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ABSTRACT

Accretion-powered X-ray pulsars are among the most luminous X-ray sources in the Galaxy. However, despite
decades of theoretical and observational work since their discovery, no satisfactory model for the formation of the
observed X-ray spectra has emerged. In particular, the previously available theories are unable to reproduce the
power-law variation observed at high energies in many sources. In this paper we present the first self-consistent
calculation of the spectrum emerging from a pulsar accretion column that includes an explicit treatment of the
energization occurring in the shock. Using a rigorous eigenfunction expansion method based on the exact dy-
namical solution for the velocity profile in the column, we obtain a closed-form expression for the Green’s function
describing the upscattering of radiation injected into the column from a monochromatic source located at the top of
the thermal mound, near the base of the flow. The Green’s function is convolved with a Planck distribution to
calculate the radiation spectrum resulting from the reprocessing of blackbody photons emitted by the thermal
mound.We demonstrate that the energization of the photons in the shock naturally produces anX-ray spectrumwith
a power-law shape at high energies and a blackbody shape at low energies, in agreement with many observations of
accreting X-ray pulsars.

Subject headinggs: methods: analytical — pulsars: general — radiation mechanisms: nonthermal —
shock waves — stars: neutron — X-rays: stars

1. INTRODUCTION

Since the discovery of the first known pulsating X-ray sources
Her X-1 and Cen X-3 more than three decades ago (Giacconi
et al. 1971; Tananbaum et al. 1972), over 50 new sources have
been detected in the Galaxy and the Magellanic Clouds, with
luminosities in the range LX � 1034 1038 ergs s�1 and pulsation
periods 0:1 sPPP 103 s. X-ray pulsars include a variety of ob-
jects powered by rotation or accretion, as well as several anom-
alous X-ray pulsars whose energy source is currently unclear.
The emission from X-ray pulsars in binary systems is fueled by
the accretion of material from the ‘‘normal’’ companion onto the
neutron star, with the flow channeled onto one or both of the
magnetic poles by the strong field. During the accretion process,
gravitational potential energy is converted into kinetic energy,
which escapes from the column in the form of X-rays as the gas
decelerates through a radiative shock before settling onto the
stellar surface. In the accretion-powered sources, which are the
focus of this paper, the X-ray spectra are often well fitted using a
combination of a power-law spectrum plus a blackbody com-
ponent with a temperature in the range T � 106 107 K (e.g.,
Coburn et al. 2002; di Salvo et al. 1998; White et al. 1983). Most
spectra also display quasi-exponential cutoffs at E � 20 30 keV,
and there are indications of cyclotron features and iron emission
lines in a number of sources. The observations suggest typical
magnetic field strengths of �1012–1013 G.

Although accretion-powered X-ray pulsars are among the
most luminous sources in the Galaxy, previous attempts to cal-
culate their spectra based on static or dynamic theoretical models
have generally yielded results that do not agree very well with
the observed profiles (e.g., Mészáros & Nagel 1985a, 1985b;
Nagel 1981; Yahel 1980; Klein et al. 1996). Hence, there is still

no clear understanding of the basic spectral formation mecha-
nism in X-ray pulsars (see the discussion in Coburn et al. 2002).
Given the lack of a viable theoretical model, X-ray pulsar
spectral data have traditionally been fitted using multicompo-
nent forms that include absorbed power laws, cyclotron features,
iron emission lines, blackbody components, and high-energy ex-
ponential cutoffs. The resulting parameters are sometimes dif-
ficult to relate to the physical properties of the source. Motivated
by the lack of a comprehensive theoretical model for X-ray
pulsar spectral formation, we reconsider here the physical pic-
ture originally proposed by Davidson (1973), in which the ac-
creting gas passes through a radiative, radiation-dominated
shock before settling onto the surface of the star.We illustrate the
accretion/emission geometry schematically in Figure 1. Most of
the photons emitted from the accretion column are produced in
the dense ‘‘thermal mound’’ located inside the column, just
above the stellar surface. The blackbody photons created in the
mound are upscattered in the shock and eventually diffuse
through the walls of the column. The escaping photons carry
away the kinetic energy of the gas, thereby allowing the plasma
to settle onto the surface of the star. Hence, the formation of the
emergent spectrum is intimately connected with the dynamics of
the accreting gas.

1.1. Bulk Comptonization

The strong compression that occurs as the plasma crosses the
radiative shock renders it an ideal site for first-order Fermi
energization (i.e., ‘‘bulk’’ or ‘‘dynamical’’ Comptonization) of
the photons produced by the thermal mound. In the bulk Comp-
tonization process, particles experience a mean energy gain
if the scattering centers they collide with are involved in a
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converging flow (e.g., Laurent & Titarchuk 1999; Turolla et al.
2002). By contrast, in the thermal Comptonizaton process,
particles gain energy due to the stochastic motions of the scat-
tering centers via the second-order Fermi mechanism (e.g.,
Sunyaev & Titarchuk 1980; Becker 2003). In the X-ray pulsar
application, the scattering centers are infalling electrons, and
the energized ‘‘particles’’ are photons. Since the inflow speed
of the electrons in an X-ray pulsar accretion column is much
larger than their thermal velocity, bulk Comptonization domi-
nates over the stochastic process except at the highest photon
energies (Titarchuk et al. 1996), as discussed in x 7. The failure
of the current models to generate the power-law spectral shape
characteristic of X-ray pulsars probably stems from the neglect
of the critical contribution of the shock in upscattering the soft
radiation produced in the thermal mound (e.g., Burnard et al.
1991). We demonstrate in this paper that bulk Comptonization
of the radiation in the accretion shock can produce spectra very
similar to the power-law continuum seen in many X-ray pul-
sars. The main results presented here were summarized by
Becker & Wolff (2005).

Dynamical Comptonization has been considered by a num-
ber of previous authors in a variety of astrophysical situations,
including spherical inflows (Payne & Blandford 1981; Colpi
1988; Schneider & Bogdan 1989; Titarchuk et al. 1997), ac-
cretion disks around black holes (Laurent & Titarchuk 2001;
Titarchuk et al. 2002; Titarchuk & Shrader 2002), spherical
outflows (Becker &Begelman 1986; Titarchuk et al. 2003), and
the transport of cosmic rays in the solar wind (Parker 1965;
Stawicki et al. 2000). The process was also studied in the
context of neutron star accretion by Titarchuk et al. (1996) and
Mastichiadis & Kylafis (1992), although their results are not
applicable to X-ray pulsar accretion columns due to the as-
sumption of spherical symmetry and the imposition of a power-
law velocity profile. Lyubarskii & Sunyaev (1982) analyzed
dynamical Comptonization in the context of plane-parallel
pulsar shocks, but the velocity profile they utilized is not con-
sistent with the dynamics of X-ray pulsar accretion, and fur-
thermore they did not account for the escape of radiation
through the walls of the column. The relevance of the bulk
Comptonization process for spectral formation in X-ray pulsars
was also recognized by Burnard et al. (1991), who pointed out

that thermal spectra alone are much too soft to explain the
observed emission and suggested that upscattering in the shock
could provide the required hardening.
The fundamental character of the Green’s function describ-

ing both thermal and bulk Comptonization was studied by
Titarchuk&Zannias (1998) for the case of accretion onto a black
hole. These authors established that the Green’s function can be
approximated using a broken power-law form with a central
peak between the high- and low-energy portions of the spec-
trum, for either type of Comptonization. Furthermore, they
concluded that bulk Comptonization dominates over the ther-
mal process if the electron temperature T P 107 K. The theory
developed in the present paper represents an extension of the
same idea to neutron star accretion, resulting in the exact Green’s
function for the X-ray pulsar spectral formation process. In
agreement with Titarchuk & Zannias (1998), we find that the
bulk Comptonization process is dominant for the temperature
range relevant for X-ray pulsars. However, the presence of the
event horizon in the black hole application treated by these
authors makes their problem fundamentally different from the
neutron star accretion problem studied here because the neu-
tron star obviously possesses a solid surface. Our work there-
fore represents the first exact, quantitative analysis of the role
of bulk Comptonization in the X-ray pulsar spectral formation
process.

1.2. Radiation-dominated Flow

Radiation pressure governs the dynamical structure of the
accretion flows in bright pulsars when the X-ray luminosity
satisfies (Becker 1998; Basko & Sunyaev 1976)

LX � Lcrit �
2:72 ; 1037�Tffiffiffiffiffiffiffiffiffiffiffi

�?�k
p

M�

M�

� �
r0

R�

� �
ergs s�1; ð1Þ

where r0 is the polar cap radius, M� and R� denote the stellar
mass and radius, respectively, �T is the Thomson cross section,
and �k and �? represent the electron scattering cross sections
for photons propagating parallel or perpendicular to the mag-
netic field, respectively. When the luminosity of the system is
comparable to Lcrit, the radiation flux in the column is super-
Eddington and therefore the radiation pressure greatly exceeds
the gas pressure (Becker 1998). In this situation the gas passes
through a radiation-dominated shock on its way to the stellar
surface, and the kinetic energy of the gas is carried away by the
high-energy radiation that escapes from the column. The strong
gradient of the radiation pressure decelerates the material to rest
at the surface of the star. The observation of many X-ray pulsars
with LX � 1036 1038 ergs s�1 implies the presence of radiation-
dominated shocks close to the stellar surfaces in these systems
(White et al. 1983, 1995). Note that radiation-dominated shocks
are continuous velocity transitions, with an overall thickness of
a few Thomson scattering lengths, unlike traditional (discon-
tinuous) gas-dominated shocks (Blandford & Payne 1981b).
In luminous X-ray pulsars, the pressure of the radiation de-

termines the dynamics of the flow, while the dynamics in turn
determines the shape of the radiation spectrum. Hence, the flow
dynamics and the radiative transport are coupled, which makes
this a complex and nonlinear ‘‘photohydrodynamical’’ prob-
lem. One implication is that the photons scattering through the
column cannot be regarded as ‘‘test particles’’ since it is their
pressure that dictates the structure of the flow. We must there-
fore solve for the radiation spectrum and the velocity profile in a
self-consistent manner. Radiation pressure may also play an

Fig. 1.—Schematic depiction of gas accreting onto one of the magnetic
polar caps of a neutron star.
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important role in the dynamics of moderate-luminosity pulsars
due to the strong dependence of the electron scattering (cyclo-
tron) cross section on the magnetic field strength (Langer &
Rappaport 1982).

Becker (1998) and Basko & Sunyaev (1976) have considered
the dynamics of radiation-dominated pulsar accretion flows,
including the effect of the shock and the escape of radiation
energy from the column. They find that the gas is decelerated to
zero velocity in a manner consistent with accretion onto a solid
body, but they do not consider the shape of the escaping radi-
ation spectrum. Conversely, the dynamics and the radiation
spectrum have been worked out self-consistently by Blandford
& Payne (1981b) for the case of a ‘‘standard’’ (Rankine-
Hugoniot) radiation-dominated shock, which does not include
radiation escape. In the Blandford & Payne (1981b) approach,
the radiation spectrum everywhere in the flow is determined by
solving the transport equation using the incident radiation field
as a boundary condition. The solutions have a power-law char-
acter at high energies, with a spectral index that depends on the
Mach number of the upstream flow. Since the Rankine-Hugoniot
shocks studied by Blandford & Payne (1981b) have a conserved
energy flux, the downstream velocity is never less than one-seventh
its upstream value. Consequently, the associated spectral solutions
are not applicable to theX-ray pulsar case, since pulsar shocksmust
be radiative in nature so that the kinetic energy of the infalling
material can be removed and the flow brought to rest at the stellar
surface.

The analytical approach employed here parallels the work of
Blandford & Payne (1981b), except that the velocity profile they
utilized is replaced with the appropriate solution for an X-ray
pulsar accretion column, and the loss of radiation energy from
the column is incorporated into the transport equation using an
escape probability formalism. In the spirit of the Blandford &
Payne (1981b) study of spectral formation in radiation-dominated
Rankine-Hugoniot shocks, we are interested here in exploring
the direct effect of the radiative accretion shock on the spectrum
emerging from an X-ray pulsar. Hence, it is not our goal in this
paper to develop complete models that include additional pro-
cesses such as free-free emission and absorption, cyclotron fea-
tures, and iron emission lines. However, even without including
any of these processes, we are able to demonstrate qualitative
agreement with X-ray pulsar spectra. This suggests that energi-
zation in the accretion shock is one of the most important aspects
of spectral formation in X-ray pulsars.

The remainder of the paper is organized as follows. In x 2 we
briefly review the conservation equations and discuss the re-
sulting dynamical solution for the velocity profile of the accreting
gas. The transport equation governing the scattering of the radi-
ation inside the accretion column is analyzed in x 3, and various
constraints are derived in order to ensure that the radiative transfer
is modeled in a manner consistent with the flow dynamics. In x 4
we obtain the exact analytical solution for the Green’s function
and convolve it with the Planck distribution emitted at the thermal
mound to compute the radiation spectrum emerging from the
accretion column. In x 5 we present results obtained for the count
rate spectra using parameters corresponding to specific pulsars,
and we compare the theoretical spectra with the observational
data. The implications of our results for the production of X-ray
spectra in pulsars are discussed in x 7. Additional mathematical
details are provided in a series of appendices.

2. DYNAMICS OF RADIATION-DOMINATED FLOW

The model analyzed here is based on the dynamical picture
suggested by Davidson (1973), which is illustrated schemati-

cally in Figure 1. The accretion scenario corresponds physically
to the flow of a mixture of gas and radiation inside a magnetic
‘‘pipe’’ that is sealed with respect to the gas but is transparent
with respect to the radiation. The accretion column incorporates
a radiation-dominated, radiative shock located above the stellar
surface. Although the shock is extended and the velocity profile
is continuous, the flow possesses a well-defined sonic surface,
as indicated in Figure 1. The model also includes a dense ther-
mal mound located at the base of the flow, where local ther-
modynamic equilibrium prevails. Due to its blackbody nature,
the thermal mound acts as both a photon source (emitting a
Planck spectrum) and a photon sink (absorbing all incident ra-
diation). Hence, the surface of the mound represents the ‘‘photo-
sphere’’ for photon creation and absorption, and the opacity is
dominated by electron scattering above this point.

In our approach to the problem, we assume that the upstream
flow is composed of pure, fully ionized hydrogen gas moving
at a highly supersonic speed, which is the standard scenario
for accretion-powered X-ray pulsars (Basko & Sunyaev 1975,
1976). Our transport model employs a cylindrical, plane-parallel
geometry, and therefore the velocity, density, and pressure are
functions of the distance above the stellar surface, but they are
all constant across the column at a given height. In this situation,
the vertical variation of the flow velocity is given by the exact
analytical solution obtained by Becker (1998) and Basko &
Sunyaev (1976), which describes the settling of the transonic
flow onto the surface of the star. A detailed consideration of the
angular and energy dependencies of the electron scattering cross
section is beyond the scope of the present paper. We therefore
follow Wang & Frank (1981) and Becker (1998) by treating the
directional dependence of the electron scattering in an approx-
imate way in terms of the energy-averaged cross sections �k and
�?, describing, respectively, the scattering of photons propa-
gating either parallel or perpendicular to the magnetic field. The
gas in the accretion column is radiation dominated, and therefore
it is the pressure of the photons that decelerates the infalling
plasma to rest. We use this fact in x 6.1 to evaluate the self-
consistency of the coupled radiative transport/dynamical model
based on the analytical solution for the radiation pressure profile
obtained below.

2.1. Conservation Equations

The one-dimensional, time-dependent Euler equations gov-
erning the flow of a radiation-dominated gas with mass density
�, flow velocity v, and photon energy density U inside a cy-
lindrical accretion column are

@�

@t
¼� @J

@x
; ð2Þ

@

@t
�vð Þ ¼� @I

@x
; ð3Þ

@

@t

1

2
�v2 þ U

� �
¼� @E

@x
þ U̇esc þ U̇abs þ U̇emit; ð4Þ

where the mass, momentum, and energy fluxes are given,
respectively, by

J ¼ �v; ð5Þ

I ¼ P þ �v2; ð6Þ

E ¼ 1

2
�v3 þ Pvþ Uv� c

@P

@�k
; ð7Þ
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with P ¼ U /3 denoting the radiation pressure. The spatial co-
ordinate x increases along the column axis, in the direction
of the flow, and �k denotes the associated electron scattering
optical depth, which is related to x via

d�k ¼ ne�k dx; ð8Þ

where ne ¼ �/mp is the electron number density and mp is the
proton mass. The two coordinates x and �k are calibrated so that
they each vanish at the sonic point, as explained below.

The quantities U̇esc, U̇abs, and U̇emit appearing in equation (4)
represent the rates per unit volume at which radiation energy
escapes through the column walls or is absorbed or emitted by
the gas, respectively. When the system is radiation dominated
as assumed here, the gas itself has little thermal energy to con-
tribute to the radiation field, although it does possess a large
reservoir of bulk kinetic energy that is transferred to the photons
through the first-order Fermi energization process in the shock.
In this situation, the emission and absorption processes must
nearly balance throughout the flow, and therefore we can write

U̇abs þ U̇emit ¼ 0; ð9Þ

in which case equation (4) reduces in a steady state to

@E

@x
¼ U̇esc: ð10Þ

Although emission and absorption do not affect the flow dy-
namics in this situation, these processes profoundly influence
the shape of the radiation spectrum, as discussed in xx 3 and 4.

Within the context of our one-dimensional picture, the rate at
which radiation energy diffuses through the walls of the column
can be approximated using an escape probability formalism. If
the column cross section is optically thick to electron scattering,
as expected, then the rate at which radiation energy escapes
through the walls is given by

U̇esc ¼� U

tesc
; ð11Þ

where the mean escape time, tesc, is given by

tesc ¼
r0

w?
; w? ¼ c

�?
; �? ¼ ne�?r0; ð12Þ

with w? denoting the diffusion velocity perpendicular to the
x-axis and �? representing the perpendicular scattering optical
thickness of the cylindrical accretion column with radius r0.
Note that �? and tesc are functions of x through their dependence
on ne. Becker (1998) confirmed that the diffusion approxima-
tion employed in equation (11) is valid because �? > 1 for
typical X-ray pulsar parameters. Equations (5) and (12) can be
combined to express the mean escape time as

tesc ¼
Jr20�?
mpcv

: ð13Þ

Since the escape timescale is inversely proportional to the flow
velocity, the column becomes completely opaque at the surface
of the neutron star due to the divergence of the electron number

density there. The relationship between the escape probability
approximation and the physical distribution of radiation inside
the accretion column is further discussed in x 6.3.

2.2. Dynamical Solution

In the steady state situation of interest here, the mass flux J
and the momentum flux I are both conserved, but the energy
flux E decreases as the gas accretes onto the surface of the
neutron star due to the emission of radiation through the column
walls. The momentum, energy, and mass conservation equa-
tions can be combined in this case to show that the flow velocity
v satisfies the second-order nonlinear differential equation
(Becker 1998)

d

d�
� 7

2
�2 þ 7�þ d�

d�

� �
¼ ��2(7� 4�); ð14Þ

where

� � �k
vc
c
; � � v

vc
: ð15Þ

Here vc represents the flow velocity at the sonic point, where
we set x ¼ � ¼ 0 and M ¼ 1, with the radiation Mach num-
ber M defined by

M� v

cs
; c2s �

4

3

P

�
: ð16Þ

The quantity cs denotes the speed of sound in the radiation-
dominated gas. In the far upstream region, we assume thatM !
1, which is an excellent approximation in pulsar accretion flows
(Basko & Sunyaev 1975, 1976).
Becker (1998) showed that in order for the flow to come to

rest at the stellar surface, the parameters r0, J, �?, and �k must
satisfy the relation

m2
p c

2

r20 J
2�?�k

¼ 4

3
: ð17Þ

The corresponding exact solution for the velocity v as a function
of � in the steady state situation of interest here is given by

v(�) ¼ 7vc
8

1� tanh
7

2
� � ��ð Þ

� �� �
; ð18Þ

where

�� � 2
7

tanh�1 1
7

� 	
� 0:041: ð19Þ

Note that � ¼ 1 at the sonic point (� ¼ 0) as required. The
velocity can also be written as an explicit function of the
position x using (Basko & Sunyaev 1976)

v(x) ¼ 7vc
4

1� 7

3

� ��1þx=xst
" #

; ð20Þ

where xst is the distance between the sonic point and the stellar
surface, which can be evaluated using equation (4.16) from
Becker (1998) to obtain

xst ¼
r0

2
ffiffiffi
3

p �?
�k

� �1=2

ln
7

3

� �
: ð21Þ
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Note that x increases in the direction of the flow, which comes
to rest at the surface of the star as expected. The height above
the stellar surface h is related to the coordinate x via

h(x) ¼ xst � x: ð22Þ

The incident (upstream) velocity of the infalling material is
expected to be close to the free-fall velocity onto the stellar
surface, vA, given by

vA ¼ 2GM�

R�

� �1=2

: ð23Þ

Since v ! (7/4)vc in the upstream region according to equa-
tion (20), it follows that vc ¼ 4

7
vA, and therefore the flow ve-

locity at the sonic point is given by

vc ¼
4

7

2GM�

R�

� �1=2

: ð24Þ

With the velocity solution given by equation (20), the cor-
responding pressure profile can be obtained by combining
equations (5) and (6), which yields

P(x) ¼ I � Jv(x): ð25Þ

The pressure increases to a maximum value at the surface of the
star, where v ! 0. Based on equations (5) and (16), we can
reexpress the Mach number as

M ¼ 3Jv

4P

� �1=2

: ð26Þ

Since the Mach number approaches infinity in the far upstream
region and v ! (7/4)vc, it follows that P must vanish asymp-
totically and consequently the upstream momentum flux is
dominated by the ram pressure of the freely falling matter. We
therefore obtain

I ¼ JvA: ð27Þ

By combining equations (24), (25), and (27), we find that the
pressure profile is related to the velocity variation by

P(x) ¼ Jvc
7

4
� v(x)

vc

� �
: ð28Þ

Using equation (20) to eliminate the velocity v(x) yields the
closed-form result

P(x) ¼ 7

4
Jvc

7

3

� ��1þx=xst

: ð29Þ

The pressure vanishes in the upstream limit (x ! �1) as
expected, and at the surface of the star (x ¼ xst), the pressure
achieves the stagnation value

Pst � P xstð Þ¼ 7

4
Jvc: ð30Þ

3. RADIATIVE TRANSFER
IN THE ACCRETION COLUMN

If the gas is radiation dominated and fully ionized, then the
photons interact with the matter primarily via electron scatter-
ing, which controls both the spatial transport and the energi-
zation of the radiation. In this situation the opacity is dominated
by electron scattering, and therefore absorption is negligible,
except at the surface of the thermal mound located inside the
cylindrical accretion column at x ¼ x0. We are interested in
obtaining the photon distribution, f (x0; x; �), measured at po-
sition x and energy � resulting from the reprocessing of black-
body radiation emitted from the mound. The normalization of
f is defined so that �2f (x0; x; �) d� gives the number density
of photons in the energy range between � and �þ d�, and there-
fore f ¼ 8�n̄/(c3h3), where n̄ is the occupation number. The
self-consistency of the solution obtained for the radiation dis-
tribution f will be confirmed by verifying that the associated
pressure distribution agrees with the dynamical result given by
equation (29).

3.1. Transport Equation

In the cylindrical geometry employed here, the photon dis-
tribution f satisfies the transport equation (e.g., Blandford &
Payne 1981a; Becker 1992; Parker 1965; Becker &Wolff 2005)

@f

@t
¼� v

@f

@x
þ dv

dx

�

3

@f

@�
þ @

@x

c

3ne�k

@f

@x

� �

þ S(�)

�r20
� x� x0ð Þ� f

tesc
� �v0� x� x0ð Þ f ; ð31Þ

where � is the photon energy, x is the spatial coordinate along
the column axis, and v0 � v(x0) is the flow velocity at the top of
the thermal mound. The terms on the right-hand side of equa-
tion (31) represent advection, first-order Fermi energization
(‘‘bulk Comptonization’’) in the converging flow, spatial dif-
fusion parallel to the column axis, the blackbody source, escape
of radiation from the column, and the absorption of radiation at
the thermal mound, respectively. We are interested here in the
steady state version of equation (31) with @f /@t ¼ 0. The pho-
ton number and energy densities associated with the distribu-
tion f are given, respectively, by

n(x)¼
Z 1

0

�2f (x0; x; �) d�; U (x)¼
Z 1

0

�3f (x0; x; �) d�:

ð32Þ

In the present application, we are primarily interested in ex-
ploring the effect of the dynamics itself (i.e., the radiative
shock) on the observed X-ray emission. The transport equa-
tion (31) therefore does not include additional processes such as
thermal Comptonization or cyclotron emission and absorption
that are likely to be important in X-ray pulsars. In general, the
neglect of thermal Comptonization is reasonable because at
the temperatures typical of X-ray pulsars (T � 106 107 K), the
kinetic energy associated with the bulk flow far surpasses the
thermal energy. However, the failure to include the electron re-
coil associated with thermal Comptonization renders the model
unable to reproduce the quasi-exponential cutoffs often observed
in X-ray pulsar spectra at high energies. Furthermore, in some
sources thermal Comptonization appears to be necessary in or-
der to flatten the spectrum in the energy range � � 5 20 keV.We
provide further discussion of this issue in x 7.
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When integrated over the photon energy spectrum, the first-
order Fermi process considered here corresponds to the P dV
work done on the radiation by the compression of the back-
ground plasma as it accretes onto the stellar surface. The mean
escape time, tesc, is given by equation (13), and the source term
S(�) is defined so that �2S(�) d� represents the number of pho-
tons injected into the accretion column per second in the energy
range between � and �þ d� from the blackbody surface at
x ¼ x0. The absorption term in equation (31) containing the
dimensionless constant � must be included due to the black-
body nature of the thermal mound, which acts as both a source
and a sink of radiation. In the radiation-dominated situation
considered here, essentially all of the pressure is provided by
the photons, and therefore the rate of absorption of radiation
energy at the top of the mound must equal the energy emission
rate when integrated with respect to the photon frequency (see
eq. [9]). We use this energy balance argument to compute a self-
consistent value for � below.

Next we need to specify the appropriate form for the source
term S(�) in order to treat the injection of the blackbody radi-
ation from the surface of the thermal mound. The flux per unit
energy measured at the surface of an isotropically radiating
object is equal to � times the intensity (Rybicki & Lightman
1979). It therefore follows that the amount of energy emitted
per second from the upper surface of the thermal mound (with
area �r20 ) in the energy range between � and �þ d� is given
by

�3S(�) d� ¼ �r20 �B�(�) d�; ð33Þ

where

B�(�) ¼
2�3

h3c2
1

e�=kT0 � 1
ð34Þ

denotes the blackbody intensity and T0 � T (x0) is the gas
temperature at the surface of the mound. Note that the units for
B� are ergs s

�1 sr�1 cm�2 erg�1. Hence, we obtain for the source
term

S(�) ¼ 2�2r20
h3c2

1

e�=kT0 � 1
; ð35Þ

and consequently the total energy injection rate is given by

Z 1

0

�3S(�) d� ¼ �r20�T
4
0 / ergs s�1

� 	
; ð36Þ

where � is the Stephan-Boltzmann constant.

3.2. Energy Balance at the Thermal Mound

In a radiation-dominated X-ray pulsar accretion column, the
emission of fresh blackbody radiation energy at the surface of
the thermal mound is almost perfectly balanced by the ab-
sorption of energy, as expressed by equation (9). Most of the
energy appearing in the emergent X-rays is therefore not sup-
plied from the internal energy of the gas, but rather from its bulk
kinetic energy, which is transferred directly to the photons via
collisions with infalling electrons. We can gain some insight
into the energy balance at the thermal mound by rewriting the

steady state version of the transport equation (31) in the flux
conservation form (Skilling 1975; Gleeson & Axford 1967)

@H�

@x
¼� 1

3�2
@

@�
�3v

@f

@x

� �
þ S �ð Þ

�r20
� x� x0ð Þ

� f

tesc
� �v0� x� x0ð Þ f ; ð37Þ

where

H� � � c

3ne�k

@f

@x
� v�

3

@f

@�
ð38Þ

represents the ‘‘specific flux’’ (Becker 1992). By operating on
equation (37) with

R1
0

�3 d� and utilizing equations (32) and
(36), we arrive at the photon energy equation

dQ

dx
¼ v

3

dU

dx
� U

tesc
� �v0� x� x0ð ÞU þ �T 4

0 � x� x0ð Þ; ð39Þ

where the integrated photon energy flux, Q, is given by

Q�
Z 1

0

�3H� d� ¼
4

3
vU � c

3ne�k

dU

dx
/ ergs cm�2 s�1
� 	

:

ð40Þ

Equation (39) states that the divergence of the radiation energy
flux Q is equal to the net rate of change of the photon energy
density due to the combined influence of compression, escape,
absorption, and photon injection. Note that Q is related to the
total energy flux E via (see eq. [7])

E ¼ Qþ 1
2
�v3: ð41Þ

Since the absorption and emission of radiation energy must
balance at the surface of the mound in the radiation-dominated
situation of interest here, we can integrate equation (39) with
respect to x across the mound location to obtain

lim
"!0

Q x0 þ "ð Þ � Q x0 � "ð Þ ¼ ��v0U0 þ �T 4
0 ¼ 0; ð42Þ

where U0 � U (x0) denotes the radiation energy density at the
mound surface. The fact that the photon energy flux Q is
continuous at x ¼ x0 therefore requires that the dimensionless
absorption constant � in the transport equation (31) be given
by

� ¼ �T 4
0

v0U0

: ð43Þ

By utilizing this expression for �, we ensure that the results
obtained for the radiation spectrum f (x0; x; �) are consistent
with the dynamical structure of the accretion column. This is
confirmed after the fact by calculating the radiation pressure
P ¼ U /3 using equation (32) and comparing the result with the
dynamical solution given by equation (29).

4. EXACT SOLUTION FOR THE RADIATION SPECTRUM

In our approach to solving equation (31) for the spectrum
f (x0; x; �) inside the accretion column, we first obtain the
Green’s function, fG(x0; x; �0; �), which is the radiation dis-
tribution at location x and energy � resulting from the injection
of Ṅ0 photons per second with energy �0 from a monochromatic
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source at location x0. The determination of the Green’s function
is a useful intermediate step in the process because it provides
us with fundamental physical insight into the spectral redistri-
bution process, and it also allows us to calculate the particular
solution for the spectrum f associated with an arbitrary con-
tinuum source S(�) using the integral convolution (Becker
2003)

f x0; x; �ð Þ ¼
Z �

0

fG x0; x; �0; �ð Þ
Ṅ0

�20S �0ð Þ d�0: ð44Þ

Note that the upper bound of integration is set equal to � because in
ourmodel all of the injected photons gain energy via the first-order
Fermi process, and none lose energy. The technical procedure
used to solve for the Green’s function involves the derivation of
eigenfunctions and associated eigenvalues based on the set of
spatial boundary conditions for the problem (see, e.g., Blandford
& Payne 1981b; Payne & Blandford 1981; Schneider & Kirk
1987; Colpi 1988).

The steady state transport equation governing the Green’s
function is (cf. eq. [31])

v
@fG
@x

¼ dv

dx

�

3

@fG
@�

þ @

@x

c

3ne�k

@fG
@x

� �

þ Ṅ0� �� �0ð Þ� x� x0ð Þ
�r20 �

2
0

� fG

tesc
� �v0� x� x0ð Þ fG;

ð45Þ

and the associated radiation number and energy densities are
given by (cf. eq. [32])

nG(x)�
Z 1

0

�2fG x0; x; �0; �ð Þ d�;

UG(x)�
Z 1

0

�3fG x0; x; �0; �ð Þ d�: ð46Þ

Further simplification of the mathematical derivation is pos-
sible if we work in terms of the new spatial variable y, defined
by

y(x)� 7

3

� ��1þx=xst

; ð47Þ

where xst is given by equation (21). Note that y ! 0 in the far
upstream region (x ! �1) and y ! 1 at the surface of the star
(x ! xst).

Based on equations (20) and (47), we find that the variation
of the velocity v as a function of the new variable y is given by
the simple expression

v( y) ¼ 7vc
4

(1� y): ð48Þ

Likewise, we can also combine equations (29) and (47) to show
that the exact dynamical solution for the radiation pressure
profile as a function of y is given by

P( y) ¼ 7

4
Jvcy: ð49Þ

Note that in the limit y ! 1, the pressure approaches the stag-
nation value Pst � (7/4)Jvc in agreement with equation (30).
Equations (29) and (49) prove useful when we seek to confirm

the validity of the results obtained for the photon distribution
f (x0; x; �) in x 5.

Utilizing equations (5), (13), (17), and (48) along with the
differential relation

dx

dy
¼ r0

2
ffiffiffi
3

p �?

�k

� �1=2

y�1; ð50Þ

we find that equation (45) can be transformed from x to y to
obtain

y(1� y)
@ 2fG

@y2
þ 1� 5y

4

� �
@fG
@y

� �

4

@fG
@�

þ y� 1

4y

� �
fG

¼ 3�v0� y� y0ð Þ fG
7vc

� 3Ṅ0� �� �0ð Þ� y� y0ð Þ
7�r20 �

2
0vc

; ð51Þ

where we have made the definition

y0 � y x0ð Þ ¼ 7

3

� ��1þx0=xst

; ð52Þ

so that y0 denotes the value of y at the top of the thermal mound
(see eq. [47]). According to equation (48), the flow velocity at
the top of the mound, v0, is related to y0 via

v0
vc

¼ 7

4
1� y0ð Þ: ð53Þ

Note that we can now write the Green’s function as either
fG(x0; x; �0; �) or fG( y0; y; �0; �) since (x, x0) and ( y, y0) are
interchangeable via equations (47) and (52).

4.1. Separation Solutions

When � > �0, equation (51) is separable in energy and space
using the functions

fk(�; y) ¼ ��kg(k; y); ð54Þ

where k is the separation constant and the spatial function g
satisfies the differential equation

y 1� yð Þ d
2g

dy2
þ 1� 5y

4

� �
dg

dy
þ kyþ y� 1

4y

� �
g

¼ 3�v0� y� y0ð Þ
7vc

g: ð55Þ

In order to avoid an infinite spatial diffusion flux at y ¼ y0, the
function g must be continuous there, and consequently we ob-
tain the condition

lim
"!0

g k; y0 þ "ð Þ � g k; y0 � "ð Þ¼ 0: ð56Þ

We can also derive a jump condition for the derivative dg/dy at
the top of the mound by integrating equation (55) with respect
to y in a very small region around y ¼ y0. The result obtained
is

lim
"!0

dg

dy







y¼y0þ"

� dg

dy







y¼y0�"

¼ 3�

4y0
g k; y0ð Þ; ð57Þ
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where we have also used equation (53). The spatial eigen-
functions for our problem are denoted by

gn yð Þ � g kn; yð Þ; ð58Þ

where kn represents the nth eigenvalue. These functions satisfy
the continuity and derivative jump conditions given by equa-
tions (56) and (57), respectively, as well as the boundary con-
ditions discussed below.

The homogeneous version of equation (55) for g obtained
when y 6¼ y0 has fundamental solutions given by

’1 k; yð Þ � yF a; b; c; yð Þ; ð59Þ

’�
1 k; yð Þ � y�1=4F a� 5=4; b� 5=4; 2� c; yð Þ; ð60Þ

where F(a; b; c; z) denotes the hypergeometric function
(Abramowitz & Stegun 1970) and the parameters a, b, and c
are defined by

a� 9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 16k

p

8
; b� 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 16k

p

8
; c� 9

4
: ð61Þ

The ‘‘seed’’ photons injected into the flow from the thermal
mound located near the base of the column are unable to diffuse
very far up into the accreting gas due to the extremely high
speed of the inflow. Most of the photons therefore escape
through the walls of the column within a few scattering lengths
of the mound, forming a ‘‘fan’’-type beam pattern, as expected
for accretion-powered X-ray pulsars (e.g., Harding 1994,
2003). Based on this physical picture, we conclude that the
eigenfunction gn must vanish in the upstream limit, y ! 0.
Conversely, in the downstream limit, y ! 1, the gas settles onto
the surface of the star and the radiation pressure achieves the
stagnation value given by equation (30). Since this is a finite
pressure, we conclude that gn must approach a constant as
y ! 1.

Analysis of the asymptotic behaviors of the hypergeometric
functions ’1 and ’�

1 shows that the first function vanishes and
the second diverges as y ! 0. Hence, in the region upstream
from the thermal mound ( y � y0), the eigenfunction gn must be
given by ’1. However, in the downstream region ( y � y0), the
situation is more complicated because the two functions ’1 and
’�
1 each diverge logarithmically as y ! 1. We must therefore

utilize a suitable linear combination of these functions in order
to obtain a convergent solution in the downstream region.
Consequently, we define the new function (see Appendix A for
details)

’2(k; y)� �(b)

�(c)�(1� b)
’1(k; y)� �(1� a)

�(2� c)�(a)
’�
1(k; y);

ð62Þ

which remains finite in the limit y ! 1 as required.

4.2. Eigenfunctions and Eigenvalues

By utilizing the various relations derived above, we find that
the global solution for the spatial eigenfunction gn( y) (eq. [58])
can now be written as

gn( y) ¼
’1 kn; yð Þ; y � y0;

Bn’2 kn; yð Þ; y � y0;

�
ð63Þ

where the constant Bn is determined using the continuity con-
dition (eq. [56]), which yields

Bn ¼
’1 kn; y0ð Þ
’2 kn; y0ð Þ : ð64Þ

We can combine equations (57), (63), and (64) to show that the
eigenvalue equation for k is given by

’1

@’2

@y
� ’2

@’1

@y
� 3�’1’2

4y







y¼y0

¼ 0: ð65Þ

The left-hand side of this expression can be evaluated using
the exact solution for the Wronskian (see Appendix B),

W (k; y)� ’1

@’2

@y
� ’2

@’1

@y
¼ 5

4

�(1� a)

�(a)�(2� c)

y�1=4

1� y
; ð66Þ

which is applicable for arbitrary values of k and y. Equations
(65) and (66) can be combined to obtain the alternative form
for the eigenvalue equation,

5

3

� 1� að Þ
� að Þ� 2� cð Þ

y
3=4
0

1� y0
¼ �’1 k; y0ð Þ’2 k; y0ð Þ; ð67Þ

where a, b, and c are functions of k given by equation (61). The
roots of this expression are the eigenvalues k ¼ kn, and the
associated eigenfunctions are evaluated using equation (63).
In the limit � ! 0, which corresponds to no absorption, equa-
tion (67) simplifies considerably and one finds that the eigen-
values are given by the explicit relation kn ¼ 4n2 þ 9nþ 4.
The first eigenvalue, k0, is especially important because it

determines the slope of the high-energy spectrum emerging
from the accretion column according to equation (54). The
spectral index of the emitted photon count rate distribution, 	0,
is related to k0 via 	0 ¼ k0 � 2. In Figure 2 we plot the photon
index	0 as a function of the dimensionless parameters � and y0.
Note that 	0 is a double-valued function of y0 for fixed �, which
is a consequence of the imposed velocity profile (eq. [48]).

Fig. 2.—High-energy power-law photon spectral index 	0 plotted as a func-
tion of the source location y0 for the indicated values of the absorption pa-
rameter �. Note the steepening of the radiation spectrum that occurs when � is
increased for a fixed value of y0, which reflects the decreasing residence time
for the photons in the plasma due to the enhanced absorption.
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Physically, this behavior reflects the fact that it is always pos-
sible to achieve a desired amount of compression (first-order
Fermi energization) by placing the source in a specific location
in either the upstream or downstream region of the flow. We
also observe that if we increase the absorption parameter �
while holding y0 fixed, then 	0 increases monotonically, and
therefore the high-energy spectrum becomes progressively
steeper. This behavior is expected because as the absorption
parameter is increased, the injected photons spend less time on
average being energized by collisions with electrons before
either escaping from the column or being absorbed at the source
location. The reduction in the amount of energization naturally
leads to a steepening of the radiation spectrum. When � ¼ 0,
no absorption occurs, and the index 	0 achieves it minimum
(limiting) value of 2. This limit is unphysical, however, since it
yields a divergent result for the total photon energy density UG

according to equation (46).

4.3. Eigenfunction Expansion

We demonstrate in Appendix C that the eigenfunctions gn( y)
form an orthogonal set, as expected since this is a standard
Sturm-Liouville problem. Once the eigenvalues and eigen-
functions are determined, the solution for the Green’s function
can therefore be expressed as the infinite series

fG y0; y; �0; �ð Þ ¼ ��3
X1
n¼0

Cn

�

�0

� �3�kn

gn( y); ð68Þ

where the expansion coefficients Cn are computed by employ-
ing the orthogonality of the eigenfunctions along with the
condition

fG y0; y; �0; �ð Þ





�¼�0

¼ 12Ṅ0

7�r20 �
3
0 vc

� y� y0ð Þ; ð69Þ

which is obtained by integrating the transport equation (51)
with respect to � in a very small range surrounding the injection
energy �0. The result obtained for the nth expansion coefficient
is

Cn ¼
12Ṅ0y

�3=4
0 gn y0ð Þ

7�r20 vcIn
; ð70Þ

where the quadratic normalization integrals In are defined by

In �
Z 1

0

y�3=4g2n ( y) dy: ð71Þ

In Appendix D we show that the normalization integrals can
be evaluated using the closed-form expression

In ¼ K kn; y0ð Þ; ð72Þ

where

K k; yð Þ � 3�y�3=4 1� yð Þ’2
1 k; yð Þ

;
� að Þ þ� 1� að Þ

17þ 16kð Þ1=2
� @ ln ’1

@k
� @ ln ’2

@k

" #
; ð73Þ

with

�(z)� 1

�(z)

d�(z)

dz
: ð74Þ

This provides an extremely efficient alternative to numerical
integration for the computation of In. The eigenfunction ex-
pansion converges rapidly, and therefore we are able to obtain
an accuracy of at least five significant figures in our calcula-
tions of fG by terminating the series in equation (68) after the
first 20 terms.

4.4. Green’s Function for the Escaping Photon Spectrum

Equation (68) represents the exact solution for the Green’s
function describing the radiation spectrum inside a pulsar ac-
cretion column resulting from the injection of Ṅ0 seed photons
per unit time from a monochromatic source located at y ¼ y0
(or, equivalently, at x ¼ x0). In the escape probability approach
employed here, the associated Green’s function for the photon
number spectrum emitted through the walls of the cylindrical
column is defined by

Ṅ G
� x0; x; �0; �ð Þ � �r20 �

2

tesc
fG x0; x; �0; �ð Þ; ð75Þ

so that Ṅ G
� dx d� represents the number of photons escaping

from the column per unit time between positions x and xþ dx
with energy between � and �þ d�. We remind the reader that the
quantities (x, x0) and ( y, y0) are interchangeable via equa-
tions (47) and (52), and therefore we are free to work in terms of
the more convenient parameters ( y, y0) without loss of gener-
ality. By substituting for tesc using equation (13), we can obtain
the alternative expression

Ṅ G
� y0; y; �0; �ð Þ ¼ �mpcv yð Þ�2

J�?
fG y0; y; �0; �ð Þ: ð76Þ

Eliminating J using equation (17) and substituting for v and fG
using equations (48) and (68), respectively, yields the equiv-
alent result

Ṅ G
� y0; y; �0; �ð Þ ¼ 1� yð Þ��1

X1
n¼0

Dn

�

�0

� �3�kn

gn yð Þ; ð77Þ

where the expansion coefficients Dn are defined by

Dn �
2

ffiffiffi
3

p
Ṅ0gn y0ð Þ

r0 y
3=4
0 In

�k

�?

� �1=2

: ð78Þ

The Green’s function Ṅ G
� describes the photon distribution

escaping from the accretion column as a function of energy �
and location y for the case of monoenergetic photon injection.
Analysis of Ṅ G

� therefore reveals some interesting details about
the energization of the photons as they are transported through the
column via diffusion and advection and ultimately escape through
the column walls. We plot Ṅ G

� as a function of the energy ratio
�/�0 and the location y in Figure 3 for the parameter values � ¼
0:4 and y0 ¼ 0:9. In this case the first eigenvalue is given by
k0 ¼ 4:231, and the corresponding photon index is 	0 ¼ 2:231
(see Fig. 2). The selected value of y0 corresponds to a source
located near the bottom of the accretion column, just above the
stellar surface. At the source location, y ¼ y0 ¼ 0:9, the energy
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spectrum extends down to the injection energy, �0. However,
at all other radii the spectrum displays a steep turnover above
�0 because all of the photons at these locations have experi-
enced Fermi energization due to collisions with the infalling
electrons. The photons with energy � ¼ �0 at the source location
have been injected so recently that they have not yet experi-
enced significant energization. Note that for small values of y,
the escaping spectrum is greatly attenuated due to the inability
of the photons to diffuse upstream through the rapidly infall-
ing plasma. The escaping spectrum is also attenuated in the far
downstream region ( y � 1) due to the very high opacity of
the flow, which inhibits the diffusion of photons through the
walls. The latter effect stems from the divergence of the elec-
tron density near the stellar surface. The energy of maximum
brightness, corresponding to the peak in Ṅ G

� , achieves its max-
imum value as y ! 0 because the photons that manage to diffuse
far upstream from the source are the ones that have resided in the
flow the longest and therefore experienced the most energy
amplification.

We plot Ṅ G
� as a function of energy and location in Figure 4

for the parameters � ¼ 4 and y0 ¼ 0:4, in which case we obtain
for the first eigenvalue and the photon index k0 ¼ 6:325 and
	0 ¼ 4:325, respectively. In this scenario the source is located
in the upstream region and the absorption is stronger than that in
Figure 3. Due to the increased absorption resulting from the
larger value of �, the photons spend less time on average in the
flow being energized by collisions with the electrons before
they escape through the column walls or are ‘‘recycled’’ by
absorption. This causes a steepening of the spectrum at high
energies, as evidenced by the increase in the photon index	0. In
this situation the energy of maximum brightness (where Ṅ G

�
displays a peak) achieves its greatest value in the downstream
region. This is the reverse of the behavior displayed in Figure 3
because in the present example the source is located in the
upstream region and therefore the photons that diffuse farther
upstream toward y ¼ 0 do not experience as much compression
as those that are advected downstream. The escaping photon
distribution in the far upstream and downstream regions is
strongly attenuated due to the same processes operative in

Figure 3, and therefore most of the escaping radiation is emitted
from the accretion column around the source location.
The analytical results for the Green’s function obtained in

this section provide the basis for the consideration of any source
distribution since the fundamental differential equation (31) is
linear. This is further discussed in x 5, where we use equations
(35) and (44) to convolve the Green’s function with the black-
body spectrum produced by the thermal mound.

4.5. Column-integrated Green’s Function

By integrating over the vertical structure of the accretion
column, we can compute the total emitted radiation distribu-
tion, which corresponds to the phase-averaged spectrum of the
X-ray pulsar. In the cylindrical geometry employed here, the
formal integration domain is the region �1 < x < xst, where
xst is the distance between the sonic point and the stellar surface
(see eq. [21]). For the case of a monochromatic source, we
define the column-integrated Green’s function by writing

�G
� x0; �0; �ð Þ �

Z xst

�1
Ṅ G
� x0; x; �0; �ð Þ dx; ð79Þ

where �G
� d� represents the number of photons escaping from

the column per unit time with energy between � and �þ d�.
Using equation (50), the variable of integration can be trans-
formed from x to y to obtain the alternative form

�G
� y0; �0; �ð Þ ¼ r0

2
ffiffiffi
3

p �?
�k

� �1=2Z 1

0

Ṅ G
� y0; y; �0; �ð Þ dy

y
;

ð80Þ

where y0 is related to x0 via equation (52). Despite the appear-
ance of the factor y�1 inside the integral in equation (80), the
contribution from small values of y is actually negligible be-
cause the spectrum declines exponentially in the upstream re-
gion due to advection. Furthermore, the escaping spectrum is
also strongly attenuated in the downstream region due to the
divergence of the electron density. Hence, most of the radia-
tion is emitted from the column around y � 0:5, as indicated in
Figures 3 and 4.

Fig. 4.—Same as Fig. 3, except � ¼ 4:0 and y0 ¼ 0:4. In this case the source
is located in the upstream region, and the absorption at the source location is
stronger than in Fig. 3. The latter effect causes a significant steepening of the
spectrum at high energies, as explained in the text.

Fig. 3.—Green’s function Ṅ G
� ( y0; y; �0; �) describing the photon distri-

bution escaping from the accretion column per unit time (eq. [77]) plotted in
units of Ṅ0(�k/�?)

1=2(r0�0)
�1 as a function of the photon energy ratio �/�0 for

the indicated values of the spatial variable y. In this example we have set the ab-
sorption constant � ¼ 0:4 and the source location y0 ¼ 0:9, so that the mono-
energetic source is located near the base of the accretion column.
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By combining equations (77), (78), and (80), we can reex-
press the column-integrated Green’s function as

�G
� y0; �0; �ð Þ ¼ Ṅ0

�y
3=4
0

X1
n¼0

gn y0ð Þ
In

�

�0

� �3�kn

Xn; ð81Þ

where the quadratic normalization integrals In are evaluated
using equation (72) and we have made the definition

Xn �
Z 1

0

gn( y)(1� y) y�1 dy: ð82Þ

In Appendix E we demonstrate that the integral in the ex-
pression for Xn can be carried out analytically to obtain

Xn ¼
�(1� a) 1� y0ð Þ2

�(a)’2 kn; y0ð Þ

�
y2�c
0 ’1 kn; y0ð Þ
�(3� c)

;

�
F 2� a; 2� b; 3� c; y0ð Þ

þ y0

3� c
F 3� a; 3� b; 4� c; y0ð Þ

�

þ ’�
1 kn; y0ð Þ

(a� 1)(b� 1)�(1� c)

�
F a; b; c� 1; y0ð Þ

þ (c� 2)

(a� 2)(b� 2)
F a; b; c� 2; y0ð Þ

��

þ (1� c)

(a� 1)(b� 1)
1þ (c� 2)

(a� 2)(b� 2)

� �
; ð83Þ

where ’1(kn; y0), ’�
1(kn; y0), and ’2(kn; y0) are given by

equations (59), (60), and (62), respectively, and the constants a,
b, and c are computed in terms of kn using equation (61).

In Figure 5 we plot the dependence of the column-integrated
Green’s function �G

� on the radiation energy � using the same
parameters employed in Figures 3 and 4. Note that when
� ¼ 0:4 and y0 ¼ 0:9, which corresponds to the thin line in
Figure 5, the column-integrated spectrum displays a peak at
�=�0 � 1:5. The peak forms because the source is located close

to the bottom of the accretion column, whereas most of the
photons escape from higher altitudes around y � 0:5 (see Fig. 3).
The escaping radiation has therefore experienced significant
compression in the flow and consequently the photon energies
are generally boosted above the injection energy �0. On the
other hand, when � ¼ 4 and y0 ¼ 0:4, which corresponds to the
thick line in Figure 5, the absorption is so strong that the spec-
trum is quite steep and therefore the peak is suppressed. Conse-
quently, the column-integrated spectrum achieves its maximum
value at the injection energy in this case.

4.6. Reprocessed Blackbody Radiation

The closed-form solutions for the Green’s function Ṅ
G
�

(eq. [77]) and for the column-integrated Green’s function �G
�

(eq. [81]) provide a very efficient means for computing the X-ray
spectrum escaping through the walls of the accretion column due
to the injection of monochromatic seed photons. However, in our
physical application to X-ray pulsars, we are primarily interested
in computing the emitted spectrum resulting from the repro-
cessing of blackbody radiation injected into the accretion col-
umn from the thermal mound. In the escape probability approach
utilized here, the photon distribution emitted through the walls of
the cylindrical column at position x, denoted by Ṅ�(x0; x; �), is
computed using

Ṅ� x0; x; �ð Þ � �r20 �
2

tesc
f x0; x; �ð Þ; ð84Þ

where the particular solution f (x0; x; �) is evaluated using
equation (44) and Ṅ� dx d� represents the number of photons
escaping from the column per unit time between positions x and
xþ dx with energy between � and �þ d�. By combining equa-
tions (44) and (84), we find that the escaping photon spectrum
can be expressed as

Ṅ� x0; x; �ð Þ ¼ �r20 �
2

tesc

Z �

0

fG x0; x; �0; �ð Þ
Ṅ0

�20S �0ð Þ d�0; ð85Þ

where the blackbody source function S(�0) is evaluated using
equation (35). The spatial variables (x, x0) and ( y, y0) are in-
terchangeable by virtue of equations (47) and (52), and there-
fore we can use equations (75) and (85) to write

Ṅ� y0; y; �ð Þ ¼
Z �

0

Ṅ G
� y0; y; �0; �ð Þ

Ṅ0

�20S �0ð Þ d�0; ð86Þ

where Ṅ G
� ( y0; y; �0; �) is computed using equation (77).

By analogy with equation (79) for the Green’s function, we
define the particular solution for the column-integrated photon
spectrum escaping from the plasma due to the blackbody source,
��(x0; �), by writing

�� x0; �ð Þ �
Z xst

�1
Ṅ� x0; x; �ð Þ dx; ð87Þ

so that �� d� gives the number of photons escaping from the
column per unit time with energy between � and �þ d�. The
variable of integration can be transformed from x to y using
equation (50), which yields

�� y0; �ð Þ ¼ r0

2
ffiffiffi
3

p �?

�k

� �1=2Z 1

0

Ṅ� y0; y; �ð Þ dy
y
; ð88Þ

Fig. 5.—Column-integrated Green’s function �G
� ( y0; �0; �) describing the

photon spectrum escaping through the walls of the accretion column (eq. [81])
plotted in units of Ṅ0/�0 as a function of the photon energy ratio �/�0. The
parameter values used are y0 ¼ 0:9, � ¼ 0:4 (thin line) and y0 ¼ 0:4, � ¼ 4:0
(thick line), which correspond to the spectra plotted in Figs. 3 and 4, respectively.
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where y0 is related to x0 by equation (52). By substituting for
Ṅ� using equation (86) and employing equation (80), we can
obtain the alternative form

�� y0; �ð Þ ¼
Z �

0

�G
� y0; �0; �ð Þ

Ṅ0

�20S �0ð Þ d�0: ð89Þ

The column-integrated Green’s function �G
� ( y0; �0; �) is

evaluated using equation (81). In x 5 we utilize equations (86)
and (89) to compute the photon spectrum emitted from the
accretion column using parameters corresponding to specific
X-ray pulsars.

5. ASTROPHYSICAL APPLICATIONS

For given values of the stellar mass M� and the stellar radius
R�, our model has three free parameters, namely, the column
radius r0, the temperature at the top of the thermal mound T0,
and the accretion rate Ṁ . In this section we investigate the
relationship between these quantities and the dimensionless
parameters y0 and � appearing in the theory. Although it is not
our intention in this paper to develop complete models for
X-ray pulsar spectra, it is nonetheless interesting to compare the
simplified model developed here with actual data for a few
sources. Hence, in this section we also compute the spectrum
emerging from the accretion column for parameters corre-
sponding to two specific X-ray pulsars.

5.1. Location of the Thermal Mound

In order to understand how the theory developed here can be
related to observables such as the temperature and the lumi-
nosity, we first need to determine how the position of the
thermal mound, x0 (or, equivalently, y0), depends on the values
of r0, T0, and Ṁ . The blackbody surface of themound represents
the photosphere for photon creation and destruction in this
problem, and therefore the opacity is dominated by free-free
absorption inside the mound. For a given value of the temper-
ature T0, the density at the top of the mound, �0, can be calcu-
lated by setting the free-free optical thickness of the column
equal to unity, so that

� A
0 � r0	

A
R r0ð Þ ¼ 1; ð90Þ

where the Rosseland mean of the free-free absorption coeffi-
cient is evaluated in cgs units using (Rybicki & Lightman
1979)

	A
R r0ð Þ ¼ 6:10 ; 1022T

�7=2
0 �2

0 ; ð91Þ

for pure, fully ionized hydrogen with the Gaunt factor set
equal to unity. The density at the top of the thermal mound is
therefore given by

�0 ¼ 4:05 ; 10�12T
7=4
0 r

�1=2
0 : ð92Þ

The velocity at the top of the mound, v0, is related to �0 via the
continuity equation Ṁ ¼ �r20 v0�0, so that

v0 ¼ 7:86 ; 1010Ṁr
�3=2
0 T

�7=4
0 : ð93Þ

By combining this result with equations (24) and (53), we find
that the value of y0 is given by

y0 ¼1� 2:15 ; 1014R1=2
� M�1=2

� Ṁr
�3=2
0 T

�7=4
0 ; ð94Þ

or, equivalently,

y0 ¼ 1� 8:57 ; 10�4 R�

10 km

� �1=2
M�

M�

� ��1=2

;
Ṁ

1016 g s�1

� �
r0

1 km

� ��3=2
T0

107 K

� ��7=4

: ð95Þ

The values obtained for y0 are extremely close to unity, in-
dicating that the top of the thermal mound is just above the
stellar surface. Once y0 is computed, we can determine x0 by
using equation (52) to write

x0

xst
¼ 1þ ln y0

ln (7=3)
; ð96Þ

where xst is the distance between the sonic point and the stellar
surface given by equation (21). The height of the thermal
mound above the stellar surface is then given by (see eq. [22])

h0 � h x0ð Þ¼ ln 1=y0ð Þ
ln 7=3ð Þ xst; ð97Þ

or, equivalently,

h0 ¼
r0

2
ffiffiffi
3

p �?

�k

� �1=2

ln
1

y0

� �
; ð98Þ

where we have substituted for xst using equation (21). Specific
numerical examples are given in x 5.4. For typical X-ray pul-
sar parameters, we find that the mound is situated very close to
the surface of the star, as expected.

5.2. Computation of the Eigenvalues

In order to compute the eigenvalues kn using equation (67),
we must also evaluate the dimensionless absorption parameter
� appearing in the transport equation (31). Based on energy
conservation considerations in the radiation-dominated plasma,
we have shown in x 3.2 that the photon energy flux Q must be
continuous across the location of the thermal mound. This leads
to equation (43), which can be rewritten as

� ¼ �T 4
0

3v0P0

; ð99Þ

where P0 ¼ U0/3 is the radiation pressure at the top of the
thermal mound. According to equation (49), P0 ¼ (7/4) Jvcy0,
and therefore

� ¼ 4�T 4
0

21Jvcv0 y0
: ð100Þ

By substituting for vc and v0 using equations (24) and (53), re-
spectively, and setting J ¼ Ṁ /(�r20 ), we can obtain the alter-
native form

� ¼ �r20�T
4
0 R�

6y0 1� y0ð ÞGM�Ṁ
; ð101Þ
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or, equivalently,

� ¼ 2:24 ; 10�3

y0 1� y0ð Þ
R�

10 km

� �
M�

M�

� ��1

;
Ṁ

1016 g s�1

� ��1
r0

1 km

� �2
T0

107 K

� �4

: ð102Þ

Taken together, equations (95) and (102) allow the determination
of the two dimensionless model parameters y0 and � in terms of
R�, M�, r0, T0, and Ṁ . This closes the system and facilitates the
calculation of the emergent photon number spectrum Ṅ� using
equation (86) and the calculation of the column-integrated spec-
trum�� using equation (89). The values of the parameters r0, T0,
and Ṁ can therefore be extracted by comparing the theoretically
predicted photon count rate distributions with X-ray pulsar spec-
tral data.

5.3. Similarity Variables

The eigenvalues kn are functions of the dimensionless pa-
rameters y0 and �. Based on the dependencies of these param-
eters on r0, T0, and Ṁ expressed by equations (95) and (102), we
note that the eigenspectrum remains unchanged if r0, T0, and Ṁ
are simultaneously varied according to the prescription

r0 / T
�9=2
0 / Ṁ 9=10: ð103Þ

In this case, the column-integrated Green’s function (eq. [81])
also remains unchanged since it depends only on the values of
� and y0. These findings suggest that it is useful to introduce
the new ‘‘similarity variables’’ p and q, defined by

p� T0

107 K

� �
Ṁ

1016 g s�1

� �1=5

; q� T0

107 K

� �
r0

1 km

� �2=9
:

ð104Þ

In terms of these parameters, equations (95) and (102) for y0
and � now become

y0 ¼ 1� 8:57 ; 10�4 R�
10 km

� �1=2
M�
M�

� ��1=2

p5q�27=4 ð105Þ

and

� ¼ 2:24 ; 10�3

y0 1� y0ð Þ
R�

10 km

� �
M�

M�

� ��1

p�5q9: ð106Þ

The introduction of the new variables p and q is convenient
because it reduces the dimensionality of the parameter space
that determines the eigenvalues kn from the three-dimensional
domain (r0; T0; Ṁ ) to the two-dimensional space ( p, q). In
Figure 6 we plot the spectral index 	0 ¼ k0 � 2 of the photon
count rate spectrum as a function of p and q, where k0 is the first
eigenvalue and we have set R� ¼10 km and M� ¼1:4 M� (the
same quantity was plotted as a function of y0 and � in Fig. 2).
Note that when q is increased for a fixed value of p, the values of
y0 and � both increase according to equations (105) and (106).
The source therefore moves farther downstream, and the ab-
sorption at the source location becomes stronger. This causes
the spectrum to steepen as wemove upward along a vertical line
in Figure 6. However, if q becomes very large, the spectrum
starts to harden again due to the increasing amount of com-
pression experienced as the source approaches the base of the
accretion column.

5.4. Example Spectra

Our primary goal in this paper is to explore the effect of bulk
Comptonization on the shape of the X-ray continuum spectrum
emerging from a pulsar accretion column. The development of
complete models that include additional effects such as thermal
Comptonization, cyclotron processes, free-free emission and
absorption, and iron line formationwill be pursued in futurework.
Here we compare spectra computed using our simplified model
with the observations for a few sources in order to focus attention
on the role of the accretion shock in the formation of the X-ray
continuum. In Figures 7 and 8 we plot the position-dependent

Fig. 6.—Contour plot of the high-energy power-law photon spectral index
	0 as a function of the similarity variables p and q, which are related to the
fundamental physical parameters r0, T0, and Ṁ via eq. (104). The value of 	0

is indicated for each curve, and we have set R� ¼ 10 km and M� ¼ 1:4 M�.
The parameters used for models 1 and 2 are represented by the labeled points.

Fig. 7.—Escaping photon distribution Ṅ�(y0; y; �) (eq. [86]) divided by
(�k/�?)

1=2 plotted as a function of � for the indicated values of y. These results
were computed using the model 1 parameters and describe the spectrum
emitted per unit length of the accretion column due to the bulk Comptoni-
zation of blackbody radiation.
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photon count rate spectra Ṅ� (eq. [86]) escaping from the accre-
tion column computed using the two sets of model parameters
listed in Table 1. These results were obtained using 20 eigen-
values and eigenfunctions, which yield extremely high precision
due to the rapid convergence of the expansion. The theoretical
spectra describe the upscattering of Planckian seed photons in-
jected into the base of the accretion column from the surface of
the thermal mound. In both cases we useM� ¼ 1:4M� and R� ¼
10 km for the stellar mass and radius, respectively. For model 1
(Fig. 7), the parameters adopted are r0 ¼ 6 km,T0 ¼ 7:3 ; 106 K,
and Ṁ ¼ 2:69 ; 1016 g s�1. Inmodel 2 (Fig. 8)we set r0 ¼ 1:3 km,
T0 ¼ 9:0 ; 106 K, and Ṁ ¼ 3:23 ; 1013 g s�1. We use equa-
tions (104), (105), and (106) to compute the theoretical param-
eters p, q, y0, and � based on the selected values for r0, T0, and Ṁ .
In model 1 we obtain � ¼ 26:4505 and y0 ¼ 0:99977, and in
model 2 we find that � ¼ 2:894 ; 105 and y0 ¼ 0:999998. Ad-
ditional parameters are provided in Table 1. The fact that the
thermal mound location y0 is extremely close to unity in both
cases indicates that the mound lies just above the surface of the
star, as expected. It is interesting to compute the actual physical
distance between the thermal mound and the stellar surface, h0,
which is given by equation (98). Using the parameters corre-
sponding to models 1 and 2 yields h0 ¼ 39:84(�? /�k)

1/2 cm and
h0 ¼ 0:075(�? /�k)

1/2 cm, respectively. Note that in model 2 the
thermal mound is essentially on the surface of the star, whereas
in model 1 there is a much larger separation. This reflects the fact
that the accretion rate in model 1 is over 800 times larger than in
model 2.

The results obtained for the first eigenvalue and for the
photon index in model 1 are k0 ¼ 4:0398 and 	0 ¼ 2:0398,
respectively. In model 2, we find that the spectrum is signifi-
cantly steeper, with k0 ¼ 4:6382 and 	0 ¼ 2:6382. The steeper
spectrum obtained in model 2 results from the large value for �,
as indicated in Table 1. In general, the escaping spectrum has a

power-law shape at high energies, as expected for a Fermi
process, and a low-energy turnover due to the Planck distri-
bution of the seed photons. Note that the emitted radiation is
concentrated in a layer just above the thermal mound location,
around y � 0:5. This reflects the fact that advection due to
collisions with the infalling stream of high-speed electrons
tends to keep the photons trapped at low altitudes in the column,
and therefore few of them are able to escape through the column
walls for yT1. Since the spin axis and the column axis are not
aligned in pulsars, the portion of the accretion column visible
along the line of sight to the Earth changes as the pulsar rotates.
When combined with the vertical variation of the energy de-
pendence of the escaping photon distribution, this effect will
produce a pulse-phase dependence in the observed X-ray
spectrum.
In Figures 9 and 10 we plot the theoretical predictions for the

phase-averaged photon count rate flux measured at Earth,

F� �ð Þ � �� y0; �ð Þ
4�D2

; ð107Þ

computed using models 1 and 2, respectively, where D is the dis-
tance to the source and the column-integrated spectrum��( y0; �)
is evaluated using equation (89). Also included in Figures 9 and
10 for comparison are plots of the unfolded phase-averaged
spectra for the X-ray pulsars 4U 1258�61 (GX 304�1) and 4U
0352+30 (X Persei), respectively. The 4U 1258�61 data were
reported byWhite et al. (1983), and the 4U 0352+30 data are the
result of XSPEC analysis of an archival RXTE observation taken
in 1998 July and reported by Delgado-Martı́ et al. (2001). Based
on estimates from Negueruela (1998), the values adopted for
the distance D are 2.5 kpc for 4U 1258�61 and 0.35 kpc for
4U 0352+30. The observational data represent the deconvolved
(incident) spectra, which depend weakly on the detector response
model. The theoretical spectra were computed using 20 eigen-
values and eigenfunctions for high accuracy, and various amounts
of interstellar absorption were included as indicated in the
figures.
Although the results presented here are not fits to the data, we

note that the general shape of the pulsar spectrum predicted by
the theory agrees fairly well with the observations in each case,
including both the turnover at low energies and the power law at
higher energies. Several other sources yield similar agreement.
In our model, the turnover at �2 keV is due to Planckian pho-
tons that escape from the accretion column without experienc-
ing many scatterings. This effect will tend to reduce the amount
of absorption required to fit the observational data, compared
with the amount required using the standard ad hoc models usu-
ally employed in X-ray pulsar spectral analysis (see the dis-
cussion in Hickox et al. 2004).
The second source, X Persei, presents an interesting test for the

model due to its relatively low luminosity, LX � 1034 ergs s�1.
The agreement between the theory and the observations sug-
gests that radiation pressure may still be playing an important
role in the dynamics of this source, despite its low luminosity. In

TABLE 1

Model Parameters

Model

r0
(km)

T0
(K)

Ṁ

(g s�1) p q y0 � 	0 h0 /xst v0 /c

1............................ 6.0 7.3 ; 106 2.69 ; 1016 0.890 1.087 0.999770 2.645 ; 101 2.0398 2.71 ; 10�4 1.48 ; 10�4

2............................ 1.3 9.0 ; 106 3.23 ; 1013 0.286 0.954 0.999998 2.894 ; 105 2.6382 2.36 ; 10�6 1.22 ; 10�6

Fig. 8.—Same as Fig. 7, except the results were computed using the model
2 parameters.
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this connection, Langer & Rappaport (1982) pointed out that
radiation pressure may have a strong effect on the flow dynamics
of low-luminosity pulsars if the photon energies are close to the
cyclotron resonance, which greatly increases the electron scat-
tering cross section. Furthermore, the dynamical importance of
the gas pressure in this luminosity range may lead to the de-
velopment of a gas-mediated ‘‘subshock’’ within the overall
gradual compression of the radiation-dominated shock. This
type of hybrid shock is analogous to the ‘‘two-fluid’’ model of
cosmic-raymediated supernova shocks (e.g., Drury&Völk1981).
It is known that in the cosmic-ray case,multiple flow solutions can
occur for the same set of upstream boundary conditions (e.g.,
Becker & Kazanas 2001). There is some possibility that the same
type of multistate behavior may occur in X-ray pulsars, which
could have interesting observational implications.

6. MODEL SELF-CONSISTENCY

The analytical approach employed in this paper is based on
the conservation of energy and momentum in the radiation-
dominated flow. This leads to the self-consistent determination
of the thermal mound location, x0, for given values of the fun-
damental parameters r0, T0, and Ṁ , as discussed in x 5.1. In this
section we verify that the model satisfies the self-consistency
conditions required for global energy conservation. We also
examine the implications of the one-dimensional escape prob-
ability formalism that has been utilized to model the emission of
radiation from the column.

6.1. Pressure Distribution

The exact dynamical solution for the radiation pressure in-
side the pulsar accretion column is given by equation (29),
which states that

P(x)¼ 7

4
Jvc

7

3

� ��1þx=xst

; ð108Þ

where xst is the distance between the sonic point and the stellar
surface, given by equation (21). In principle, the radiation
pressure can also be computed by integrating the particular

solution for the photon distribution f inside the accretion
column. Since P ¼ U /3, we can use equation (32) to write

P xð Þ ¼ 1

3

Z 1

0

�3f x0; x; �ð Þ d�; ð109Þ

where f is computed using the convolution (see eq. [44])

f x0; x; �ð Þ ¼
Z �

0

fG x0; x; �0; �ð Þ
Ṅ0

�20S �0ð Þ d�0: ð110Þ

Here the blackbody source S(�0) is given by equation (35) and
the Green’s function fG is evaluated using equation (68),
bearing in mind that the quantities (x, x0) and ( y, y0) are in-
terchangeable via equations (47) and (52).

We can check the accuracy of the entire solution technique,
including the determination of the eigenfunctions and the
eigenvalues, by comparing the exact dynamical result for P
with that obtained by integrating the spectrum. In Figure 11 we
plot the exact analytical solution for the radiation pressure
computed using equation (108) along with the results obtained
by integrating the model 1 and 2 spectra using equation (109).
Note that the agreement between the various solutions for P is
excellent, and in each case the pressure achieves the correct
stagnation value Pst ¼ (7/4) Jvc (eq. [30]) as the gas approaches
the stellar surface. The agreement between the various results
for the pressure confirms that our solution for the radiation
spectrum is consistent with the dynamics of the accretion
flow.

6.2. Total Luminosity

In order to further explore the self-consistency of the for-
malism developed here, we have also computed the total X-ray
luminosity, LX, emerging from the column by integrating the
escaping number spectrum �� (eq. [87]) using

LX ¼
Z 1

0

��� x0; �ð Þ d�: ð111Þ

Fig. 10.—Same as Fig. 9, except the data correspond to 4U 0352+30 and
the theoretical spectra were computed based on model 2. The column densities
used are NH ¼ 0 (solid line), 3 ; 1021 (dashed line), and 9 ; 1021 cm�2 (dot-
dashed line).

Fig. 9.—Theoretical column-integrated count rate spectrum F� (�) (eq. [107])
computed using the model 1 parameters along with various amounts of inter-
stellar absorption, compared with the X-ray spectrum of 4U 1258�61. The
column densities used are NH ¼ 0 (solid line), 3 ; 1021 (dashed line), and
9 ; 1021 cm�2 (dot-dashed line). The other parameters for the theoretical model
are given in Table 1.
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We have confirmed that the values obtained using this expres-
sion agree precisely with the accretion luminosity given by

LX ¼ GM�Ṁ

R�
: ð112Þ

The calculations performed in this section and in x 6.1 validate
our entire solution procedure for the determination of the ra-
diation spectrum by demonstrating that our results are fully
consistent with global energy conservation.

6.3. Escape Probability Formalism

Within the context of our one-dimensional model, the dif-
fusion of radiation through the walls of the accretion column is
treated in an approximate manner using an escape probability
formalism. In this approach, the probability per unit time that a
randomly selected photon at location x inside the column will
escape through the walls is equal to t�1

esc, where the mean escape
time tesc is a function of x given by (see eq. [12])

tesc(x) ¼
r20�?ne(x)

c
; ð113Þ

with r0 and �? denoting the radius of the cylindrical column and
the electron scattering cross section for photons propagating
perpendicular to the column axis, respectively. The escape of
radiation through the walls of the accretion column can there-
fore be modeled approximately using a term of the form

@f

@t







approx

¼� f

tesc
; ð114Þ

which is incorporated into the transport equation (31).
From a technical point of view, the utilization of the escape

probability formalism implies that the distribution of the photon
number density across the column is proportional to the first
eigenfunction of the operator describing the diffusion of radia-

tion perpendicular to the column axis (e.g., Sunyaev&Titarchuk
1980). In a comprehensive, multidimensional calculation, the
diffusion of photons perpendicular to the column axis is treated
by replacing the escape probability term @f /@t ¼ �f /tesc in the
transport equation (31) with the more rigorous expression

@f

@t







exact

¼ 1

r

@

@r

cr

3ne�?

@f

@r

� �
; ð115Þ

where r is the radial coordinate measured from the central axis
of the cylindrical accretion column. If the gas density is con-
stant across the column at a given height, as assumed here, then
equation (115) can be separated to obtain for the first eigen-
function the solution

f (r; t) ¼ A exp � c
2t

3‘?

� �
J0


r

‘?

� �
; ð116Þ

where A is a constant, 
 denotes the first eigenvalue, J0 rep-
resents the zeroth-order Bessel function, and

‘? � ne�?ð Þ�1 ð117Þ

is the electron scattering mean free path for photons propa-
gating perpendicular to the column axis.
The value of 
 is determined by satisfying the flux boundary

condition at the surface of the column. By employing the
Eddington approximation, we can write the boundary condition
as

‘?
@f

@r
þ � f






r¼r0

¼ 0; ð118Þ

where � is a positive constant of order unity and we have assumed
that no radiation is incident on the column from the outside.
The precise value of � is somewhat arbitrary, with Rybicki &
Lightman (1979) setting � ¼ 31/2 and Sunyaev & Titarchuk
(1980) setting � ¼ 3/2. Combining equations (116) and (118), we
find that 
 is the smallest positive root of the equation

J0

r0
‘?

� �
¼ 


�

� �
J1


r0
‘?

� �
; ð119Þ

where J1 denotes the order-unity Bessel function.
The rate of change of the first eigenfunction (eq. [116]) is

given by

@f

@t
¼� c
2

3‘?
f (r; t): ð120Þ

Comparison of equations (114) and (120) reveals that the es-
cape probability approximation and the rigorous diffusion
model yield the same result for the logarithmic time derivative
@ ln f /@t if the mean escape time tesc and the first eigenvalue 

are related via

tesc ¼
3‘?
c
2

: ð121Þ

This equation is well satisfied in all of our sample calculations,
which suggests that the escape probability formalism provides
a reasonable description of the leakage of photons from the
accretion column.

Fig. 11.—Radiation pressure P plotted in units of Jvc as a function of x,
which is the distance measured from the sonic point in the direction of the
flow. The dashed vertical line at x ¼ 0 represents the sonic point, and x ¼ xst at
the stellar surface. The exact dynamical solution (eq. [108]) is denoted by the
solid line, and the filled circles and triangles represent the values obtained
using eq. (109) to integrate the model 1 and 2 spectra, respectively. At the
surface of the star, the pressure approaches the stagnation value (eq. [30]) as
expected.
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7. CONCLUSIONS

We have shown that the simplified model considered here, com-
prising a radiation-dominated accretion column with a blackbody
source/sink at its base and a radiative shock, is able to reproduce the
power-law continuum spectra observed in accretion-poweredX-ray
pulsars with a range of luminosities, as indicated in Figures 9 and
10. Our results represent the first ab initio calculations of the
X-ray spectrum associated with the physical accretion scenario
first suggested by Davidson (1973). For given values of the
stellar mass M� and the stellar radius R�, our model has only
three free parameters, namely, the column radius r0, the tem-
perature at the top of the thermal mound T0, and the accretion
rate Ṁ . We have confirmed that the solution obtained for the
radiation spectrum is consistent with the dynamics of the flow in
the accretion column (see Fig. 11). Many pulsars are found to
have spectra that are well fitted using a combination of a power
law plus a blackbody component, but until now this form has
been adopted in a purely ad hoc manner. The new model de-
scribed here finally provides a firm theoretical foundation for
this empirical result. Our analytical solution, based on a rigorous
eigenfunction expansion, is relatively straightforward to imple-
ment computationally because it avoids numerical integration of
the transport equation. The work presented here therefore rep-
resents a significant step in the development of a comprehensive
theory for the spectral formation process in X-ray pulsars.

The photon spectral index 	0 is related to the first eigenvalue
k0 via 	0 ¼ k0 � 2, and therefore the leading eigenvalue de-
termines the slope of the high-energy portion of the X-ray
spectrum. The value of	0 is quite sensitive to the strength of the
absorption at the thermal mound, which is determined by the
parameter �. According to equation (102), � in turn is a strong
function of the mound temperature T0. The higher the temper-
ature, the stronger the emission and absorption at the blackbody
surface of the mound. Model 2 has a higher temperature than
model 1, and therefore the value of � is larger. Hence, the spec-
trum is steeper in model 2 because the photons spend less time
on average upscattering in the flow before either escaping
through the column walls or being ‘‘recycled’’ by absorption at
the mound location. Acceptable values for 	0, in the range be-
tween 2 and 4, are obtained for reasonable source parameters, as
indicated in Figures 2 and 6. Although a broad range of spectral
indices can be produced, we must have 	0 > 2 in order to avoid
an infinite photon energy density since the model considered
here does not include a high-energy cutoff.

The shape of the Green’s function spectrum derived here is
qualitatively similar to the results obtained using the ‘‘bulk mo-
tion Comptonization’’ model coded into the XSPEC package
using the BMC function (see Shrader & Titarchuk 1998, 1999;
Borozdin et al. 1999). The BMC model includes parameters
corresponding to the high-energy spectral index, the temperature
of the soft photon source, the fraction of the Comptonized com-
ponent in the resulting spectrum, and the size of the emitting
region. However, the BMC model is designed to treat spectral
formation in black hole accretion flows, whereas our focus here

is on neutron star accretion. Hence, the model developed in this
paper can be viewed as a parallel formalism that is optimized for
the treatment of the spectral formation process in accretion-
powered X-ray pulsars. In this sense, our theory translates the
free parameters of a generalized bulk Comptonization model
into specific values for the accretion rate, temperature, and
column radius for a particular X-ray pulsar.

Our goal in this paper is to explore the direct role of the
accretion shock in producing the observed continuum spectra in
X-ray pulsars via the first-order Fermi process. Although the
model produces spectra that are quite similar to those observed
from several X-ray pulsars, it cannot explain the spectra from
other sources. For example, the observed spectra for several
of the brightest pulsars with luminosities in the range 1037–
1038 ergs s�1 (e.g., Her X-1) are very flat power laws leading up
to a sharp exponential cutoff. The photon index in these sources
is typically 	0 � 1, which is outside the range allowed by our
model since it does not include a high-energy cutoff. In order to
understand spectral formation in the brightest pulsars, additional
effects such as thermal Comptonization, cyclotron features, brems-
strahlung, and iron emission must be incorporated into the model.
In principle, one should also consider higher order relativistic
effects that can alter the form of the fundamental transport equa-
tion (Psaltis & Lamb 1997). Thermal Comptonization is partic-
ularly important since this process redistributes energy from the
highest frequency photons to lower energies via electron recoil.
This naturally leads to the development of a high-energy expo-
nential turnover and a concomitant flattening of the spectrum at
moderate energies, as observed.

The thermalComptonization processwas studied byLyubarskii
& Sunyaev (1982) and Becker (1988) in the context of plane-
parallel shocks. However, the velocity profiles employed by these
authors are not consistent with the structure of an X-ray pulsar
accretion column. Poutanen & Gierliński (2003) computed X-ray
pulsar spectra based on the thermal Comptonization of soft radi-
ation in a hot layer above the magnetic pole, but their model did
not include a complete treatment of the bulk process, which is of
crucial importance in X-ray pulsars. In this paper we have care-
fully analyzed the effect of bulk Comptonization on the emitted
spectrum, while neglecting the corresponding thermal process.
The inclusion of thermal Comptonization is beyond the scope of
the present paper because it renders the transport equation insol-
uble via analytical means. However, in future work we intend to
develop a comprehensive numerical model that incorporates both
the bulk and thermal processes.

The authors would like to thank Lev Titarchuk, Philippe
Laurent, and Nikos Kylafis, who provided useful comments on
the manuscript. The authors are also grateful to the anonymous
referee, whose careful reading and stimulating suggestions led
to significant improvements in the paper. P. A. B. would also
like to acknowledge generous support provided by the Office of
Naval Research.

APPENDIX A

FUNDAMENTAL SOLUTION IN THE DOWNSTREAM REGION

When y 6¼ y0, the spatial separation functions g(k; y) satisfy the homogeneous differential equation (cf. eq. [55])

y(1� y)
d 2g

dy2
þ 1� 5y

4

� �
dg

dy
þ kyþ y� 1

4y

� �
g ¼ 0; ðA1Þ
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which has the fundamental solutions

’1(k; y)� yF(a; b; c; y); ðA2Þ

’�
1(k; y)� y�1=4F(a� 5=4; b� 5=4; 2� c; y); ðA3Þ

where F(a; b; c; z) denotes the hypergeometric function (Abramowitz & Stegun 1970) and we have made the definitions

a � 9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 16k

p

8
; b� 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 16k

p

8
; c� 9

4
: ðA4Þ

As explained in the discussion following equation (61), in the downstream limit the radiation pressure approaches the finite
stagnation value given by equation (30). The spatial separation functions g(k; y) should mimic this behavior, and therefore we
require that g approaches a constant in the limit y ! 1. This does not happen in general, but only if the separation constant k is
equal to one of the eigenvalues kn, in which case we obtain the eigenfunction

gn yð Þ � g kn; yð Þ: ðA5Þ

The hypergeometric functions appearing in equations (A2) and (A3) can be evaluated at y ¼ 1 using equation (15.1.20) from
Abramowitz & Stegun (1970), which gives for general values of a, b, and c

F(a; b; c; 1) ¼ �(c)�(c� a� b)

�(c� a)�(c� b)
: ðA6Þ

However, for the values of a, b, and c in the current application, we find that

c� a� b ¼ 0; ðA7Þ

and therefore the hypergeometric functions F(a; b; c; y) and F(a� 5/4; b� 5/4; 2� c; y) each diverge in the downstream limit
y ! 1.

Based on the asymptotic behaviors of the hypergeometric functions appearing in the expressions for ’1 and ’
�
1, we conclude that in

the downstream region ( y � y0), the eigenfunction gn must be represented by a suitable linear combination of ’1 and ’
�
1 that remains

finite as y ! 1. In order to make further progress, we need to employ equation (15.3.10) from Abramowitz & Stegun (1970), which
yields for general a, b, and y

F a; b; aþ b; yð Þ ¼ � aþ bð Þ
� að Þ� bð Þ

X1
n¼0

að Þn bð Þn
n!ð Þ2

2� nþ 1ð Þ �� aþ nð Þ �� bþ nð Þ � ln 1� yð Þ½ 	 1� yð Þn; ðA8Þ

where

�(z)� 1

�(z)

d�(z)

dz
: ðA9Þ

By making use of this expression, we note that the logarithmic divergences of the two functions ’1 and ’
�
1 in the limit y ! 1 can be

balanced by creating the new function

’2(k; y)� �(b)

�(c)�(1� b)
’1(k; y)� �(1� a)

�(2� c)�(a)
’�
1(k; y); ðA10Þ

which remains finite as y ! 1. Hence, ’2 represents the fundamental solution for gn in the region downstream from the thermal
mound located at y ¼ y0. We can use the asymptotic behaviors of ’1 and ’�

1 as y ! 1 to conclude that

lim
y!1

’2(k; y) ¼ �½ cot (�a)þ cot (�b)	
�(a)�(1� b)

: ðA11Þ

Since the solutions ’1 and ’2 are applicable in the upstream and downstream regions, respectively, the global expression for the
eigenfunction gn is therefore

gn yð Þ ¼
’1 kn; yð Þ; y � y0;

Bn’2 kn; yð Þ; y � y0;

�
ðA12Þ
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where the constant Bn is evaluated using the continuity condition

Bn ¼
’1 kn; y0ð Þ
’2 kn; y0ð Þ : ðA13Þ

It follows from equations (A11), (A12), and (A13) that the downstream value of gn is given by

lim
y!1

gn yð Þ ¼ � cot �að Þ þ cot �bð Þ½ 	
� að Þ� 1� bð Þ

’1 kn; y0ð Þ
’2 kn; y0ð Þ ; ðA14Þ

where a and b are evaluated using equation (61).

APPENDIX B

ANALYTICAL EXPRESSION FOR THE WRONSKIAN

The derivation of the eigenvalue equation (67) in x 4.2 makes use of the Wronskian of the two functions ’1 and ’2, defined by

W (k; y)� ’1

d’2

@y
� ’2

d’1

@y
: ðB1Þ

It is useful to derive an analytical expression for W based on the differential equation (55) governing the two functions ’1 and ’2,
which can be rewritten in the self-adjoint form

d

dy
y1=4(1� y)

d’

dy

� �
þ k

4y3=4
’� T’ ¼ 0; ðB2Þ

where

T � 1� y

4y7=4
þ 3�v0� y� y0ð Þ

7vcy3=4
: ðB3Þ

By applying equation (B2) to the function ’2 and multiplying the result by ’1, and then subtracting from this the same expression
with ’1 and ’2 interchanged, we obtain

’1

d

dy
y1=4 1� yð Þ d’2

dy

� �
� ’2

d

dy
y1=4 1� yð Þ d’1

dy

� �
¼ 0; ðB4Þ

which can be rewritten as

y1=4(1� y)
dW

dy
þW

d

dy
y1=4(1� y)
h i

¼ 0; ðB5Þ

where we have made use of the result

dW

dy
¼ ’1

d 2’2

dy2
� ’2

d 2’1

dy2
: ðB6Þ

Equation (B5) can rearranged in the form

d lnW

dy
¼� d

dy
ln y1=4 1� yð Þ
h i

; ðB7Þ

which can be integrated to obtain the exact solution

W (k; y) ¼ D(k)
y1=4(1� y)

; ðB8Þ
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where D(k) is an integration constant that may depend on k but not on y. The exact dependence of D on k can be derived by
analyzing the behaviors of the functions ’1 and ’2 in the limit y ! 0. For small values of y, we have the asymptotic expressions
(Abramowitz & Stegun 1970)

’1 ! y; y ! 0;

’2 ! � �(1� a)

�(a)�(2� c)
y�1=4; y ! 0: ðB9Þ

We therefore find that asymptotically

W ! 5

4

� 1� að Þ
� að Þ� 2� cð Þ y

�1=4; y ! 0: ðB10Þ

Comparing this result with equation (B8), we conclude that

D(k) ¼ 5

4

�(1� a)

�(a)�(2� c)
; ðB11Þ

and therefore the exact solution for the Wronskian is given by

W (k; y) ¼ 5

4

�(1� a)

�(a)�(2� c)

y�1=4

1� y
: ðB12Þ

This result is used in x 4.2 in the derivation of the eigenvalue equation (67).

APPENDIX C

ORTHOGONALITY OF THE EIGENFUNCTIONS

The calculation of the expansion coefficients Cn in the series representation for the Green’s function

fG y0; y; �0; �ð Þ ¼ ��3
X1
n¼0

Cn

�

�0

� �3�kn

gn yð Þ ðC1Þ

discussed in x 4.3 depends on the establishment of the orthogonality of the eigenfunctions gn( y). Here we demonstrate that the
eigenfunctions form an orthogonal set as required. Let us suppose that gn( y) and gm( y) are two eigenfunctions corresponding to the
distinct eigenvalues kn and km, respectively. The functions gn and gm satisfy the differential equation (55), and therefore we can
utilize the self-adjoint form to write (cf. eq. [B2])

gm
d

dy
y1=4 1� yð Þ dgn

dy

� �
þ kn

4y3=4
gn � Tgn

� �
¼ 0 ðC2Þ

and

gn
d

dy
y1=4 1� yð Þ dgm

dy

� �
þ km

4y3=4
gm � Tgm

� �
¼ 0; ðC3Þ

where T is given by equation (B3). Subtracting the second equation from the first yields, after integrating by parts with respect to y
from y ¼ 0 to 1,

kn � kmð Þ
Z 1

0

y�3=4gn yð Þgm yð Þ dy ¼ 4y1=4 1� yð Þ gn
dgm
dy

� gm
dgn
dy

� �





1

0

: ðC4Þ

Based on the asymptotic behaviors of the eigenfunctions gn and gm given by equations (A14) and (B9), we find that the right-hand
side of equation (C4) vanishes exactly, and we therefore obtain

kn � kmð Þ
Z 1

0

y�3=4gn yð Þgm yð Þ dy ¼ 0; n 6¼ m ðC5Þ

which establishes the orthogonality of the eigenfunctions.
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APPENDIX D

QUADRATIC NORMALIZATION INTEGRALS

The evaluation of the Green’s function fG using equation (C1) relies on knowledge of the expansion coefficientsCn, which are given
by

Cn ¼
12Ṅ0y

�3=4
0 gn y0ð Þ

7�r20 vcIn
; ðD1Þ

where the quadratic normalization integrals In are defined by

In �
Z 1

0

y�3=4g2n ( y) dy: ðD2Þ

The direct computation of the normalization integrals In via numerical integration is costly and time consuming, and therefore it is
desirable to have an alternative procedure available for their evaluation. In fact, it is possible to derive an analytical expression for
the normalization integrals based on manipulation of the fundamental differential equation (55) governing the eigenfunctions gn( y).

Let us suppose that g(k; y) is a general solution to equation (55) for an arbitrary value of k (i.e., not necessarily an eigenvalue) that
has the asymptotic upstream behavior

g(k; y) ! y; y ! 0: ðD3Þ

We also require that g be continuous at y ¼ y0 and that it satisfy the derivative jump condition (see eq. [57])

lim
"!0

dg

dy







y¼y0þ"

� dg

dy







y¼y0�"

¼ 3�

4y0
g k; y0ð Þ: ðD4Þ

After a bit of algebra, we find that the global solution for g can be expressed as

g k; yð Þ ¼
’1 k; yð Þ; y � y0;

1þ âð Þ’1 k; yð Þ þ b̂’2 k; yð Þ; y � y0;

�
ðD5Þ

where â and b̂ are given by

â ¼� 3�’1 k; y0ð Þ’2 k; y0ð Þ
4y0W k; y0ð Þ ; b̂ ¼ 3�’2

1 k; y0ð Þ
4y0W k; y0ð Þ ; ðD6Þ

and the Wronskian W is evaluated using equation (B12).
Comparing the general solution for g(k; y) with the solution for the eigenfunction gn( y) given by equation (A12), we note that

lim
k!kn

â ¼ �1; lim
k!kn

b̂ ¼ Bn: ðD7Þ

We can now use the self-adjoint form of equation (55) to write (cf. eqs. [C2] and [C3])

gn
@

@y
y1=4 1� yð Þ @g

@y

� �
þ k

4y3=4
g� Tg

� �
¼ 0 ðD8Þ

and

g
d

dy
y1=4 1� yð Þ dgn

dy

� �
þ kn

4y3=4
gn � Tgn

� �
¼ 0: ðD9Þ

Subtracting the second equation from the first and integrating by parts from y ¼ 0 to 1 yields

k� knð Þ
Z 1

0

y�3=4g k; yð Þgn yð Þ dy ¼ 4y1=4 1� yð Þ g k; yð Þ dgn
dy

� gn yð Þ @g
@y

� �





1

0

: ðD10Þ
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Since g ! y and gn ! y as y ! 0, we conclude that the evaluation at the lower bound y ¼ 0 on the right-hand side yields zero, and
consequently in the limit k ! kn we obtain for the quadratic normalization integral In

In ¼
Z 1

0

y�3=4g2n yð Þ dy ¼ lim
k!kn

4y1=4 1� yð Þ g k; yð Þ dgn=dyð Þ � gn yð Þ @g=@yð Þ½ 	
k� kn







y¼1

: ðD11Þ

The numerator and denominator on the right-hand side of equation (D11) each vanish in the limit k ! kn, and therefore we can
employ L’Hôpital’s rule to show that (e.g., Becker 1997)

In ¼ lim
k!kn

4y1=4 1� yð Þ @g

@k
dgn
dy

� gn
@ 2g

@y@k

� �





y¼1

: ðD12Þ

Substituting the analytical forms for gn( y) and g(k; y) given by equations (A12) and (D5), respectively, we find that equation
(D12) can be rewritten as

In ¼ lim
y!1

4y1=4 1� yð ÞBn W k; yð Þ dâ
dk

þ Bn

@’2

@k
@’2

@y
� Bn’2 k; yð Þ @

2’2

@y@k

� �





k¼kn

; ðD13Þ

where we have also utilized equations (B1) and (D6). Based on the asymptotic behavior of ’2 given by equation (A11), we
conclude that the final two terms on the right-hand side of equation (D13) contribute nothing in the limit y ! 1, and therefore our
expression for In reduces to

In ¼ lim
y!1

4y1=4(1� y)BnW (k; y)
dâ

dk







k¼kn

: ðD14Þ

Since y ¼ 1 is a singular point of the differential equation (55), it is convenient to employ the relation (see eq. [B8])

W k; yð Þy1=4 1� yð Þ ¼ W k; y0ð Þy1=40 1� y0ð Þ; ðD15Þ

which allows us to transform the evaluation in equation (D14) from y ¼ 1 to y ¼ y0 to obtain the equivalent result

In ¼ 4y
1=4
0 1� y0ð ÞâW k; y0ð Þ ’1 kn; y0ð Þ

’2 kn; y0ð Þ
d lnâ

dk







k¼kn

; ðD16Þ

where we have also substituted for Bn using equation (A13). The derivative on the right-hand side can be evaluated using equation
(D6), which yields

d lnâ

dk
¼ @ ln ’1

@k
þ @ ln ’2

@k
� @ lnW

@k
; ðD17Þ

where the derivative of the Wronskian is given by (see eqs. [A4] and [B12])

@ lnW

@k
¼ � að Þ þ� 1� að Þ

17þ 16kð Þ1=2
ðD18Þ

and

�(z)� 1

�(z)

d�(z)

dz
: ðD19Þ

Combining equations (D6), (D16), (D17), and (D18), we find that the quadratic normalization integrals can be evaluated using the
closed-form expression

In ¼ K kn; y0ð Þ; ðD20Þ

where

K k; yð Þ � 3�y�3=4 1� yð Þ’2
1 k; yð Þ � að Þ þ� 1� að Þ

17þ 16kð Þ1=2
� @ ln ’1

@k
� @ ln ’2

@k

" #
: ðD21Þ

This formula provides an extremely efficient alternative to numerical integration for the computation of In.
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APPENDIX E

COLUMN-INTEGRATED GREEN’S FUNCTION

In x 4.5 we demonstrated that the column-integrated Green’s function �G
� ( y0; �0; �) can be written as (see eq. [81])

�G
� y0; �0; �ð Þ ¼ Ṅ0

�y
3=4
0

X1
n¼0

gn y0ð Þ
In

�

�0

� �3�kn

Xn; ðE1Þ

where the quadratic normalization integrals In are computed using equation (72) and

Xn �
Z 1

0

gn( y)(1� y)y�1 dy: ðE2Þ

As an alternative to numerical integration for the evaluation of the integral Xn, here we derive an analytical expression for this
quantity. First we use equation (63) to substitute for gn( y) in equation (E2) to obtain

Xn ¼
Z y0

0

’1 kn; yð Þ 1� yð Þ dy
y
þ ’1 kn; y0ð Þ

’2 kn; y0ð Þ

Z 1

y0

’2 kn; yð Þ 1� yð Þ dy
y
: ðE3Þ

Substituting for ’2 using equation (62) and rearranging terms, we can write

Xn ¼ L1
’1 kn; y0ð Þ
’2 kn; y0ð Þ

Z 1

0

’1 kn; yð Þ 1� yð Þ dy
y
� L2

’�
1 kn; y0ð Þ

’2 kn; y0ð Þ

Z y0

0

’1 kn; yð Þ 1� yð Þ dy
y
� L2

’1 kn; y0ð Þ
’2 kn; y0ð Þ

Z 1

y0

’�
1 kn; yð Þ 1� yð Þ dy

y
;

ðE4Þ

where

L1 �
�(b)

�(c)�(1� b)
; L2 �

�(1� a)

�(2� c)�(a)
: ðE5Þ

To make further progress, we need to evaluate the fundamental indefinite integrals

K1 �
Z

’1 kn; yð Þ 1� yð Þ dy
y
; K2 �

Z
’�
1 kn; yð Þ 1� yð Þ dy

y
: ðE6Þ

Fortunately, these integrals can be carried out analytically. By applying equation (15.2.1) from Abramowitz & Stegun (1970) twice,
we obtain for K1 the result

K1 ¼
(c� 1)

(a� 1)(b� 1)

(c� 2)

(a� 2)(b� 2)
F(a� 2; b� 2; c� 2; y)þ (1� y)(c� 1)

(a� 1)(b� 1)
F(a� 1; b� 1; c� 1; y)þ C1; ðE7Þ

where C1 is an integration constant. Likewise, we can apply equation (15.2.4) from Abramowitz & Stegun (1970) twice to find that

K2 ¼
1� yð Þy2�c

2� c
F 1� a; 1� b; 3� c; yð Þ þ y3�c

2� cð Þ 3� cð Þ F 1� a; 1� b; 4� c; yð Þ þ C2; ðE8Þ

where C2 is another integration constant. Combining relations and simplifying, after some algebra we obtain the final result

Xn ¼
�(1� a) 1� y0ð Þ2

�(a)’2 kn; y0ð Þ

�
y2�c
0 ’1 kn; y0ð Þ
�(3� c)

F 2� a; 2� b; 3� c; y0ð Þ þ y0

3� c
F 3� a; 3� b; 4� c; y0ð Þ

h i

þ ’�
1 kn; y0ð Þ

(a� 1)(b� 1)�(1� c)
F a; b; c� 1; y0ð Þ þ (c� 2)

(a� 2)(b� 2)
F a; b; c� 2; y0ð Þ

� ��

þ (1� c)

(a� 1)(b� 1)
1þ (c� 2)

(a� 2)(b� 2)

� �
: ðE9Þ

This formula allows the efficient computation of the integrals Xn appearing in equation (81) for the column-integrated Green’s
function.
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