditions. Once DF

has been constructed, we solve for the zi = wij by the Multivariate Newton iteration

z⃗K+1 = z⃗K − DF(z⃗K )−1F(z⃗K ). (8.65)
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! EXAMPLE 8.12 Use the Backward Difference Equation with Newton iteration to solve Burgers’ equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uux = Duxx

u(x,0) = 2Dβπ sin πx

α + β cosπx
for 0 ≤ x ≤ 1

u(0, t) = 0 for all t ≥ 0
u(1, t) = 0 for all t ≥ 0.

(8.66)

Matlab code for the Dirichlet boundary condition version of our Newton solver fol-
lows, where we have set α = 5,β = 4. The program uses three Newton iterations for each
time step. For typical problems, this will be sufficient, but more may be needed for difficult
cases. Note that Gaussian elimination or equivalent is carried out in the Newton iteration;
as usual, no explicit matrix inversion is needed.

% Program 8.7 Implicit Newton solver for Burgers equation
% input: space interval [xl,xr], time interval [tb,te],
% number of space steps M, number of time steps N
% output: solution w
% Example usage: w=burgers(0,1,0,2,20,40)
function w=burgers(xl,xr,tb,te,M,N)
alf=5;bet=4;D=.05;
f=@(x) 2*D*bet*pi*sin(pi*x)./(alf+bet*cos(pi*x));
l=@(t) 0*t;
r=@(t) 0*t;
h=(xr-xl)/M; k=(te-tb)/N; m=M+1; n=N;
sigma=D*k/(h*h);
w(:,1)=f(xl+(0:M)*h)’; % initial conditions
w1=w;
for j=1:n
for it=1:3 % Newton iteration

DF1=zeros(m,m);DF2=zeros(m,m);
DF1=diag(1+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
DF1=DF1+diag(-sigma*ones(m-1,1),-1);
DF2=diag([0;k*w1(3:m)/(2*h);0])-diag([0;k*w1(1:(m-2))/(2*h);0]);
DF2=DF2+diag([0;k*w1(2:m-1)/(2*h)],1)...

-diag([k*w1(2:m-1)/(2*h);0],-1);
DF=DF1+DF2;
F=-w(:,j)+(DF1+DF2/2)*w1; % Using Lemma 8.11
DF(1,:)=[1 zeros(1,m-1)]; % Dirichlet conditions for DF
DF(m,:)=[zeros(1,m-1) 1];
F(1)=w1(1)-l(j);F(m)=w1(m)-r(j); % Dirichlet conditions for F
w1=w1-DF\F;

end
w(:,j+1)=w1;

end
x=xl+(0:M)*h;t=tb+(0:n)*k;
mesh(x,t,w’) % 3-D plot of solution w

The code is a straightforward implementation of the Newton iteration (8.65), along with
a convenient fact about homogeneous polynomials. Consider, for example, the polynomial
P (x1,x2,x3) = x1x2x2

3 + x4
1 , which is called homogeneous of degree 4, since it consists

entirely of degree 4 terms in x1,x2,x3. The partial derivatives of P with respect to the three
variables are contained in the gradient

∇P = (x2x2
3 + 4x3

1 ,x1x2
3 ,2x1x2x3).
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Figure 8.19 Approximate solution to Burgers’ equation (8.66). Homogeneous Dirichlet

boundary conditions are assumed, with step sizes h = k = 0.05.

The remarkable fact is that we can recover P by multiplying the gradient by the vector
of variables, with a extra multiple of 4:

∇P ·

⎡

⎣
x1
x2
x3

⎤

⎦ = (x2x2
3 + 4x3

1)x1 + x1x2
3x2 + 2x1x2x3x3 = 4x1x2x2

3 + 4x4
1 = 4P .

In general, define the polynomial P (x1, . . . ,xm) to be homogeneous of degree d if

P (cx1, . . . ,cxm) = cdP (x1, . . . ,xm) (8.67)

for all c.

LEMMA 8.11 Let P (x1, . . . ,xm) be a homogeneous polynomial of degree d . Then

∇P ·

⎡

⎢⎣
x1
...

xm

⎤

⎥⎦ = dP .

#

Proof. Differentiating (8.67) with respect to c yields

x1Px1(cx1, . . . ,cxm) + . . . + xmPxm(cx1, . . . ,cxm) = dcd−1P (x1, . . . ,xm)

using the multivariable chain rule. Evaluating at c = 1 results in the desired conclusion. ❒

Using this fact allows us to write code very compactly for partial differential equations
with polynomial terms, as long as we group terms of the same degree together. Note how
the matrix DF1 in Program 8.7 collects derivatives of degree 1 terms of F; DF2 collects
derivatives of degree 2 terms. Then we can define the Jacobian matrix DF as the sum
of derivatives of degree 1 and 2 terms, and essentially for free, define the function F as the
sum of degree 0, 1, and 2 terms. Lemma 8.11 is used to identify the degree d terms of F as
gradient times variables, divided by d . The added convenience of this simplification will
be even more welcome when we proceed to more difficult problems.

For certain boundary conditions, an explicit solution for Burgers’ equation is known.
The solution to the Dirichlet problem (8.66) is

u(x, t) = 2Dβπe−Dπ2t sin πx

α + βe−Dπ2t cosπx
. (8.68)

We can use the exact solution to measure the accuracy of our approximation method, as
a function of the step sizes h and k. Using the parameters α = 5,β = 4, and the diffusion
coefficient D = 0.05, we find the errors at x = 1/2 after one time unit are as follows:
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h k u(0.5,1) w(0.5,1) error
0.01 0.04 0.153435 0.154624 0.001189
0.01 0.02 0.153435 0.154044 0.000609
0.01 0.01 0.153435 0.153749 0.000314

We see the roughly first-order decrease in error as a function of time step size k, as expected
with the implicit Backward Difference Method. "

Another interesting category of nonlinear PDEs is comprised of reaction-diffusion
equations. A fundamental example of a nonlinear reaction-diffusion equation is due to the
evolutionary biologist and geneticist R.A. Fisher (1890–1962), a successor of Darwin who
helped create the foundations of modern statistics. The equation was originally derived to
model how genes propagate. The general form of Fisher’s equation is

ut = Duxx + f (u), (8.69)

where f (u) is a polynomial in u. The reaction part of the equation is the function f ;
the diffusion part is Duxx . If homogeneous Neumann boundary conditions are used, the
constant, or equilibrium state u(x, t) ≡ C is a solution whenever f (C) = 0. The equilibrium
state turns out to be stable if f ′(C) < 0, meaning that nearby solutions tend toward the
equilibrium state.

! EXAMPLE 8.13 Use the Backward Difference Equation with Newton iteration to solve Fisher’s equation
with homogeneous Neumann boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

ut = Duxx + u(1 − u)

u(x,0) = sin πx for 0 ≤ x ≤ 1
ux(0, t) = 0 for all t ≥ 0
ux(1, t) = 0 for all t ≥ 0.

(8.70)

Note that f (u) = u(1 − u), implying that f ′(u) = 1 − 2u. The equilibrium u = 0 satis-
fies f ′(0) = 1, and the other equilibrium solution u = 1 satisfies f ′(1) = −1. Therefore,
solutions are likely to tend toward the equilibrium u = 1.

The discretization retraces the derivation that was carried out for Burgers’ equation:

wij − wi,j−1

k
= D

h2 (wi+1,j − 2wij + wi−1,j ) + wij (1 − wij ),

or

(1 + 2σ − k(1 − wij ))wij − σ (wi+1,j + wi−1,j ) − wi,j−1 = 0. (8.71)

This results in the nonlinear equations

Fi(z1, . . . , zm) = (1 + 2σ − k(1 − zi))zi − σ (zi+1 + zi−1) − wi,j−1 = 0 (8.72)

to solve for the zi = wij at the j th time step. The first and last equations will establish the
Neumann boundary conditions:

F1(z1, . . . , zm) = (−3z0 + 4z1 − z2)/(2h) = 0

Fm(z1, . . . , zm) = (−zm−2 + 4zm−1 − 3zm)/(−2h) = 0
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The Jacobian DF has the form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 4 −1
−σ 1 + 2σ − k + 2kz2 −σ

−σ 1 + 2σ − k + 2kz3 −σ

. . .
. . .

. . .

−σ 1 + 2σ − k + 2kzm−1 −σ

−1 4 −3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After altering the function F and Jacobian DF , the Newton iteration implemented in
Program 8.7 can be used to solve Fisher’s equation. Lemma 8.11 can be used to separate
the degree 1 and 2 parts of DF . Neumann boundary conditions are also applied, as shown
in the code fragment below:

DF1=diag(1-k+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
DF1=DF1+diag(-sigma*ones(m-1,1),-1);
DF2=diag(2*k*w1);
DF=DF1+DF2;
F=-w(:,j)+(DF1+DF2/2)*w1;
DF(1,:)=[-3 4 -1 zeros(1,m-3)];F(1)=DF(1,:)*w1;
DF(m,:)=[zeros(1,m-3) -1 4 -3];F(m)=DF(m,:)*w1;

Figure 8.20 shows approximate solutions of Fisher’s equation with D = 1 that demon-
strate the tendency to relax to the attracting equilibrium u(x, t) ≡ 1. Of course, u(x, t) ≡ 0
is also a solution of (8.69) with f (u) = u(1 − u), and will be found by the initial data
u(x,0) = 0. Almost any other initial data, however, will eventually approach u = 1 as t

increases. "

While Example 8.13 covers the original equation considered by Fisher, there are many
generalized versions for other choices of the polynomial f (u). See the Computer Problems
for more explorations into this reaction-diffusion equation. Next, we will investigate a
higher-dimensional version of Fisher’s equation.
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Figure 8.20 Two solutions to Fisher’s equation. Both solutions tend toward the equilibrium

solution u(x, t) = 1 as t increases. (a) Initial condition u(x,0) = 0.5 + 0.5 cosπx .

(b) Initial condition u(x,0) = 1.5 + 0.5 cosπx . Homogeneous Neumann boundary conditions are

assumed, with step sizes h = k = 0.1.
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8.4.2 Nonlinear equations in two space dimensions

Solving partial differential equations with two-dimensional domains requires us to com-
bine techniques from previous sections. The implicit Backward Difference Method with
Newton iteration will handle the nonlinearity, and we will need to apply the accordion-style
coordinates of Table 8.1 to do the bookkeeping for the two-dimensional domain.

We begin by extending Fisher’s equation from one space dimension to two.

! EXAMPLE 8.14 Apply the Backward Difference Method with Newton’s iteration to Fisher’s equation on
the unit square [0,1] × [0,1]:

⎧
⎨

⎩

ut = D!u + u(1 − u)

u(x,y,0) = 2 + cosπx cosπy for 0 ≤ x,y ≤ 1
un⃗(x,y, t) = 0 on rectangle boundary, for all t ≥ 0.

(8.73)

Here D is the diffusion coefficient, and un⃗ denotes the directional derivative in the out-
ward normal direction. We are assuming Neumann, or no-flux, boundary conditions on the
rectangle boundary.

In this section, the two discretization subscripts will represent the two space coordinates
x and y, and we will use superscripts to denote time steps. Assuming M steps in the x

direction and N steps in the y direction, we will define step sizes h = (xr − xl)/M and
k = (yt − yb)/N . The discretized equations at nonboundary grid points, for 1 < i < m =
M + 1,1 < j < n = N + 1, are

wt
ij − wt−!t

ij

!t
= D

h2 (wt
i+1,j − 2wt

ij + wt
i−1,j ) + D

k2 (wt
i,j+1 − 2wt

ij + wt
i,j−1)

+wt
ij (1 − wt

ij ), (8.74)

which can be rearranged to the form Fij (wt ) = 0, or
(

1
!t

+ 2D

h2 + 2D

k2 − 1
)

wt
ij − D

h2 wt
i+1.j − D

h2 wt
i−1.j − D

k2 wt
i.j+1 − D

k2 wt
i.j−1

+(wt
ij )2 −

wt−!t
ij

!t
= 0 (8.75)

We need to solve the Fij equations implicitly. The equations are nonlinear, so New-
ton’s method will be used as it was for the one-dimensional version of Fisher’s equation.
Since the domain is now two-dimensional, we need to recall the alternative coordinate
system (8.39)

vi+(j−1)m = wij ,

illustrated in Table 8.1. There will be mn equations Fij , and in the v coordinates, (8.75)
represents the equation numbered i + (j − 1)m. The Jacobian matrix DF will have size
mn × mn. Using Table 8.1 to translate to the v coordinates, we get the Jacobian matrix
entries

DFi+(j−1)m,i+(j−1)m =
(

1
!t

+ 2D

h2 + 2D

k2 − 1
)

+ 2wij

DFi+(j−1)m,i+1+(j−1)m = − D

h2

DFi+(j−1)m,i−1+(j−1)m = − D

h2
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DFi+(j−1)m,i+jm = − D

k2

DFi+(j−1)m,i+(j−2)m = − D

k2

for the interior points of the grid. The outside points of the grid are governed by the homoge-
nous Neumann boundary conditions

Bottom (3wij − 4wi,j+1 + wi,j+2)/(2k) = 0 for j = 1,1 ≤ i ≤ m

Top side (3wij − 4wi,j−1 + wi,j−2)/(2k) = 0 for j = n,1 ≤ i ≤ m

Left side (3wij − 4wi+1,j + wi+2,j )/(2h) = 0 for i = 1,1 < j < n

Right side (3wij − 4wi−1,j + wi−2,j )/(2h) = 0 for i = m,1 < j < n

The Neumann conditions translate via Table 8.1 to

Bottom DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i+jm = −4, DF i+(j−1)m,i+(j+1)m = 1,

bi+(j−1)m = 0 for j = 1,1 ≤ i ≤ m

Top DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i+(j−2)m = −4, DF i+(j−1)m,i+(j−3)m = 1,

bi+(j−1)m = 0 for j = n,1 ≤ i ≤ m

Left DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i+1+(j−1)m = −4,

DF i+(j−1)m,i+2+(j−1)m = 1,

bi+(j−1)m = 0 for i = 1,1 < j < n

Right DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i−1+(j−1)m = −4,

DF i+(j−1)m,i−2+(j−1)m = 1,

bi+(j−1)m = 0 for i = m,1 < j < n
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Figure 8.21 Fisher’s equation with Neumann boundary conditions on a two-dimensional

domain. The solution tends toward the equilibrium solution u(x,y, t) = 1 as t increases. (a) The initial

condition u(x,y,0) = 2 + cosπx cosπy. (b) Approximate solution after 5 time units. Step sizes

h = k = !t = 0.05.
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The Newton iteration is carried out in the following program. Note that Lemma 8.11
has been used to divide the contributions to DF into degree 1 and degree 2 terms.

% Program 8.8 Backward difference method with Newton iteration
% for Fisher’s equation with two-dim domain
% input: space region [xl xr]x[yb yt], time interval [tb te],
% M,N space steps in x and y directions, tsteps time steps
% output: solution mesh [x,y,w]
% Example usage: [x,y,w]=fisher2d(0,1,0,1,0,5,20,20,100);
function [x,y,w]=fisher2d(xl,xr,yb,yt,tb,te,M,N,tsteps)
f=@(x,y) 2+cos(pi*x).*cos(pi*y)
delt=(te-tb)/tsteps;
D=1;
m=M+1;n=N+1;mn=m*n;
h=(xr-xl)/M;k=(yt-yb)/N;
x=linspace(xl,xr,m);y=linspace(yb,yt,n);
for i=1:m %Define initial u
for j=1:n

w(i,j)=f(x(i),y(j));
end

end
for tstep=1:tsteps
v=[reshape(w,mn,1)];
wold=w;
for it=1:3
b=zeros(mn,1);DF1=zeros(mn,mn);DF2=zeros(mn,mn);
for i=2:m-1

for j=2:n-1
DF1(i+(j-1)*m,i-1+(j-1)*m)=-D/hˆ2;
DF1(i+(j-1)*m,i+1+(j-1)*m)=-D/hˆ2;
DF1(i+(j-1)*m,i+(j-1)*m)= 2*D/hˆ2+2*D/kˆ2-1+1/(1*delt);
DF1(i+(j-1)*m,i+(j-2)*m)=-D/kˆ2;DF1(i+(j-1)*m,i+j*m)=-D/kˆ2;
b(i+(j-1)*m)=-wold(i,j)/(1*delt);
DF2(i+(j-1)*m,i+(j-1)*m)=2*w(i,j);

end
end
for i=1:m % bottom and top

j=1; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+j*m)=-4;DF1(i+(j-1)*m,i+(j+1)*m)=1;
j=n; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+(j-2)*m)=-4;DF1(i+(j-1)*m,i+(j-3)*m)=1;

end
for j=2:n-1 % left and right

i=1; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+1+(j-1)*m)=-4;DF1(i+(j-1)*m,i+2+(j-1)*m)=1;
i=m; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i-1+(j-1)*m)=-4;DF1(i+(j-1)*m,i-2+(j-1)*m)=1;

end
DF=DF1+DF2;
F=(DF1+DF2/2)*v+b;
v=v-DF\F;
w=reshape(v(1:mn),m,n);

end
mesh(x,y,w’);axis([xl xr yb yt tb te]);
xlabel(’x’);ylabel(’y’);drawnow
end
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The dynamical behavior of the two-dimensional Fisher’s equation is similar to that
of the one-dimensional version in Figure 8.20, where we saw convergence to the stable
equilibrium solution at u(x, t) = 1. Figure 8.21(a) shows the initial data f (x,y) = 2 +
cosπx cosπy. The solution after t = 5 time units is shown in Figure 8.21(b). The solution
relaxes quickly toward the stable equilibrium at u(x,y, t) = 1. "

The mathematician Alan Turing (1912–1954), in a landmark paper (Turing [1952]),
proposed a possible explanation for many shapes and structures found in biology. Certain
reaction-diffusion equations that model chemical concentrations gave rise to interesting
spatial patterns, including stripes and hexagonal shapes. These were seen as a stunning
example of emergent order in nature, and are now known as Turing patterns.

Turing found that just by adding a diffusive term to a model of a stable chemical
reaction, he could cause stable, spatially constant equilibriums, such as the one in Figure
8.21(b), to become unstable. This so-called Turing instability causes a transition in which
patterns evolve into a new, spatially varying steady-state solution. Of course, this is the
opposite of the effect of diffusion we have seen so far, of averaging or smoothing initial
conditions over time.

An interesting example of a Turing instability is found in the Brusselator model,
proposed by the Belgian chemist I. Prigogine in the late 1960’s. The model consists of two
coupled PDEs, each representing one species of a two-species chemical reaction.

! EXAMPLE 8.15 Apply the Backward Difference Method with Newton’s iteration to the Brusselator equation
with homogeneous Neumann boundary conditions on the square [0,40] × [0,40]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pt = Dp!p + p2q + C − (K + 1)p

qt = Dq!q − p2q + Kp

p(x,y,0) = C + 0.1 for 0 ≤ x,y ≤ 40
q(x,y,0) = K/C + 0.2 for 0 ≤ x,y ≤ 40
un⃗(x,y, t) = 0 on rectangle boundary, for all t ≥ 0.

(8.76)

The system of two coupled equations has variables p,q, two diffusion coefficients
Dp,Dq > 0, and two other parameters C,K > 0. According to Exercise 5, the Brusselator
has an equilibrium solution at p ≡ C,q ≡ K/C. It is known that the equilibrium is stable
for small values of the parameter K , and that a Turing instability is encountered when

K >

(

1 + C

√
Dp

Dq

)2

. (8.77)

The discretized equations at the interior grid points, for 1 < i < m,1 < j < n, are

pt
ij − pt−!t

ij

!t
− Dp

h2 (pt
i+1,j − 2pt

ij + pt
i−1,j ) − Dp

k2 (pt
i,j+1 − 2pt

ij + pt
i,j−1)

− (pt
ij )2qt

ij − C + (K + 1)pt
ij = 0

qt
ij − qt−!t

ij

!t
− Dq

h2 (qt
i+1,j − 2qt

ij + qt
i−1,j ) − Dq

k2 (qt
i,j+1 − 2qt

ij + qt
i,j−1)

+ (pt
ij )2qt

ij − Kpt
ij = 0

This is the first example we have encountered with two coupled variables, p and q. The
alternative coordinate vector v will have length 2mn, and (8.39) will be extended to
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vi+(j−1)m = pij for 1 ≤ i ≤ m,1 ≤ j ≤ n

vmn+i+(j−1)m = qij for 1 ≤ i ≤ m,1 ≤ j ≤ n. (8.78)

The Neumann boundary conditions are essentially the same as Example 8.14, now for each
variable p and q. Note that there are degree 1 and degree 3 terms to differentiate for the
Jacobian DF . Using Table 8.1 expanded in a straightforward way to cover two variables,
and Lemma 8.11, we arrive at the following Matlab code:

% Program 8.9 Backward difference method with Newton iteration
% for the Brusselator
% input: space region [xl,xr]x[yb,yt], time interval [tb,te],
% M,N space steps in x and y directions, tsteps time steps
% output: solution mesh [x,y,w]
% Example usage: [x,y,p,q]=brusselator(0,40,0,40,0,20,40,40,20);
function [x,y,p,q]=brusselator(xl,xr,yb,yt,tb,te,M,N,tsteps)
Dp=1;Dq=8;C=4.5;K=9;
fp=@(x,y) C+0.1;
fq=@(x,y) K/C+0.2;
delt=(te-tb)/tsteps;
m=M+1;n=N+1;mn=m*n;mn2=2*mn;
h=(xr-xl)/M;k=(yt-yb)/N;
x=linspace(xl,xr,m);y=linspace(yb,yt,n);
for i=1:m %Define initial conditions
for j=1:n

p(i,j)=fp(x(i),y(j));
q(i,j)=fq(x(i),y(j));

end
end
for tstep=1:tsteps
v=[reshape(p,mn,1);reshape(q,mn,1)];
pold=p;qold=q;
for it=1:3

DF1=zeros(mn2,mn2);DF3=zeros(mn2,mn2);
b=zeros(mn2,1);
for i=2:m-1

for j=2:n-1
DF1(i+(j-1)*m,i-1+(j-1)*m)=-Dp/hˆ2;
DF1(i+(j-1)*m,i+(j-1)*m)= Dp*(2/hˆ2+2/kˆ2)+K+1+1/(1*delt);
DF1(i+(j-1)*m,i+1+(j-1)*m)=-Dp/hˆ2;
DF1(i+(j-1)*m,i+(j-2)*m)=-Dp/kˆ2;
DF1(i+(j-1)*m,i+j*m)=-Dp/kˆ2;
b(i+(j-1)*m)=-pold(i,j)/(1*delt)-C;
DF1(mn+i+(j-1)*m,mn+i-1+(j-1)*m)=-Dq/hˆ2;
DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)= Dq*(2/hˆ2+2/kˆ2)+1/(1*delt);
DF1(mn+i+(j-1)*m,mn+i+1+(j-1)*m)=-Dq/hˆ2;
DF1(mn+i+(j-1)*m,mn+i+(j-2)*m)=-Dq/kˆ2;
DF1(mn+i+(j-1)*m,mn+i+j*m)=-Dq/kˆ2;
DF1(mn+i+(j-1)*m,i+(j-1)*m)=-K;
DF3(i+(j-1)*m,i+(j-1)*m)=-2*p(i,j)*q(i,j);
DF3(i+(j-1)*m,mn+i+(j-1)*m)=-p(i,j)ˆ2;
DF3(mn+i+(j-1)*m,i+(j-1)*m)=2*p(i,j)*q(i,j);
DF3(mn+i+(j-1)*m,mn+i+(j-1)*m)=p(i,j)ˆ2;
b(mn+i+(j-1)*m)=-qold(i,j)/(1*delt);

end
end
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for i=1:m % bottom and top Neumann conditions
j=1;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+j*m)=-4;
DF1(i+(j-1)*m,i+(j+1)*m)=1;
j=n;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+(j-2)*m)=-4;
DF1(i+(j-1)*m,i+(j-3)*m)=1;
j=1;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i+j*m)=-4;
DF1(mn+i+(j-1)*m,mn+i+(j+1)*m)=1;
j=n;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i+(j-2)*m)=-4;
DF1(mn+i+(j-1)*m,mn+i+(j-3)*m)=1;

end
for j=2:n-1 %left and right Neumann conditions

i=1;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+1+(j-1)*m)=-4;
DF1(i+(j-1)*m,i+2+(j-1)*m)=1;
i=m;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i-1+(j-1)*m)=-4;
DF1(i+(j-1)*m,i-2+(j-1)*m)=1;
i=1;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i+1+(j-1)*m)=-4;
DF1(mn+i+(j-1)*m,mn+i+2+(j-1)*m)=1;
i=m;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i-1+(j-1)*m)=-4;
DF1(mn+i+(j-1)*m,mn+i-2+(j-1)*m)=1;

end
DF=DF1+DF3;
F=(DF1+DF3/3)*v+b;
v=v-DF\F;
p=reshape(v(1:mn),m,n);q=reshape(v(mn+1:mn2),m,n);

end
contour(x,y,p’);drawnow;

end

Figure 8.22 shows contour plots of solutions of the Brusselator. In a contour plot, the
closed curves trace level sets of the variable p(x,y). In models, p and q represent chemical
concentrations which self-organize into the varied patterns shown in the plots. "

Reaction-diffusion equations with a Turing instability are routinely used to model pat-
tern formation in biology, including butterfly wing patterns, animal coat markings, fish
and shell pigmentation, and many other examples. Turing patterns have been found exper-
imentally in chemical reactions such as the CIMA (chlorite-iodide-malonic acid) starch
reaction. Models for glycolysis and the Gray-Scott equations for chemical reactions are
closely related to the Brusselator.

The use of reaction-diffusion equations to study pattern formation is just one direction
among several of great contemporary interest. Nonlinear partial differential equations are
used to model a variety of temporal and spatial phenomena throughout engineering and the
sciences. Another important class of problems is described by the Navier-Stokes equations,
which represent incompressible fluid flow. Navier-Stokes is used to model phenomena as
diverse as film coatings, lubrication, blood dynamics in arteries, air flow over an airplane
wing and the turbulence of stellar gas. Improving finite difference and finite element solvers
for linear and nonlinear partial differential equations stands as one of the most active areas
of research in computational science.



8.4 Nonlinear partial differential equations | 429

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

Figure 8.22 Pattern formation in the Brusselator. Contour plots of solutions p(x,y) at

t = 2000 show Turing patterns. Parameters are Dp = 1,Dq = 8,C = 4.5 and (a) K = 7

(b) K = 8 (c) K = 9 (d) K = 10 (e) K = 11 (f ) K = 12. Settings for the finite differences are

h = k = 0.5,!t = 1.

8.4 Exercises

1. Show that for any constant c, the function u(x, t) = c is an equilibrium solution of Burgers’
equation ut + uux = Duxx .

2. Show that over an interval [xl,xr ] not containing 0, the function u(x, t) = x−1 is a
time-invariant solution of the Burgers’ equation ut + uux = − 1

2 uxx .

3. Show that the function u(x, t) in (8.68) is a solution of the Burgers’ equation with Dirichlet
boundary conditions (8.66).

4. Find all stable equilibrium solutions of Fisher’s equation (8.69) when
f (u) = u(u − 1)(2 − u).

5. Show that the Brusselator has an equilibrium solution at p ≡ C,q ≡ K/C.

6. For parameter settings Dp = 1,Dq = 8,C = 4.5 of the Brusselator, for what values of K is
the equilibrium solution p ≡ C,q ≡ K/C stable? See Computer Problems 5 and 6.

8.4 Computer Problems

1. Solve Burgers’ equation (8.63) on [0,1] with initial condition f (x) = sin 2πx and boundary
conditions l(t) = r(t) = 0, using step sizes (a) h = k = 0.1 and (b) h = k = 0.02. Plot the
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approximate solutions for 0 ≤ t ≤ 1. Which equilibrium solution does the solution approach as
time increases?

2. Solve Burgers’ equation on the interval [0,1] with homogeneous Dirichlet boundary conditions
and the initial condition given in (8.66) with parameters α = 4,β = 3, and D = 0.2. Plot the
approximate solution using step sizes h = 0.01,k = 1/16, and make a log–log plot of the
approximation error at x = 1/2, t = 1 as a function of k for k = 2−p,p = 4, . . . ,8.

3. Solve Fisher’s equation (8.69) with f (u) = u(u − 1)(2 − u) and homogeneous Neumann
boundary conditions, using initial condition (a) f (x) = 1/2 + cos2πx (b)
f (x) = 3/2 − cos2πx. Plot the approximate solution for 0 ≤ t ≤ 2 for step sizes
h = k = 0.05. Which equilibrium solution does the solution approach as time increases?

4. Solve Fisher’s equation with f (u) = u(u − 1)(2 − u) on a two-dimensional space domain.
Assume homogeneous Neumann boundary conditions, and the initial conditions of (8.73). Plot
the approximate solution for integer times t = 0, . . . ,5 for step sizes h = k = 0.05 and
!t = 0.05. Which equilibrium solution does the solution approach as time increases?

5. Solve the Brusselator equations for Dp = 1,Dq = 8,C = 4.5 and (a) K = 4 (b) K = 5 (c)
K = 6 (d) K = 6.5. Using homogeneous Neumann boundary conditions and initial conditions
p(x,y,0) = 1 + cosπx cosπy,q(x,y,0) = 2 + cos2πx cos2πy, estimate the least value T

for which |p(x,y, t) − C| < 0.01 for all t > T .

6. Plot contour plots of solutions p(x,y,2000) of the Brusselator for Dp = 1,Dq = 8,C = 4.5
and K = 7.2,7.4,7.6, and 7.8. Use step sizes h = k = 0.5,!t = 1. These plots fill in the range
between Figure 8.22.

Software and Further Reading

There is a rich literature on partial differential equations and their applications to science
and engineering. Recent textbooks with an applied viewpoint include Haberman [2004],
Logan [1994], Evans [2002], Strauss [1992], and Gockenbach [2002]. Many textbooks
provide deeper information about numerical methods for PDEs, such as finite difference
and finite element methods, including Strikwerda [1989], Lapidus and Pinder [1982], Hall
and Porsching [1990], and Morton and Mayers [1996]. Brenner and Scott [1994], Ames
[1992], Strang and Fix [1973] are primarily directed toward the Finite Element Method.

Matlab’s PDE toolbox is highly recommended. It has become extremely popular
as a companion in PDE and engineering mathematics courses. Maple has an analogous
package called PDEtools. Several stand-alone software packages have been developed
for numerical PDEs, for general use or targeting special problems. ELLPACK (Rice and
Boisvert [1984]) and PLTMG (Bank [1998]) are freely available packages for solving elliptic
partial differential equations in general regions of the plane. Both are available at Netlib.

Finite Element Method software includes freeware FEAST (Finite Element and Solu-
tion Tools), FreeFEM, and PETSc (Portable Extensible Toolkit for Scientific Computing)
and commercial software COMSOL, NASTRAN, and DIFFPACK, among many others.
The IMSL contains the routine DFPS2H for solving the Poisson equation on a rectangle,
and DFPS3H on a three-dimensional box. These methods are based on finite differences.

The NAG library contains several routines for finite difference and finite element meth-
ods. The program D03EAF solves the Laplace equation in two dimensions by means of an
integral equation method; D03EEF uses a seven-point finite difference formula and handles
many types of boundary conditions. The routines D03PCF and D03PFF handle parabolic
and hyperbolic equations, respectively.


