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11
Compression
The increasingly rapid movement of information
around the world relies on ingenious methods of data
representation, which are in turn made possible by
orthogonal transformations.The JPEG format for image
representation is based on the Discrete Cosine Trans-
form developed in this chapter.The MPEG-1 and MPEG-
2 formats for TV and video data and the H.263 format
for video phones are also based on the DCT, but with
extra emphasis on compressing in the time dimension.

Sound files can be compressed into a variety
of different formats, including MP3, Advanced Audio

Coding (used by Apple’s iTunes and XM satellite radio),
Microsoft’s Windows Media Audio (WMA), and other
state-of-the-art methods. What these formats have in
common is that the core compression is done by a
variant of the DCT called the Modified Discrete Cosine
Transform.

Reality Check 11 on page 527 explores
implementation of the MDCT into a simple, working
algorithm to compress audio.

In Chapters 4 and 10, we observed the usefulness of orthogonality to represent and com-
press data. Here, we introduce the Discrete Cosine Transform (DCT), a variant of the

Fourier transform that can be computed in real arithmetic. It is currently the method of
choice for compression of sound and image files.

The simplicity of the Fourier transform stems from orthogonality, due to its represen-
tation as a complex unitary matrix. The Discrete Cosine Transform has a representation as
a real orthogonal matrix, and so the same orthogonality properties make it simple to apply
and easy to invert. Its similarity to the Discrete Fourier Transform (DFT) is close enough
that fast versions of the DCT exist, in analogy to the Fast Fourier Transform (FFT).

In this chapter, the basic properties of the DCT are explained, and the links to working
compression formats are investigated. The well-known JPEG format, for example, applies
the two-dimensional DCT to 8 × 8 pixel blocks of an image, and stores the results using
Huffman coding. The details of JPEG compression are investigated as a case study in
Sections 11.2–11.3.
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A modified version of the Discrete Cosine Transform, called the Modified Discrete
Cosine Transform (MDCT), is the basis of most modern audio compression formats. The
MDCT is the current gold standard for compression of sound files. We will introduce MDCT
and investigate its application for coding and decoding, which provides the core technology
of file formats such as MP3 and AAC (Advanced Audio Coding).

11.1 THE DISCRETE COSINE TRANSFORM

In this section, we introduce the Discrete Cosine Transform. This transform interpolates
data, using basis functions that are all cosine functions, and involves only real computations.
Its orthogonality characteristics make least squares approximations simple, as in the case
of the Discrete Fourier Transform.

11.1.1 One-dimensional DCT

Let n be a positive integer. The one-dimensional Discrete Cosine Transform of order n is
defined by the n × n matrix C whose entries are

Cij =
√

2√
n

ai cos
i(2j + 1)π

2n
(11.1)

for i,j = 0, . . . ,n − 1, where

ai ≡
{

1/
√

2 if i = 0,

1 if i = 1, . . . ,n − 1

or

C =
√

2
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

· · · 1√
2

cos π
2n cos 3π

2n · · · cos (2n−1)π
2n

cos 2π
2n cos 6π

2n · · · cos 2(2n−1)π
2n

...
...

...

cos (n−1)π
2n cos (n−1)3π

2n · · · cos (n−1)(2n−1)π
2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.2)

With two-dimensional images, the convention is to begin with 0 instead of 1. The notation
will be easier if we extend this convention to matrix numbering, as we have done in (11.1).
In this chapter, subscripts for n × n matrices will go from 0 to n − 1. For simplicity, we
will treat only the case where n is even in the following discussion.

DEFINITION 11.1 Let C be the matrix defined in (11.2). The Discrete Cosine Transform (DCT) of x =
[x0, . . . ,xn−1]T is the n-dimensional vector y = [y0, . . . ,yn−1]T , where

y = Cx. (11.3)

❒

Note that C is a real orthogonal matrix, meaning that its transpose is its inverse:

C−1 = CT =
√

2
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

cos π
2n · · · cos (n−1)π

2n

1√
2

cos 3π
2n · · · cos (n−1)3π

2n

...
...

...

1√
2

cos (2n−1)π
2n · · · cos (n−1)(2n−1)π

2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.4)
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The rows of an orthogonal matrix are pairwise orthogonal unit vectors. The orthogonality
of C follows from the fact that the columns of CT are the unit eigenvectors of the real
symmetric n × n matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.5)

Exercise 6 asks the reader to verify this fact.
The fact that C is a real orthogonal matrix is what makes the DCT useful.

The Orthogonal Function Interpolation Theorem 10.9 applied to the matrix C implies
Theorem 11.2.

THEOREM 11.2 DCT Interpolation Theorem. Let x = [x0, . . . ,xn−1]T be a vector of n real numbers.
Define y = [y0, . . . ,yn−1]T = Cx, where C is the Discrete Cosine Transform matrix of
order n. Then the real function

Pn(t) = 1√
n

y0 +
√

2√
n

n−1∑

k=1

yk cos
k(2t + 1)π

2n

satisfies Pn(j) = xj for j = 0, . . . ,n − 1. !

Proof. Follows directly from Theorem 10.9. ❒

Theorem 11.2 shows that the n × n matrix C transforms n data points into n inter-
polation coefficients. Like the Discrete Fourier Transform, the Discrete Cosine Transform
gives coefficients for a trigonometric interpolation function. Unlike the DFT, the DCT uses
cosine terms only and is defined entirely in terms of real arithmetic.

" EXAMPLE 11.1 Use the DCT to interpolate the points (0,1), (1,0), (2,−1), (3,0).

It is helpful to notice, using elementary trigonometry, that the 4 × 4 DCT matrix
can be viewed as

C = 1√
2

⎡

⎢⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

1√
2

cos π
8 cos 3π

8 cos 5π
8 cos 7π

8

cos 2π
8 cos 6π

8 cos 10π
8 cos 14π

8

cos 3π
8 cos 9π

8 cos 15π
8 cos 21π

8

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎣

a a a a

b c −c −b

a −a −a a

c −b b −c

⎤

⎥⎥⎦ , (11.6)

where

a = 1
2

,b = 1√
2

cos
π

8
=

√
2 +

√
2

2
√

2
,c = 1√

2
cos

3π

8
=

√
2 −

√
2

2
√

2
. (11.7)

The order-4 DCT multiplied by the data x = (1,0,−1,0)T is
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Figure 11.1 DCT interpolation and least squares approximation. The data points are

( j, xj ), where x = [1,0,−1,0]. The DCT interpolating function P4 ( t) of (11.8) is shown as

a solid curve, along with the least squares DCT approximation function P3 ( t) of (11.9)

as a dotted curve.

⎡

⎢⎢⎣

a a a a

b c −c −b

a −a −a a

c −b b −c

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
0

−1
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
c + b

2a

c − b

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0√
2−

√
2+

√
2+

√
2

2
√

2

1
√

2−
√

2−
√

2+
√

2
2
√

2

⎤

⎥⎥⎥⎥⎥⎥⎦
≈

⎡

⎢⎢⎣

0.0000
0.9239
1.0000

−0.3827

⎤

⎥⎥⎦ .

According to Theorem 11.2 with n = 4, the function

P4(t) = 1√
2

[
0.9239cos

(2t + 1)π

8
+ cos

2(2t + 1)π

8
− 0.3827cos

3(2t + 1)π

8

]
(11.8)

interpolates the four data points. The function P4(t) is plotted as the solid curve in
Figure 11.1. #

11.1.2 The DCT and least squares approximation

Just as the DCT Interpolation Theorem 11.2 is an immediate consequence of Theorem 10.9,
the least squares result Theorem 10.11 shows how to find a DCT least squares approxi-
mation of the data, using only part of the basis functions. Because of the orthogonality
of the basis functions, this can be accomplished by simply dropping the higher frequency
terms.

Orthogonality The idea behind least squares approximation is that finding the

shortest distance from a point to a plane (or subspace in general) means constructing the

perpendicular from the point to the plane. This construction is carried out by the nor-

mal equations, as we saw in Chapter 4. In Chapters 10 and 11, this concept is applied to

approximate data as closely as possible with a relatively small set of basis functions, result-

ing in compression. The basic message is to choose the basis functions to be orthogonal, as

reflected in the rows of the DCT matrix. Then the normal equations become computationally

very simple (see Theorem 10.11).
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THEOREM 11.3 DCT Least Squares Approximation Theorem. Let x = [x0, . . . ,xn−1]T be a vector
of n real numbers. Define y = [y0, . . . ,yn−1]T = Cx, where C is the Discrete Cosine
Transform matrix. Then, for any positive integer m ≤ n, the choice of coefficients
y0, . . . ,ym−1 in

Pm(t) = 1√
n

y0 +
√

2√
n

m−1∑

k=1

yk cos
k(2t + 1)π

2n

minimizes the squared approximation error
∑n−1

j=0(Pm(j) − xj )2 of the n data points. !

Proof. Follows directly from Theorem 10.11. ❒

Referring to Example 11.1, if we require the best least squares approximation to the
same four data points, but use the three basis functions

1,cos
(2t + 1)π

8
,cos

2(2t + 1)π

8

only, the solution is

P3(t) = 1
2

· 0 + 1√
2

[
0.9239cos

(2t + 1)π

8
+ cos

2(2t + 1)π

8

]
. (11.9)

Figure 11.1 compares the least squares solution P3 with the interpolating function P4.

" EXAMPLE 11.2 Use the DCT and Theorem 11.3 to find least squares fits to the data t = 0, . . . ,7 and x =
[−2.2,−2.8,−6.1,−3.9,0.0,1.1,−0.6,−1.1]T for m = 4,6, and 8.

Setting n = 8, we find that the DCT of the data is

y = Cx =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.5154
−3.8345

0.5833
4.3715
0.4243

−1.5504
−0.6243
−0.5769

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to Theorem 11.2, the discrete cosine interpolant of the eight data points is

P8(t) = 1√
8

(−5.5154) + 1
2

[
− 3.8345cos

(2t + 1)π

16
+ 0.5833cos

2(2t + 1)π

16

+ 4.3715cos
3(2t + 1)π

16
+ 0.4243cos

4(2t + 1)π

16

− 1.5504cos
5(2t + 1)π

16
− 0.6243cos

6(2t + 1)π

16

− 0.5769cos
7(2t + 1)π

16

]
.

The interpolant P8 is plotted in Figure 11.2, along with the least squares fits P6 and
P4. The latter are obtained, according to Theorem 11.3, by keeping the first six, or first four
terms, respectively, of P8. #
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Figure 11.2 DCT interpolation and least squares approximation. The solid curve is

the DCT interpolant of the data points in Example 11.2. The dashed curve is the least

squares fit from the first six terms only, and the dotted curve represents four terms.

11.1 Exercises

1. Use the 2 × 2 DCT matrix and Theorem 11.2 to find the DCT interpolating function for the
data points.

(a)
t x

0 3
1 3

(b)
t x

0 2
1 −2

(c)
t x

0 3
1 1

(d)
t x

0 4
1 −1

2. Describe the m = 1 least squares DCT approximation in terms of the input data (0,x0), (1,x1).

3. Find the DCT of the following data vectors x, and find the corresponding interpolating
function Pn(t) for the data points (i,xi), i = 0, . . . ,n − 1 (you may state your answers in terms
of the b and c defined in (11.7)):

(a)

t x

0 1
1 0
2 1
3 0

(b)

t x

0 1
1 1
2 1
3 1

(c)

t x

0 1
1 0
2 0
3 0

(d)

t x

0 1
1 2
2 3
3 4

4. Find the DCT least squares approximation with m = 2 terms for the data in Exercise 3.

5. Carry out the trigonometry needed to establish equations (11.6) and (11.7).

6. (a) Prove the trigonometric formula cos(x + y) + cos(x − y) = 2cosx cosy for any x,y.
(b) Show that the columns of CT are eigenvectors of the matrix T in (11.5), and identify the
eigenvalues. (c) Show that the columns of CT are unit vectors.

7. Extend the DCT Interpolation Theorem 11.2 to the interval [c,d] as follows. Let n be a
positive integer and set "t = (d − c)/n. Use the DCT to produce a polynomial Pn(t) that
satisfies Pn(c + j"t ) = xj for j = 0, . . . ,n − 1.

11.1 Computer Problems

1. Plot the data from Exercise 3, along with the DCT interpolant and the DCT least squares
approximation with m = 2 terms.
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2. Plot the data along with the m = 4,6, and 8 DCT least squares approximations.

(a)

t x

0 3
1 5
2 −1
3 3
4 1
5 3
6 −2
7 4

(b)

t x

0 4
1 1
2 −3
3 0
4 0
5 2
6 −4
7 0

(c)

t x

0 3
1 −1
2 −1
3 3
4 3
5 −1
6 −1
7 3

(d)

t x

0 4
1 2
2 −4
3 2
4 4
5 2
6 −4
7 2

3. Plot the function f (t), the data points (j ,f (j)),j = 0, . . . ,7, and the DCT interpolation
function. (a) f (t) = e−t/4 (b) f (t) = cos π

2 t .

11.2 TWO-DIMENSIONAL DCT AND IMAGE COMPRESSION

The two-dimensional Discrete Cosine Transform is often used to compress small blocks of
an image, as small as 8 × 8 pixels. The compression is lossy, meaning that some information
from the block is ignored. The key feature of the DCT is that it helps organize the information
so that the part that is ignored is the part that the human eye is least sensitive to. More
precisely, the DCT will show us how to interpolate the data with a set of basis functions
that are in descending order of importance as far as the human visual system is concerned.
The less important interpolation terms can be dropped if desired, just as a newspaper editor
cuts a long story on deadline.

Later, we will apply what we have learned about the DCT to compress images. Using
the added tools of quantization and Huffman coding, each 8 × 8 block of an image can be
reduced to a bit stream that is stored with bit streams from the other blocks of the image. The
complete bit stream is decoded, when the image needs to be uncompressed and displayed,
by reversing the encoding process. We will describe this approach, called Baseline JPEG,
the default method for storing JPEG images.

11.2.1 Two-dimensional DCT

The two-dimensional Discrete Cosine Transform is simply the one-dimensional DCT
applied in two dimensions, one after the other. It can be used to interpolate or approximate
data given on a two-dimensional grid, in a straightforward analogy to the one-dimensional
case. In the context of image processing, the two-dimensional grid represents a block of
pixel values—say, grayscale intensities or color intensities.

In this chapter only, we will list the vertical coordinate first and the horizontal coordi-
nate second when referring to a two-dimensional point, as shown in Figure 11.3. The goal
is to be consistent with the usual matrix convention, where the i index of entry xij changes
along the vertical direction, and j along the horizontal. A major application of this section is
to pixel files representing images, which are most naturally viewed as matrices of numbers.

Figure 11.3 shows a grid of (s, t) points in the two-dimensional plane with assigned
values xij at each rectangular grid point (si, tj ). For concreteness, we will use the integer grid
si = {0,1, . . . ,n − 1} (remember, along the vertical axis) and tj = {0,1, . . . ,n − 1} along
the horizontal axis. The purpose of the two-dimensional DCT is to construct an interpolating
function F(s, t) that fits the n2 points (si, tj ,xij ) for i,j = 0, . . . ,n − 1. The 2D-DCT
accomplishes this in an optimal way from the point of view of least squares, meaning that
the fit degrades gracefully as basis functions are dropped from the interpolating function.
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x30 x31 x32 x33

x20 x21 x22 x23

x10 x11 x12 x13

x00 x01 x02 x03

Figure 11.3 Two-dimensional grid of data points. The 2D-DCT can be used to

interpolate function values on a square grid, such as pixel values of an image.

The 2D-DCT is the one-dimensional DCT applied successively to both horizontal and
vertical directions. Consider the matrix X consisting of the values xij , as in Figure 11.3. To
apply the 1D-DCT in the horizontal s-direction, we first need to transpose X, then multiply
by C. The resulting columns are the 1D-DCT’s of the rows of X. Each column of CXT

corresponds to a fixed ti . To do a 1D-DCT in the t-direction means moving across the rows;
so, again, transposing and multiplying by C yields

C(CXT )T = CXCT . (11.10)

DEFINITION 11.4 The two-dimensional Discrete Cosine Transform (2D-DCT) of the n × n matrix X is the
matrix Y = CXCT , where C is defined in (11.1). ❒

" EXAMPLE 11.3 Find the 2D Discrete Cosine Transform of the data in Figure 11.4(a).

From the definition and (11.6), the 2D-DCT is the matrix

Y = CXCT =

⎡

⎢⎢⎣

a a a a

b c −c −b

a −a −a a

c −b b −c

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a b a c

a c −a −b

a −c −a b

a −b a −c

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

3 0 1 0
0 0 0 0
1 0 −1 0
0 0 0 0

⎤

⎥⎥⎦ . (11.11)

#

The inverse of the 2D-DCT is easy to express in terms of the DCT matrix C. Since
Y = CXCT and C is orthogonal, the X is recovered as X = CT YC.

DEFINITION 11.5 The inverse two-dimensional Discrete Cosine Transform of the n × n matrix Y is the
matrix X = CT YC. ❒

As we have seen, there is a close connection between inverting an orthogonal transform
(like the 2D-DCT) and interpolation. The goal of interpolation is to recover the original
data points from functions that are constructed with the interpolating coefficients that came
out of the transform. Since C is an orthogonal matrix, C−1 = CT . The inversion of the
2D-DCT can be written as a fact about interpolation, X = CT YC, since in this equation the
xij are being expressed in terms of products of cosines.
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0

1

2

3

1 1 1 1

1 0 0 1

1 0 0 1

1 1 1 1

(a)
0 1 2 3

0

1

2

3

1.25 0.75 0.75 1.25

0.75 0.25 0.25 0.75

0.75 0.25 0.25 0.75

1.25 0.75 0.75 1.25

(b)

Figure 11.4 Two-dimensional data for Example 11.3. (a) The 16 data points ( i, j, xij ).

(b) Values of the least squares approximation (11.14) at the grid points.

To write a useful expression for the interpolating function, recall the definition of C

in (11.1) ,

Cij =
√

2√
n

ai cos
i(2j + 1)π

2n
(11.12)

for i,j = 0, . . . ,n − 1, where

ai ≡
{

1/
√

2 if i = 0,

1 if i = 1, . . . ,n − 1
.

According to the rules of matrix multiplication, the equation X = CT YC translates to

xij =
n−1∑

k=0

n−1∑

l=0

CT
ikyklClj

=
n−1∑

k=0

n−1∑

l=0

CkiyklClj

= 2
n

n−1∑

k=0

n−1∑

l=0

yklakal cos
k(2i + 1)π

2n
cos

l(2j + 1)π

2n
. (11.13)

This is exactly the interpolation statement we were looking for.

THEOREM 11.6 2D-DCT Interpolation Theorem. Let X = (xij ) be a matrix of n2 real numbers. Let Y =
(ykl) be the two-dimensional Discrete Cosine Transform of X. Define a0 = 1/

√
2 and

ak = 1 for k > 0. Then the real function

Pn(s, t) = 2
n

n−1∑

k=0

n−1∑

l=0

yklakal cos
k(2s + 1)π

2n
cos

l(2t + 1)π

2n

satisfies Pn(i,j) = xij for i,j = 0, . . . ,n − 1. !

Returning to Example 11.3, the only nonzero interpolation coefficients are y00 = 3,

y02 = y20 = 1, and y22 = −1. Writing out the interpolation function in the Theorem 11.6
yields
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P4(s, t) = 2
4

[
1
2

y00 + 1√
2

y02 cos
2(2t + 1)π

8
+ 1√

2
y20 cos

2(2s + 1)π

8

+y22 cos
2(2s + 1)π

8
cos

2(2t + 1)π

8

]

= 1
2

[
1
2

(3) + 1√
2

(1)cos
2(2t + 1)π

8
+ 1√

2
(1)cos

2(2s + 1)π

8

+(−1)cos
2(2s + 1)π

8
cos

2(2t + 1)π

8

]

= 3
4

+ 1

2
√

2
cos

(2t + 1)π

4
+ 1

2
√

2
cos

(2s + 1)π

4

− 1
2

cos
(2s + 1)π

4
cos

(2t + 1)π

4
.

Checking the interpolation, we get, for example,

P4(0,0) = 3
4

+ 1
4

+ 1
4

− 1
4

= 1

and

P4(1,2) = 3
4

− 1
4

− 1
4

− 1
4

= 0,

agreeing with the data in Figure 11.4. The constant term y00/n of the interpolation function is
called the “DC’’ component of the expansion (for “direct current’’). It is the simple average
of the data; the nonconstant terms contain the fluctuations of the data about this average
value. In this example, the average of the 12 ones and 4 zeros is y00/4 = 3/4.

Least squares approximations with the 2D-DCT are done in the same way as with
the 1D-DCT. For example, implementing a low-pass filter would mean simply deleting
the “high-frequency’’ components, those whose coefficients have larger indices, from the
interpolating function. In Example 11.3, the best least squares fit to the basis functions

cos
i(2s + 1)π

8
cos

j(2t + 1)π

8

for i + j ≤ 2 is given by dropping all terms that do not satisfy i + j ≤ 2. In this case, the
only nonzero “high-frequency’’ term is the i = j = 2 term, leaving

P2(s, t) = 3
4

+ 1

2
√

2
cos

(2t + 1)π

4
+ 1

2
√

2
cos

(2s + 1)π

4
. (11.14)

This least squares approximation is shown in Figure 11.4(b).
Defining the DCT matrix C in Matlab can be done through the code fragment

for i=1:n
for j=1:n
C(i,j)=cos((i-1)*(2*j-1)*pi/(2*n));

end
end
C=sqrt(2/n)*C;
C(1,:)=C(1,:)/sqrt(2);

Alternatively, if Matlab’s Signal Processing Toolbox is available, the one-dimensional
DCT of a vector x can be computed as

>> y=dct(x);
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To carry out the 2D-DCT of a matrix X, we fall back on equation (11.10), or

>> Y=C*X*C’

If Matlab’s dct is available, the command

>> Y=dct(dct(X’)’)

computes the 2D-DCT with two applications of the 1D-DCT.

11.2.2 Image compression

The concept of orthogonality, as represented in the Discrete Cosine Transform, is crucial
to performing image compression. Images consist of pixels, each represented by a number
(or three numbers, for color images). The convenient way that methods like the DCT
can carry out least squares approximation makes it easy to reduce the number of bits
needed to represent the pixel values, while degrading the picture only slightly, and perhaps
imperceptibly to human viewers.

Figure 11.5(a) shows a grayscale rendering of a 256 × 256 array of pixels. The grayness
of each pixel is represented by one byte, a string of 8 bits representing 0 = 00000000
(black) to 255 = 11111111 (white). We can think of the information shown in the figure as a
256 × 256 array of integers. Represented in this way, the picture holds (256)2 = 216 = 64K
bytes of information.

(b)(a)

Figure 11.5 Grayscale image. (a) Each pixel in the 256 × 256 grid is represented by

an integer between 0 and 255. (b) Crude compression—each 8 × 8 square of pixels is

colored by its average grayscale value.

Matlab imports grayscale or RGB (Red-Green-Blue) values of images from standard
image formats. For example, given a grayscale image file picture.jpg, the command

>> x = imread(’picture.jpg’);

puts the matrix of grayscale values into the double precision variable x. If the JPEG file is a
color image, the array variable will have a third dimension to index the three colors. We will
restrict attention to gray scale to begin our discussion; extension to color is straightforward.

An m × n matrix of grayscale values can be rendered by Matlab with the commands

>> imagesc(x);colormap(gray)

while an m × n × 3 matrix of RGB color is rendered with the imagesc(x) command
alone. A common formula for converting a color RGB image to gray scale is

Xgray = 0.2126R + 0.7152G + 0.0722B, (11.15)

or in Matlab code,
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Figure 11.6 Example of 8 × 8 block. (a) Grayscale view (b) Grayscale pixel values (c) Grayscale pixel

values minus 128.

>> x=double(x);
>> r=x(:,:,1);g=x(:,:,2);b=x(:,:,3);
>> xgray=0.2126*r+0.7152*g+0.0722*b;
>> xgray=uint8(xgray);
>> imagesc(xgray);colormap(gray)

Note that we have converted the default Matlab data type uint8, or unsigned inte-
gers, to double precision reals before we do the computation. It is best to convert back to
uint8 type before rendering the picture with imagesc.

Figure 11.5(b) shows a crude method of compression, where each 8 × 8 pixel block is
replaced by its average pixel value. The amount of data compression is considerable—there
are only (32)2 = 210 blocks, each now represented by a single integer—but the resulting
image quality is poor. Our goal is to compress less harshly, by replacing each 8 × 8 block
with a few integers that better carry the information of the original image.

To begin, we simplify the problem to a single 8 × 8 block of pixels, as shown in
Figure 11.6(a). The block was taken from the center of the subject’s left eye in Figure 11.5.
Figure 11.6(b) shows the one-byte integers that represent the grayscale intensities of the
64 pixels. In Figure 11.6(c), we have subtracted 256/2 = 128 from the pixel numbers to
make them approximately centered around zero. This step is not essential, but better use of
the 2D-DCT will result because of this centering.

To compress the 8 × 8 pixel block shown, we will transform the matrix of grayscale
pixel values

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−18 40 48 54 42 31 6 17
38 40 36 33 37 43 31 13
18 −10 −4 −6 −9 17 34 16

−26 −94 −106 −103 −90 −17 18 31
−21 −79 2 31 −126 −99 −11 36
−33 −57 25 79 −113 −98 −6 22
−16 −107 −128 −109 −128 −98 4 7

35 1 −45 −61 −59 −21 11 31

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.16)

and rely on the 2D-DCT’s ability to sort information according to its importance to the
human visual system. We calculate the 2D-DCT of X to be
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Y = C8XCT
8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−121 −66 127 −65 27 98 7 −25
200 22 −124 34 −36 −62 5 6
113 43 −32 55 −25 −75 −21 12
−10 35 −69 −131 28 54 −4 −24
−14 −18 16 1 −5 −27 14 −6

−124 −74 47 60 −1 −16 −8 13
81 35 −57 −54 −7 6 1 −16

−16 11 5 −15 11 12 −1 9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11.17)

after rounding to the nearest integer for simplicity. This rounding adds a small amount of
extra error and is not strictly necessary, but again it will help the compression. Note that
due to the larger amplitudes, there is a tendency for more of the information to be stored
in the top left part of the transform matrix Y , compared with the lower right. The lower
right represents higher frequency basis functions that are often less important to the visual
system. Nevertheless, because the 2D-DCT is an invertible transform, the information in Y

can be used to completely reconstruct the original image, up to the rounding.
The first compression strategy we try will be a form of low-pass filtering. As discussed

in the last section, least squares approximation with the 2D-DCT is just a matter of dropping
terms from the interpolation function P8(s, t). For example, we can cut off the contribution
of functions with relatively high spatial frequency by setting all ykl = 0 for k + l ≥ 7
(recall that we continue to number matrix entries as 0 ≤ k, l ≤ 7). After low-pass filtering,
the transform coefficients are

Ylow =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−121 −66 127 −65 27 98 7 0
200 22 −124 34 −36 −62 0 0
113 43 −32 55 −25 0 0 0
−10 35 −69 −131 0 0 0 0
−14 −18 16 0 0 0 0 0

−124 −74 0 0 0 0 0 0
81 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.18)

To reconstruct the image, we apply the inverse 2D-DCT as CT
8 YlowC8 and get the grayscale

pixel values shown in Figure 11.7. The image in part (a) is similar to the original in
Figure 11.6(a), but different in detail.
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Figure 11.7 Result of low-pass filtering. (a) Filtered image (b) Grayscale pixel values, after

transforming and adding 128 (c) Inverse transformed data.
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How much have we compressed the information from the 8 × 8 block? The original
picture can be reconstructed (losslessly, except for the integer rounding) by inverse trans-
forming the 2D-DCT (11.17) and adding back the 128. In doing the low-pass filtering with
matrix (11.17), we have cut the storage requirements approximately in half, while retaining
most of the qualitative visual aspects of the block.

11.2.3 Quantization

The idea of quantization will allow the effects of low-pass filtering to be achieved in a more
selective way. Instead of completely ignoring coefficients, we will retain low-accuracy
versions of some coefficients at a lower storage cost. This idea exploits the same aspects of
the human visual system—that it is less sensitive to higher spatial frequencies. The main
idea is to assign fewer bits to store information about the lower right corner of the transform
matrix Y , instead of throwing it away.

Quantization modulo q

Quantization: z = round
(

y

q

)

Dequantization: y = qz (11.19)

Here, “round’’ means “to the nearest integer.’’ The quantization error is the difference
between the input y and the output y after quantizing and dequantizing. The maximum
error of quantization modulo q is q/2.

" EXAMPLE 11.4 Quantize the numbers −10,3, and 65 modulo 8.

The quantized values are −1,0, and 8. Upon dequantizing, the results are −8,0,
and 64. The errors are | − 2|, |3|, and |1|, respectively, each less than q/2 = 4. #

Returning to the image example, the number of bits allowed for each frequency can be
chosen arbitrarily. Let Q be an 8 × 8 matrix called the quantization matrix. The entries
qkl,0 ≤ k, l ≤ 7 will regulate how many bits we assign to each entry of the transform
matrix Y . Replace Y by the compressed matrix

YQ =
[

round
(

ykl

qkl

)]
,0 ≤ k, l ≤ 7. (11.20)

The matrix Y is divided entrywise by the quantization matrix. The subsequent rounding is
where the loss occurs, and makes this method a form of lossy compression. Note that the
larger the entry of Q, the more is potentially lost to quantization.

As a first example, linear quantization is defined by the matrix

qkl = 8p(k + l + 1) for 0 ≤ k, l ≤ 7 (11.21)

for some constant p, called the loss parameter. Thus,

Q = p

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 16 24 32 40 48 56 64
16 24 32 40 48 56 64 72
24 32 40 48 56 64 72 80
32 40 48 56 64 72 80 88
40 48 56 64 72 80 88 96
48 56 64 72 80 88 96 104
56 64 72 80 88 96 104 112
64 72 80 88 96 104 112 120

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In Matlab, the linear quantization matrix can be defined by Q=p*8./hilb(8);
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The loss parameter p is a knob that can be turned to trade bits for visual accuracy.
The smaller the loss parameter, the better the reconstruction will be. The resulting set of
numbers in the matrix YQ represents the new quantized version of the image.

To decompress the file, the YQ matrix is dequantized by reversing the process, which
is entrywise multiplication by Q. This is the lossy part of image coding. Replacing the
entries ykl by dividing by qkl and rounding, and then reconstructing by multiplying by qkl ,
one has potentially added error of size qkl/2 to ykl . This is the quantization error. The larger
the qkl , the larger the potential error in reconstructing the image. On the other hand, the
larger the qkl , the smaller the integer entries of YQ, and the fewer bits will be needed to
store them. This is the trade-off between image accuracy and file size.

In fact, quantization accomplishes two things: Many small contributions from higher
frequencies are immediately set to zero by (11.20), and the contributions that remain nonzero
are reduced in size, so that they can be transmitted or stored by using fewer bits. The resulting
set of numbers are converted to a bit stream with the use of Huffman coding, discussed in
the next section.

Next, we demonstrate the complete series of steps for compression of a matrix of pixel
values in Matlab. The output of Matlab’s imread command is an m × n matrix of 8-bit
integers for a grayscale photo, or three such matrices for a color photo. (The three matrices
carry information for red, green, and blue, respectively; we discuss color in more detail
below.) An 8-bit integer is called a uint8, to distinguish it from a double, as studied
in Chapter 0, which requires 64 bits of storage. The command double(x) converts the
uint8 number x into the double format, and the command uint8(x) does the reverse
by rounding x to the nearest integer between 0 and 255.

The following four commands carry out the conversion, centering, transforming, and
quantization of a square n × n matrixX ofuint8 numbers, such as the 8 × 8 pixel matrices
considered above. Denote by C the n × n DCT matrix.

>> Xd=double(X);
>> Xc=Xd-128;
>> Y=C*Xc*C’;
>> Yq=round(Y./Q);

At this point the resulting Yq is stored or transmitted. To recover the image requires undoing
the four steps in reverse order:

>> Ydq=Yq.*Q;
>> Xdq=C’*Ydq*C;
>> Xe=Xdq+128;
>> Xf=uint8(Xe);

After dequantization, the inverse DCT transform is applied, the offset 128 is added back,
and the double format is converted back to a matrix Xf of uint8 integers.

When linear quantization is applied to (11.17) with p = 1, the resulting coefficients are

YQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15 −4 5 −2 1 2 0 0
13 1 −4 1 −1 −1 0 0
5 1 −1 1 0 −1 0 0
0 1 −1 −2 0 1 0 0
0 0 0 0 0 0 0 0

−3 −1 1 1 0 0 0 0
1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.22)

The reconstructed image block, formed by dequantizing and inverse-transforming YQ,
is shown in Figure 11.8(a). Small differences can be seen in comparison with the original
block, but it is more faithful than the low-pass filtering reconstruction.
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(a) (b) (c)

Figure 11.8 Result of linear quantization. Loss parameter is (a) p = 1 (b) p = 2 (c) p = 4.

After linear quantization with p = 2, the quantized transform coefficients are

YQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 −2 3 −1 0 1 0 0
6 0 −2 0 0 −1 0 0
2 1 0 1 0 −1 0 0
0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.23)

and after linear quantization with p = 4, the quantized transform coefficients are

YQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 −1 1 −1 0 1 0 0
3 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.24)

Figure 11.8 shows the result of linear quantization for the three different values of loss
parameter p. Notice that the larger the value of the loss parameter p, the more entries of the
matrix YQ are zeroed by the quantization procedure, the smaller are the data requirements
for representing the pixels, and the less faithfully the original image has been reconstructed.

Next, we quantize all 32 × 32 = 1024 blocks of the image in Figure 11.5. That is, we
carry out 1024 independent versions of the previous example. The results for loss parameter
p = 1,2, and 4 are shown in Figure 11.9. The image has begun to deteriorate significantly
by p = 4.

We can make a rough calculation to quantify the amount of image compression due
to quantization. The original image uses a pixel value from 0 to 255, which is one byte,
or 8 bits. For each 8 × 8 block, the total number of bits needed without compression is
8(8)2 = 512 bits.

Now, assume that linear quantization is used with loss parameter p = 1. Assume that
the maximum entry of the transform Y is 255. Then the largest possible entries of YQ, after
quantization by Q, are
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(a) (c)(b)

Figure 11.9 Result of linear quantization for all 1024 8 × 8 blocks. Loss parameters are

(a) p = 1 (b) p = 2 (c) p = 4.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 16 11 8 6 5 5 4
16 11 8 6 5 5 4 4
11 8 6 5 5 4 4 3
8 6 5 5 4 4 3 3
6 5 5 4 4 3 3 3
5 5 4 4 3 3 3 2
5 4 4 3 3 3 2 2
4 4 3 3 3 2 2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since both positive and negative entries are possible, the number of bits necessary to store
each entry is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 6 5 5 4 4 4 4
6 5 5 4 4 4 4 4
5 5 4 4 4 4 4 3
5 4 4 4 4 4 3 3
4 4 4 4 4 3 3 3
4 4 4 4 3 3 3 3
4 4 4 3 3 3 3 3
4 4 3 3 3 3 3 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sum of these 64 numbers is 249, or 249/64 ≈ 3.89 bits/pixel, which is less than one-half
the number of bits (512, or 8 bits/pixel) needed to store the original pixel values of the 8 × 8
image matrix. The corresponding statistics for other values of p are shown in the following
table:

p total bits bits/pixel
1 249 3.89
2 191 2.98
4 147 2.30

As seen in the table, the number of bits necessary to represent the image is reduced by
a factor of 2 when p = 1, with little recognizable change in the image. This compression
is due to quantization. In order to compress further, we can take advantage of the fact that
many of the high-frequency terms in the transform are zero after quantization. This is most
efficiently done by using Huffman and run-length coding, introduced in the next section.

Linear quantization with p = 1 is close to the default JPEG quantization. The quan-
tization matrix that provides the most compression with the least image degradation has
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been the subject of much research and discussion. The JPEG standard includes an appendix
called “Annex K: Examples and Guidelines,’’ which contains a Q based on experiments
with the human visual system. The matrix

QY = p

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.25)

is widely used in currently distributed JPEG encoders. Setting the loss parameter p = 1
should give virtually perfect reconstruction as far as the human visual system is con-
cerned, while p = 4 usually introduces noticeable defects. To some extent, the visual quality
depends on the pixel size: If the pixels are small, some errors may go unnoticed.

So far, we have discussed grayscale images only. It is fairly easy to extend application to
color images, which can be expressed in the RGB color system. Each pixel is assigned three
integers, one each for red, green, and blue intensity. One approach to image compression is
to repeat the preceding processing independently for each of the three colors, treating each
as if it were gray scale, and then to reconstitute the image from its three colors at the end.

Although the JPEG standard does not take a position on how to treat color, the method
often referred to as Baseline JPEG uses a more delicate approach. Define the luminance
Y = 0.299R + 0.587G + 0.114B and the color differences U = B − Y and V = R − Y .
This transforms the RGB color data to the YUV system. This is a completely reversible
transform, since the RGB values can be found as B = U + Y ,R = V + Y , and G = (Y −
0.299R − 0.114B)/(0.587). Baseline JPEG applies the DCT filtering previously discussed
independently to Y ,U , and V , using the quantization matrix QY from Annex K for the
luminance variable Y and the quantization matrix

QC =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.26)

for the color differences U and V . After reconstructing Y ,U , and V , they are put back
together and converted back to RGB to reconstitute the image.

Because of the less important roles of U and V in the human visual system, more
aggressive quantization is allowed for them, as seen in (11.26). Further compression can
be derived from an array of additional ad hoc tricks—for example, by averaging the color
differences and treating them on a less fine grid.

11.2 Exercises

1. Find the 2D-DCT of the following data matrices X, and find the corresponding interpolating
function P2(s, t) for the data points (i,j ,xij ), i,j = 0,1:

(a)

[
1 0
0 0

]

(b)

[
1 0
1 0

]

(c)

[
1 1
1 1

]

(d)

[
1 0
0 1

]
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2. Find the 2D-DCT of the data matrix X, and find the corresponding interpolating function
Pn(s, t) for the data points (i,j ,xij ), i,j = 0, . . . ,n − 1.

(a)

⎡

⎢⎢⎢⎣

1 0 −1 0
1 0 −1 0
1 0 −1 0
1 0 −1 0

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎦

(c)

⎡

⎢⎢⎢⎣

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎤

⎥⎥⎥⎦
(d)

⎡

⎢⎢⎢⎣

3 3 3 3
3 −1 −1 3
3 3 3 3
3 −1 −1 3

⎤

⎥⎥⎥⎦

3. Find the least squares approximation, using the basis functions 1,cos (2s+1)π
8 ,cos (2t+1)π

8 for
the data in Exercise 2.

4. Use the quantization matrix Q =
[

10 20
20 100

]

to quantize the matrices that follow. State the

quantized matrix, the (lossy) dequantized matrix, and the matrix of quantization errors.

(a)

[
24 24
24 24

]

(b)

[
32 28
28 45

]

(c)

[
54 54
54 54

]

11.2 Computer Problems

1. Find the 2D-DCT of the data matrix X.

(a)

⎡

⎢⎢⎢⎣

−1 1 −1 1
−2 2 −2 2
−3 3 −3 3
−4 4 −4 4

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 2 −1 −2
−1 −2 1 2

1 2 −1 −2
−1 −2 1 2

⎤

⎥⎥⎥⎦

(c)

⎡

⎢⎢⎢⎣

1 3 1 −1
2 1 0 1
1 −1 2 3
3 2 1 0

⎤

⎥⎥⎥⎦
(d)

⎡

⎢⎢⎢⎣

−3 −2 −1 0
−2 −1 0 1
−1 0 1 2

0 1 2 3

⎤

⎥⎥⎥⎦

2. Using the 2D-DCT from Computer Problem 1, find the least squares low-pass filtered
approximation to X by setting all transform values Ykl = 0 for k + l ≥ 4.

3. Obtain a grayscale image file of your choice, and use the imread command to import into
Matlab. Crop the resulting matrix so that each dimension is a multiple of 8. If necessary,
converting a color RGB image to gray scale can be accomplished by the standard formula
(11.15).

(a) Extract an 8 × 8 pixel block, for example, by using the Matlab command
xb=x(81:88,81:88). Display the block with the imagesc command.

(b) Apply the 2D-DCT.

(c) Quantize by using linear quantization with p = 1,2, and 4. Print out each YQ.
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(d) Reconstruct the block by using the inverse 2D-DCT, and compare with the original. Use
Matlab commands colormap(gray) and imagesc(X,[0 255]).

(e) Carry out (a)–(d) for all 8 × 8 blocks, and reconstitute the image in each case.

4. Carry out the steps of Computer Problem 3, but quantize by the JPEG-suggested matrix
(11.25) with p = 1.

5. Obtain a color image file of your choice. Carry out the steps of Computer Problem 3 for colors
R, G, and B separately, using linear quantization, and recombine as a color image.

6. Obtain a color image, and transform the RGB values to luminance/color difference
coordinates. Carry out the steps of Computer Problem 3 for Y , U , and V separately by using
JPEG quantization, and recombine as a color image.

11.3 HUFFMAN CODING

Lossy compression for images requires making a trade of accuracy for file size. If the
reductions in accuracy are small enough to be unnoticeable for the intended purpose of the
image, the trade may be worthwhile. The loss of accuracy occurs at the quantization step,
after transforming to separate the image into its spatial frequencies. Lossless compression
refers to further compression that may be applied without losing any more accuracy, simply
due to efficient coding of the DCT-transformed, quantized image.

In this section, we discuss lossless compression. As a relevant application, there are
simple, efficient methods for turning the quantized DCT transform matrix from the last
section into a JPEG bit stream. Finding out how to do this will take us on a short tour of
basic information theory.

11.3.1 Information theory and coding

Consider a message consisting of a string of symbols. The symbols are arbitrary; let us
assume that they come from a finite set. In this section, we consider efficient ways to
encode such a string in binary digits, or bits. The shorter the string of bits, the easier and
cheaper it will be to store or transmit the message.

" EXAMPLE 11.5 Encode the message ABAACDAB as a binary string.

Since there are four symbols, a convenient binary coding might associate two bits
with each letter. For example, we could choose the correspondence

A 00
B 01
C 10
D 11

Then the message would be coded as

(00)(01)(00)(00)(10)(11)(00)(01).

With this code, a total of 16 bits is required to store or transmit the message. #

It turns out that there are more efficient coding methods. To understand them, we
first have to introduce the idea of information. Assume that there are k different symbols,
and denote by pi the probability of the appearance of symbol i at any point in the string.
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The probability might be known a priori, or it may be estimated empirically by dividing the
number of appearances of symbol i in the string by the length of the string.

DEFINITION 11.7 The Shannon information, or Shannon entropy of the string is I = −
k∑

i=1
pi log2 pi .

❒

The definition is named after C. Shannon of Bell Laboratories, who did seminal work on
information theory in the middle of the 20th century. The Shannon information of a string
is considered an average of the number of bits per symbol that is needed, at minimum,
to code the message. The logic is as follows: On average, if a symbol appears pi of the
time, then one expects to need − log2 pi bits to represent it. For example, a symbol that
appears 1/8 of the time could be represented by one of the − log2(1/8) = 3-bit symbols
000,001, . . . ,111, of which there are 8. To find the average bits per symbol over all symbols,
we should weight the bits per symbol i by its probability pi . This means that the average
number of bits/symbol for the entire message is the sum I in the definition.

" EXAMPLE 11.6 Find the Shannon information of the string ABAACDAB.

The empirical probabilities of appearance of the symbols A,B,C,D are p1 =
4/8 = 2−1,p2 = 2/8 = 2−2,p3 = 1/8 = 2−3,p4 = 2−3, respectively. The Shannon infor-
mation is

−
4∑

i=1

pi log2 pi = 1
2

1 + 1
4

2 + 1
8

3 + 1
8

3 = 7
4

.
#

Thus, Shannon information estimates that at least 1.75 bits/symbol are needed to
code the string. Since the string has length 8, the optimal total number of bits should
be (1.75)(8) = 14, not 16, as we coded the string earlier.

In fact, the message can be sent in the predicted 14 bits, using the method known as
Huffman coding. The goal is to assign a unique binary code to each symbol that reflects
the probability of encountering the symbol, with more common symbols receiving shorter
codes.

The algorithm works by building a tree from which the binary code can be read. Begin
with two symbols with the smallest probability, and consider the “combined’’ symbol,
assigning to it the combined probability. The two symbols form one branching of the tree.
Then repeat this step, combining symbols and working up the branches of the tree, until
there is only one symbol group left, which corresponds to the top of the tree. Here, we first
combined the least probable symbols C and D into a symbol CD with probability 1/4. The
remaining probabilities are A (1/2), B (1/4), and CD (1/4). Again, we combine the two
least likely symbols to get A (1/2), BCD (1/2). Finally, combining the remaining two gives
ABCD (1). Each combination forms a branch of the Huffman tree:

A(1/2)
0

B(1/4)
10

C(1/8)
110

D(1/8)
111
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Once the tree is completed, the Huffman code for each symbol can be read by traversing
the tree from the top, writing a 0 for a branch to the left and a 1 for a branch to the right, as
shown above. For example, A is represented by 0, and C is represented by two rights and a
left, 110. Now the string of letters ABAACDAB can be translated to a bit stream of length 14:

(0)(10)(0)(0)(110)(111)(0)(10).

The Shannon information of the message provides a lower bound for the bits/symbol of the
binary coding. In this case, the Huffman code has achieved the Shannon information bound
of 14/8 = 1.75 bits/symbol. Unfortunately, this is not always possible, as the next example
shows.

" EXAMPLE 11.7 Find the Shannon information and a Huffman coding of the message ABRA CADABRA.

The empirical probabilities of the six symbols are

A 5/12
B 2/12
R 2/12
C 1/12
D 1/12
__ 1/12

.

Note that the space has been treated as a symbol. The Shannon information is

−
6∑

i=1

pi log2 pi = − 5
12

log2
5

12
− 2

1
6

log2
1
6

− 3
1
12

log2
1

12
≈ 2.28 bits/symbol.

This is the theoretical minimum for the average bits/symbol for coding the message
ABRA CADABRA. To find the Huffman coding, proceed as already described. We begin by
combining the symbols D and __, although any two of the three with probability 1/12 could
have been chosen for the lowest branch. The symbol A comes in last, since it has highest
probability. One Huffman coding is displayed in the diagram.

A(5/12)
0

B(1/6)
100

R(1/6)
101

C(1/12)
110

D(1/12)
1110

__(1/12)
   1111

Note that A has a short code, due to the fact that it is a popular symbol in the
message. The coded binary sequence for ABRA CADABRA is

(0)(100)(101)(0)(1111)(110)(0)(1110)(0)(100)(101)(0),

which has length 28 bits. The average for this coding is 28/12 = 2 1
3 bits/symbol, slightly

larger than the theoretical minimum previously calculated. Huffman codes cannot always
match the Shannon information, but they often come very close. #

The secret of a Huffman code is the following: Since each symbol occurs only at the
end of a tree branch, no complete symbol code can be the beginning of another symbol
code. Therefore, there is no ambiguity when translating the code back into symbols.
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11.3.2 Huffman coding for the JPEG format

This section is devoted to an extended example of Huffman coding in practice. The
JPEG image compression format is ubiquitous in modern digital photography. It makes
a fascinating case study due to the juxtaposition of theoretical mathematics and engineering
considerations.

The binary coding of transform coefficients for a JPEG image file uses Huffman coding
in two different ways, one for the DC component (the (0,0) entry of the transform matrix)
and another for the other 63 entries of the 8 × 8 matrix, the so-called AC components.

DEFINITION 11.8 Let y be an integer. The size of y is defined to be

L =
{

floor(log2 |y|) + 1 if y ̸= 0
0 if y = 0

.
❒

Huffman coding for JPEG has three ingredients: a Huffman tree for the DC components,
another Huffman tree for the AC components, and an integer identifier table. The first part
of the coding for the entry y = y00 is the binary coding for the size of y, from the following
Huffman tree for DC components, called the DPCM tree, for Differential Pulse Code
Modulation.

0

21 3 4 5
6

7
8

9
10

11 12

Again, the tree is to be interpreted by coding a 0 or 1 when going down a branch to the
left or right, respectively. The first part is followed by a binary string from the following
integer identifier table:

L entry binary
0 0 - -
1 −1,1 0,1
2 −3,−2,2,3 00,01,10,11
3 −7,−6,−5,−4,4,5,6,7 000,001,010,011,100,101,110,111
4 −15,−14,…,−8,8,…,14,15 0000,0001,……0111,1000,……,1110,1111
5−31,−30,…,−16,16,…,30,31 00000,00001,……,01111,10000……,11110,11111
6−63,−62,…,−32,32,…,62,63000000,000001,…,011111,100000,…,111110,111111
...

...
...

As an example, the entry y00 = 13 would have size L = 4. According to the DPCM
tree, the Huffman code for 4 is (101). The table shows that the extra digits for 13 are (1101),
so the concatenation of the two parts, 1011101, would be stored for the DC component.

Since there are often correlations between the DC components of nearby 8 × 8 blocks,
only the differences from block to block are stored after the first block. The differences are
stored, moving from left to right, using the DPCM tree.
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For the remaining 63 AC components of the 8 × 8 block, Run Length Encoding
(RLE) is used as a way to efficiently store long runs of zeros. The conventional order for
storing the 63 components is the zigzag pattern

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 57 58 62 63

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.27)

Instead of coding the 63 numbers themselves, a zero run–length pair (n,L) is coded, where
n denotes the length of a run of zeros, and L represents the size of the next nonzero entry.
The most common codes encountered in typical JPEG images, and their default codings
according to the JPEG standard, are shown in the Huffman tree for AC components.

(0, 1) (0, 2)

(3, 1) (4, 1)

(0, 6) (1, 3)
(5, 1) (6, 1)

(0, 7) (2, 2)

(1, 4) (3, 2)

(8, 1) (9, 1)

(10, 1)

(7, 1)

(0, 5) (1, 2)
(2, 1)

(0, 3)

(1, 1)
EOB   (0, 4)

In the bit stream, the Huffman code from the tree (which only identifies the size of
the entry) is immediately followed by the binary code identifying the integer, from the
previous table. For example, the sequence of entries −5, 0,0,0,2 would be represented
as (0,3) −5 (3,2) 2, where (0,3) means no zeros followed by a size 3 number, and (3,2)

represents 3 zeros followed by a size 2 number. From the Huffman tree, we find that (0,3)

codes as (100), and (3,2) as (111110111). The identifier for −5 is (010) and for 2 is (10),
from the integer identifier table. Therefore, the bit stream used to code −5,0,0,0,2 is
(100)(010)(111110111)(10).

The preceding Huffman tree shows only the most commonly occurring JPEG run-length
codes. Other useful codes are (11,1) = 1111111001, (12,1) = 1111111010, and (13,1) =
11111111000.

" EXAMPLE 11.8 Code the quantized DCT transform matrix in (11.24) for a JPEG image file.

The DC entry y00 = −4 has size 3, coded as (100) by the DPCM tree, and extra
bits (011) from the integer identifier table. Next, we consider the AC coefficient string.
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According to (11.27), the AC coefficients are ordered as −1,3,1,0,1,−1,−1, seven zeros,
1, four zeros, −1, three zeros, −1, and the remainder all zeros. The run-length encoding
begins with −1, which has size 1 and so contributes (0,1) from the run-length code. The
next number 3 has size 2 and contributes (0,2). The zero run-length pairs are

(0,1) −1 (0,2) 3 (0,1) 1 (1,1) 1 (0,1) −1 (0,1) −1

(7,1) 1 (4,1) −1 (3,1) −1 EOB.

Here, EOB stands for “end-of-block’’ and means that the remainder of the entries consists
of zeros. Next, we read the bit representatives from the Huffman tree on page 518 and the
integer identifier table. The bit stream that stores the 8 × 8 block from the photo in Figure
11.8 (c) is listed below, where the parentheses are included only for human readability:

(100)(011)

(00)(0)(01)(11)(00)(1)(1100)(1)(00)(0)(00)(0)

(11111010)(1)(111011)(0)(111010)(0)(1010)

The pixel block in Figure 11.8(c), which is a reasonable approximation of the original
Figure 11.6(a), is exactly represented by these 54 bits. On a per-pixel basis, this works out
to 54/64 ≈ 0.84 bits/pixel. Note the superiority of this coding to the bits/pixel achieved by
low-pass filtering and quantization alone. Given that the pixels started out as 8-bit integers,
the 8 × 8 image has been compressed by more than a factor of 9:1. #

Decompressing a JPEG file consists of reversing the compression steps. The JPEG
reader decodes the bit stream to run-length symbols, which form 8 × 8 DCT transform
blocks that in turn are finally converted back to pixel blocks with the use of the inverse DCT.

11.3 Exercises

1. Find the probability of each symbol and the Shannon information for the messages.
(a) BABBCABB (b) ABCACCAB (c) ABABCABA

2. Draw a Huffman tree and use it to code the messages in Exercise 1. Compare the Shannon
information with the average number of bits needed per symbol.

3. Draw a Huffman tree and convert the message, including spaces and punctuation marks, to a
bit stream by using Huffman coding. Compare the Shannon information with the average
number of bits needed per symbol. (a) AY CARUMBA! (b) COMPRESS THIS MESSAGE
(c) SHE SELLS SEASHELLS BY THE SEASHORE

4. Translate the transformed, quantized image components (a) (11.22) and (b) (11.23) to bit
streams, using JPEG Huffman coding.

11.4 MODIFIED DCT AND AUDIO COMPRESSION

We return to the problem of one-dimensional signals and discuss state-of-the-art approaches
to audio compression. Although one might think that one dimension is easier to handle than
two, the challenge is that the human auditory system is very sensitive in the frequency
domain, and unwanted artifacts introduced by compression and decompression are even
more readily detected. For that reason, it is common for sound compression methods to
make use of sophisticated tricks designed to hide the fact that compression has occurred.



520 | CHAPTER 11 Compression

First we introduce DCT4, a new version of the Discrete Cosine Transform, and the
so-called Modified Discrete Cosine Transform (MDCT). The MDCT is represented by a
matrix that is not square and so, unlike the DCT and DCT4, is not invertible. However,
when applied on overlapping windows, it can be used to completely reconstruct the original
data stream. More importantly, it can be combined with quantization to carry out lossy
compression with minimal degradation of sound quality. The MDCT is at the core of most
of the current widely supported sound compression formats, such as MP3,AAC, and WMA.

11.4.1 Modified Discrete Cosine Transform

We begin with a slightly different form of the DCT introduced earlier. There are four
different versions of the DCT that are commonly used—we used version DCT1 for image
compression in the previous section. Version DCT4 is most popular for sound compression.

DEFINITION 11.9 The Discrete Cosine Transform (version 4) (DCT4) of x = (x0, . . . ,xn−1)T is the
n-dimensional vector

y = Ex,

where E is the n × n matrix

Eij =
√

2
n

cos
(i + 1

2 )(j + 1
2 )π

n
. (11.28)

❒

Just as in the DCT1, the matrix E in DCT4 is a real orthogonal matrix: It is square and
its columns are pairwise orthogonal unit vectors. The latter follows from the fact that the
columns of E are the unit eigenvectors of the real symmetric n × n matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.29)

Exercise 6 asks the reader to verify this fact.
Next, we note two important facts about the columns of the DCT4 matrix. Treat n as

fixed, and consider not only the n columns in DCT4, but the column vectors defined by
(11.28) for all positive and negative integers j .

LEMMA 11.10 Denote by cj the j th column of the (extended) DCT4 matrix (11.28). Then (a) cj = c−1−j

for all integers j (the columns are symmetric around j = − 1
2 ), and (b) cj = −c2n−1−j for

all integers j (the columns are antisymmetric around j = n − 1
2 ). !

Proof. To prove part (a) of the lemma, write j = − 1
2 + (j + 1

2 ) and −1 − j = − 1
2 −

(j + 1
2 ). Using equation (11.28) yields

cj = c− 1
2 +(j+ 1

2 ) =
√

2
n

cos
(i + 1

2 )(j + 1
2 )π

n
=

√
2
n

cos
(i + 1

2 )(−j − 1
2 )π

n
= c− 1

2 −(j+ 1
2 ) = c−1−j

for i = 0, . . . ,n − 1.
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For the proof of (b), set r = n − 1
2 − j . Then j = n − 1

2 − r and 2n − 1 − j = n −
1
2 + r , and we must show that cn− 1

2 −r + cn− 1
2 +r = 0. By the cosine addition formula,

cn− 1
2 −r =

√
2
n

cos
(2i + 1)(n − r)π

2n

=
√

2
n

cos
2i + 1

2
π cos

(2i + 1)rπ

2n
+

√
2
n

sin
2i + 1

2
π sin

(2i + 1)rπ

2n

cn− 1
2 +r =

√
2
n

cos
(2i + 1)(n + r)π

2n

=
√

2
n

cos
2i + 1

2
π cos

(2i + 1)rπ

2n
−

√
2
n

sin
2i + 1

2
π sin

(2i + 1)rπ

2n

for i = 0, . . . ,n − 1. Since cos 1
2 (2i + 1)π = 0 for all integers i, the sum cn− 1

2 −r +
cn− 1

2 +r = 0, as claimed. ❒

We will use the DCT4 matrix E to build the Modified Discrete Cosine Transform.
Assume that n is even. We are going to create a new matrix, using the columns c n

2
, . . . ,c 5

2 n−1.
Lemma 11.10 shows that for any integer j , the column cj can be expressed as one of the
columns of DCT4—that is, one of the cj for 0 ≤ i ≤ n − 1, as shown in Figure 11.10, up
to a possible sign change.

... ... ... ... ... ...c3 c2 c1 c0 c0 c1 c2

... ... ... ... ... ...c2c− 4 c−3 c−2 c−1 c0 c1

−c0 −c0 −c1

c2n−1 c2n

cn−1 −cn−1

cn−1 cn c2n+1

Figure 11.10 Illustration of Lemma 11.10. The columns c0, . . . , cn – 1 make up the n × n DCT4

matrix. For integers j outside that range, the column defined by cj in equation (11.28) still cor-

responds to one of the n columns of DCT4, shown directly below it in the Figure. This illustrates

Lemma 11.10.

DEFINITION 11.11 Let n be an even positive integer. The Modified Discrete Cosine Transform (MDCT) of
x = (x0, . . . ,x2n−1)T is the n-dimensional vector

y = Mx, (11.30)

where M is the n × 2n matrix

Mij =
√

2
n

cos
(i + 1

2 )(j + n
2 + 1

2 )π

n
(11.31)

for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 2n − 1. ❒

Note the major difference from the previous forms of the DCT: The MDCT of a length
2n vector is a length n vector. For this reason, the MDCT is not directly invertible, but we
will see later that the same effect will be achieved by overlapping the length 2n vectors.

Comparing with Definition 11.9 allows us to write the MDCT matrix M in terms of
the DCT4 columns and then simplify, using Lemma 11.10:

M =
[
c n

2
· · ·c 5

2 n−1

]

=
[
c n

2
· · ·cn−1|cn · · ·c 3

2 n−1|c 3
2 n · · ·c2n−1|c2n · · ·c 5

2 n−1

]
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=
[
c n

2
· · ·cn−1| − cn−1 · · · − c n

2
| − c n

2 −1 · · · − c0| − c0 · · · − c n
2 −1

]
. (11.32)

For example, the n = 4 MDCT matrix is

M = [c2c3|c4c5|c6c7|c8c9] = [c2c3| − c3 − c2| − c1 − c0| − c0 − c1]

To simplify notation, let A and B denote the left and right halves of the DCT4 matrix, so
that E = [A|B]. Define the permutation matrix formed by reversing the columns of the
identity matrix, left for right:

R =

⎡

⎢⎢⎣

1
··

·
1

⎤

⎥⎥⎦ .

The permutation matrix R reverses columns right for left when multiplying a matrix on
the right. When multiplying on the left, it reverses rows top to bottom. Note that R is
a symmetric orthogonal matrix, since R−1 = RT = R. Now (11.32) can be written more
simply as

M = (B| − BR| − AR| − A), (11.33)

where AR and BR are versions of A and B in which the order of the columns has been
reversed, left for right.

The action of MDCT can be expressed in terms of DCT4. Let

x =

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦

be a 2n-vector, where each xi is a length n/2 vector (remember that n is even). Then, by
the characterization of M in (11.33),

Mx = Bx1 − BRx2 − ARx3 − Ax4

= [A|B]
[ −Rx3 − x4

x1 − Rx2

]
= E

[ −Rx3 − x4
x1 − Rx2

]
, (11.34)

where E is the n × n DCT4 matrix and Rx2 and Rx3 represent x2 and x3 with their entries
reversed top to bottom. This is very helpful—we can express the output of M in terms of
an orthogonal matrix E.

Since the n × 2n matrix M of the MDCT is not a square matrix, it is not invertible.
However, two adjacent MDCT’s can have rank 2n in total, and working together, can
reconstruct the input x-values perfectly, as we now show.

The “inverse’’ MDCT is represented by the 2n × n matrix N = MT , which has trans-
posed entries

Nij =
√

2
n

cos
(j + 1

2 )(i + n
2 + 1

2 )π

n
. (11.35)

It is not an actual inverse, although it is as close as it can be for a rectangular matrix. By
transposing (11.33), we have

N =

⎡

⎢⎢⎣

BT

−RBT

−RAT

−AT

⎤

⎥⎥⎦ , (11.36)

using our earlier notation E = [A|B] for the Discrete Cosine Transform DCT4. We know
that since E is an orthogonal matrix,
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AT A = I

BT B = I

AT B = BT A = 0,

where I denotes the n × n identity matrix.
Now we are ready to calculate NM, to see in what sense N inverts the MDCT matrix

M . Let x be partitioned into four parts, as before. According to (11.34) and (11.36), the
orthogonality of A and B, and the fact that R2 = I , we have

NM

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

BT

−RBT

−RAT

−AT

⎤

⎥⎥⎦ [A(−Rx3 − x4) + B(x1 − Rx2)]

=

⎡

⎢⎢⎣

x1 − Rx2
−Rx1 + x2
x3 + Rx4
Rx3 + x4

⎤

⎥⎥⎦ . (11.37)

In audio compression algorithms, MDCT is applied to vectors of data that overlap. The
reason is that any artifacts due to the ends of the vectors will occur with a fixed frequency,
because of the constant vector length. The auditory system is even more sensitive to periodic
errors than the visual system; after all, an error of fixed frequency is a tone of that frequency,
which the ear is designed to pick up. Assume that the data will be presented in overlapped
fashion. Let

Z1 =

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ and Z2 =

⎡

⎢⎢⎣

x3
x4
x5
x6

⎤

⎥⎥⎦

be two 2n-vectors for an even integer n, where each xi is a length n/2 vector. The vectors
Z1 and Z2 overlap by half of their length. Since (11.37) shows that

NMZ1 =

⎡

⎢⎢⎣

x1 − Rx2
−Rx1 + x2

x3 + Rx4
Rx3 + x4

⎤

⎥⎥⎦ and NMZ2 =

⎡

⎢⎢⎣

x3 − Rx4
−Rx3 + x4

x5 + Rx6
Rx5 + x6

⎤

⎥⎥⎦ , (11.38)

we can reconstruct the n-vector [x3,x4] exactly by averaging the bottom half of NMZ1
and the top half of NMZ2:

[
x3
x4

]
= 1

2
(NMZ1)n,...,2n−1 + 1

2
(NMZ2)0,...,n−1. (11.39)

This equality is how N is used to decode the signal after being coded by M .
This result is summarized in Theorem 11.12.

THEOREM 11.12 Inversion of MDCT through overlapping. Let M be the n × 2n MDCT matrix, and
N = MT . Let u1,u2,u3 be n-vectors, and set

v1 = M

[
u1
u2

]
and v2 = M

[
u2
u3

]
.
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Then the n-vectors w1,w2,w3,w4 defined by
[

w1
w2

]
= Nv1 and

[
w3
w4

]
= Nv2

satisfy u2 = 1
2 (w2 + w3). !

This is exact reconstruction. Theorem 11.12 is customarily used with a long signal
of concatenated n-vectors [u1,u2, . . . ,um]. The MDCT is applied to adjacent pairs to get
a transformed signal (v1,v2, . . . ,vm−1). Now the lossy compression comes in. The vi are
frequency components, so we can choose to keep certain frequencies and de-emphasize
others. We will take up this direction in the next section.

After shrinking the content of the vi by quantization or other means, (u2, . . . ,um−1) can
be decompressed by Theorem 11.12. Note that we cannot recover u1 and um; they should
either be unimportant parts of the signal or padding that is added beforehand.

" EXAMPLE 11.9 Use the overlapped MDCT to transform the signal x = [1,2,3,4,5,6]. Then invert the
transform to reconstruct the middle section [3,4].

We will overlap the vectors [1,2,3,4] and [3,4,5,6]. Let n = 2 and set

E2 =
[

cos π
8 cos 3π

8

cos 3π
8 cos 9π

8

]

=
[

b c

c −b

]
.

Note that our definitions of b and c have changed slightly from (11.7) to be compatible with
the MDCT. Applying the 2 × 4 MDCT gives

v1 = M

⎡

⎢⎢⎣

1
2
3
4

⎤

⎥⎥⎦ = E2

[−R(3) − 4
1 − R(2)

]
= E2

[−7
−1

]
=

[−7b − c

b − 7c

]
=

[−6.8498
−1.7549

]

v2 = M

⎡

⎢⎢⎣

3
4
5
6

⎤

⎥⎥⎦ = E2

[−R(5) − 6
3 − R(4)

]
= E2

[−11
−1

]
=

[−11b − c

b − 11c

]
=

[−10.5454
−3.2856

]
.

The transformed signal is represented by

[v1|v2] =
[ −6.8498 −10.5454

−1.7549 −3.2856

]
.

To invert the MDCT, define A and B by

E2 =
[
A |

|B
]

=
[

b |
| c

c |
|−b

]

and calculate

[
w1
w2

]
= Nv1 =

⎡

⎢⎢⎣

BT v1
−RBT v1
−RAT v1

−AT v1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

c −b

−c b

−b −c

−b −c

⎤

⎥⎥⎦

[ −7b − c

b − 7c

]
=

⎡

⎢⎢⎣

−1
1
7
7

⎤

⎥⎥⎦

[
w3
w4

]
= Nv2 =

⎡

⎢⎢⎣

BT v2
−RBT v2
−RAT v2

−AT v2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

c −b

−c b

−b −c

−b −c

⎤

⎥⎥⎦

[ −11b − c

b − 11c

]
=

⎡

⎢⎢⎣

−1
1

11
11

⎤

⎥⎥⎦ ,
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Figure 11.11 Bit quantization. Illustration of (11.39). (a) 2 bits (b) 3 bits.

where we have used the fact b2 + c2 = 1. The result of Theorem 11.12 is that we can recover
the overlap [3,4] by

u2 = 1
2

(w2 + w3) = 1
2

([
7
7

]
+

[ −1
1

])
=

[
3
4

]
. #

The definition and use of MDCT is less direct than the use of the DCT, discussed
earlier in the chapter. Its advantage is that it allows overlapping of adjacent vectors in an
efficient way. The effect is to average contributions from two vectors, reducing artifacts
from abrupt transitions seen at boundaries. As in the case of DCT, we can filter or quantize
the transform coefficients before reconstructing the signal in order to improve or com-
press the signal. Next, we show how the MDCT can be used for compression by adding a
quantization step.

11.4.2 Bit quantization

Lossy compression of audio signals is achieved by quantizing the output of a signal’s
MDCT. In this section, we will expand on the quantization used for image compression,
to allow more control over the number of bits used to represent the lossy version of the
signal.

Start with the open interval of real numbers (−L,L).Assume that the goal is to represent
a number in (−L,L) by b bits, and that we are willing to live with a little error. We
will use one bit for the sign and quantize to a binary integer of b − 1 bits. The formula
follows:

b-bit quantization of (−L,L)

Quantization: z = round
(

y

q

)
, where q = 2L

2b − 1
Dequantization: y = qz (11.40)

As an example, we show how to represent the numbers in the interval (−1,1) by 4 bits.
Set q = 2(1)/(24 − 1) = 2/15, and quantize by q. The number y = −0.3 is represented by

−0.3
2/15

= −9
4

−→ −2 −→ −010,

and the number y = 0.9 is represented by

0.9
2/15

= 27
4

= 6.75 −→ 7 −→ +111.

Dequantization reverses the process. The quantized version of −0.3 is dequantized as

(−2)q = (−2)(2/15) = −4/15 ≈ −0.2667
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and the quantized version of 0.9 as

(7)q = (7)(2/15) = 14/15 ≈ 0.9333.

In both cases, the quantization error is 1/30.

" EXAMPLE 11.10 Quantize the MDCT output of Example 11.9 to 4-bit integers. Then dequantize, invert the
MDCT, and find the quantization error.

All transform entries lie in the interval (−12,12). Using L = 12, four-bit quanti-
zation requires q = 2(12)/(24 − 1) = 1.6. Then

v1 =
[ −6.8498

−1.7549

]
−→

[
round(−6.8948

1.6 )

round(−1.7549
1.6 )

]

−→
[ −4

−1

]
−→ −100

−001

and

v2 =
[ −10.5454

−3.2856

]
−→

[
round(−10.5454

1.6 )

round(−3.2856
1.6 )

]

−→
[ −7

−2

]
−→ −111

−010
.

The transform variables v1,v2 can be stored as four 4-bit integers, for a total of 16 bits.
Dequantization with q = 1.6 is

[ −4
−1

]
−→

[ −6.4
−1.6

]
= v̄1

and
[ −7

−2

]
−→

[ −11.2
−3.2

]
= v̄2.

Applying the inverse MDCT yields

[
w1
w2

]
= Nv̄1 =

⎡

⎢⎢⎣

−0.9710
0.9710
6.5251
6.5251

⎤

⎥⎥⎦ ,

[
w3
w4

]
= Nv̄2 =

⎡

⎢⎢⎣

−1.3296
1.3296

11.5720
11.5720

⎤

⎥⎥⎦ ,

and the reconstructed signal

u2 = 1
2

(w2 + w3) = 1
2

([
6.5251
6.5251

]
+

[ −1.3296
1.3296

])
=

[
2.5977
3.9274

]
.

The quantization error is the difference between the original and reconstructed signals:
∣∣∣∣

[
2.5977
3.9274

]
−

[
3
4

]∣∣∣∣ =
[

0.4023
0.0726

]
. #

Coding of audio files is usually done by using a preset allocation of bits for prescribed
frequency ranges. Reality Check 11 guides the reader through construction of a complete
codec, or code–decode protocol, that uses the MDCT along with bit quantization.



11.4 Modified DCT and Audio Compression | 527

11.4 Exercises

1. Find the MDCT of the input. Express the answer in terms of b = cosπ/8 and c = cos3π/8.
(a) [1,3,5,7] (b) [−2,−1,1,2] (c) [4,−1,3,5]

2. Find the MDCT of the two overlapping length 4 windows of the given input, as in
Example 11.9. Then reconstruct the middle section, using the inverse MDCT.
(a) [−3,−2,−1,1,2,3] (b) [1,−2,2,−1,3,0] (c) [4,1,−2,−3,0,3]

3. Quantize each real number in (−1,1) to 4 bits, and then dequantize and compute the
quantization error. (a) 2/3 (b) 0.6 (c) 3/7

4. Repeat Exercise 3, but quantize to 8 bits.

5. Quantize each real number in (−4,4) to 8 bits, and then dequantize and compute the
quantization error. (a) 3/2 (b) −7/5 (c) 2.9 (d) π

6. Show that the DCT4 n × n matrix is an orthogonal matrix for each even integer n.

7. Reconstruct the middle section of the data in Exercise 2 after quantizing to 4 bits in (−6,6).
Compare with the correct middle section.

8. Reconstruct the middle section of the data in Exercise 2 after quantizing to 6 bits in (−6,6).
Compare with the correct middle section.

9. Explain why the n-dimensional column vector ck defined by (11.28) for any integer k can be
expressed in terms of a column ck′ for 0 ≤ k′ ≤ n − 1. Express c5n and c6n in this way.

10. Find an upper bound for the quantization error (the error caused by quantization, followed by
dequantization) when converting a real number to a b-bit integer in the interval (−L,L).

11.4 Computer Problems

1. Write a Matlab program to accept as input a vector, apply the MDCT to each of the length 2n

windows, and reconstruct the overlapped length n sections, as in Example 11.9. Demonstrate
that it works on the following input signals. (a) n = 4,x = [1 2 3 4 5 6 7 8 9 10 11 12]
(b) n = 4,xi = cos(iπ/6) for i = 0, . . . ,11 (c) n = 8,xi = cos(iπ/10) for i = 0, . . . ,63

2. Adapt your program from Computer Problem 1 to apply b-bit quantization before
reconstructing the overlaps. Then reconstruct the examples from that problem, and compute
the reconstruction errors by comparing with the original input.

11 A Simple Audio Codec
Efficient transmission and storage of audio files is a key part of modern communications,
and the part played by compression is crucial. In this Reality Check, you will put together
a bare-bones compression–decompression protocol based on the ability of the MDCT to
split the audio signal into its frequency components and the bit quantization method of
Section 11.4.2.

The MDCT is applied to an input window of 2n signal values and provides an output
of n frequency components that approximate the data (and together with the next window,
interpolates the latter n input points). The compression part of the algorithm consists of
coding the frequency components after quantization to save space, as demonstrated in
Example 11.10.



528 | CHAPTER 11 Compression

In common audio storage formats, the way the bits are allocated to the various frequency
components during quantization is based on psychoacoustics, the science of human sound
perception. Techniques such as frequency masking, the empirical fact that the ear can
handle only one dominant sound in each frequency range at a given time, are used to decide
which frequency components are most and least important to preserve. More quantization
bits are allocated to more important components. Most competitive methods are based on
the MDCT and differ on how the psychoacoustic factors are treated. In our description, we
will take a simplified approach that ignores most psychoacoustic factors and relies simply
on importance filtering, the tendency to apportion more bits to frequency components of
greater magnitude.

We begin with the reconstruction of a pure tone. Setting n = 32, the bottom frequency
tone catalogued by the MDCT is 64 Hz, at the lower edge of perceptible frequencies for the
human ear. A pure 64-Hz tone is represented by x(t) = cos2π(64)t , where t is measured in
seconds. If Fs is the number of samples per second, then 1/Fs,2/Fs, . . . ,Fs/Fs represent
one second worth of points in time. The Matlab commands

Fs=8192;
x=cos(2*pi*64*(1:Fs)/Fs);
sound(x,Fs)

play one second of a 64-Hz tone. The sampling frequency Fs of 8192 = 213 bytes/sec is
quite common, corresponding to 216 = 65536 bits/sec, referred to as a 64Kb/sec sampling
rate for an audio file. (Higher quality files are often sampled at two or three times this rate,
at 128 or 192 Kbs.)

Higher pitch tones are obtained by replacing 64 by an integer multiple 64f . Setting
f = 2 or 4 gives higher octave versions. Setting f = 7 plays a 448-Hz tone, just far enough
from concert A (440 Hz) that if you have friends with perfect pitch, it should drive them to
distraction in short order.

The Matlab code fragment shown next applies the MDCT and quantizes, followed by
an immediate dequantization and inverse MDCT on the overlapped segments, as described
in Section 11.4. In this way, the effect of the quantization error that accompanies lossy
compression can be examined.

n=32; % length of window
nb=127; % number of windows; must be > 1
b=4; L=5; % quantization information
q=2*L/(2ˆb-1); % b bits on interval [-L, L]
for i=1:n % form the MDCT matrix

for j=1:2*n
M(i,j)= cos((i-1+1/2)*(j-1+1/2+n/2)*pi/n);

end
end
M=sqrt(2/n)*M;
N=M’; % inverse MDCT
Fs=8192;f=7; % Fs=sampling rate
x=cos((1:4096)*pi*64*f/4096); % test signal
sound(x,Fs) % Matlab’s sound command
out=[];
for k=1:nb % loop over windows

x0=x(1+(k-1)*n:2*n+(k-1)*n)’;
y0=M*x0;
y1=round(y0/q); % transform components quantized
y2=y1*q; % and dequantized
w(:,k)=N*y2; % invert the MDCT
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if(k>1)
w2=w(n+1:2*n,k-1);w3=w(1:n,k);
out=[out;(w2+w3)/2]; % collect the reconstructed signal

end
end
pause(1)
sound(out,Fs) % play the reconstructed tone

The code plays the original 1/2-second tone (448 Hz), followed by the reconstructed
tone. Compare the effect of changing the number of bits that represent the transform com-
ponents, given by variable b in the code.

Suggested activities:

1. How is the output of the MDCT different for odd integer values of f , compared with even
values? Explain why the number of bits needed to make the reconstructed sound similar to
the original differs for odd versus even f .

2. Add a “window function’’ to the code. The window function scales the input signal x

smoothly to zero at each end of the window, counteracting the problem that the signal is not
exactly periodic. A common choice is to replace xi with xihi , where

hi =
√

2sin
(i − 1

2 )π

2n

for a length 2n window. To undo the window function, multiply the inverse MDCT outputs
w2 and w3 componentwise by the same hi ; this uses the orthogonality of sine, since the
window function is now offset by 1/4 period. Compare the effect of the window function
on the number of bits necessary to reconstruct the tone well.

3. Introduce importance sampling. Make a new test tone that is a combination of pure tones.
Modify the code so that each of the 32 frequency components of y has its own number bk of
bits for quantization. Propose a method that makes bk larger if the contributions |yk| are
larger, on average. Count the number of bits required to hold the signal, and refine your
proposal.

4. Build two separate subprograms, a coder and a decoder. The coder should write a file (or
Matlab variable) of bits representing the quantized output of the MDCT and print the
number of bits used. The decoder should load the file written by the coder and reconstruct
the signal.

5. Download a .wav file with the Matlab wavread command, or download another audio
file of your choice. (Alternatively, handel can be used. If you use a stereo file, you will
need to work with each channel separately.) Propose and implement a method to determine
the best allocation of bits, as represented by the bk . Use the coder to compress the audio file
and the decoder to decompress. Compare sound quality of different results, where differing
amounts of compression have been accomplished.

6. Investigate further tricks the sound industry uses to make compression more effective. For
example, in the case of a stereo audio file, is there a better approach than treating the
channels s1 and s2 separately? Why might it be advantageous to compress (s1 + s2)/2 and
(s1 − s2)/2 instead?
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Software and Further Reading

For good practical introductions to data compression, see Nelson and Gailly [1995], Storer
[1988], and Sayood [1996]. General references on image and sound compression are
Bhaskaran and Konstandtinides [1995]. Rao and Yip [1990] is a good source for infor-
mation on the Discrete Cosine Transform. The seminal article on Huffman coding is
Huffman [1952].

We have introduced the baseline JPEG standard (Wallace [1991]) for image compres-
sion. The full standard is available in Pennebaker and Mitchell [1993]. The recently intro-
duced JPEG-2000 standard (Taubman and Marcellin [2002]) allows wavelet compression
in place of DCT.

Most protocols for sound compression are based on the Modified Discrete Cosine
Transform (Wang and Vilermo [2003], Malvar [1992]). More specific information can be
found on the individual formats like MP3 (shorthand for MPEG audio layer 3, see Hacker
[2000]), AAC (Advanced Audio Coding, used in Apple iTunes and QuickTime video, and
XM satellite radio), and the open-source audio format Ogg-Vorbis.


