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ABSTRACT

Context. Accretion-powered X-ray pulsars exhibit significant variability of the cyclotron resonance scattering feature (CRSF) centroid
energy on pulse-to-pulse timescales, and also on much longer timescales. Two types of spectral variability are observed. For sources
in group 1, the CRSF energy is negatively correlated with the variable source luminosity, and for sources in group 2, the opposite
behavior is observed. The physical basis for this bimodal behavior is currently not well understood.
Aims. We explore the hypothesis that the accretion dynamics in the group 1 sources is dominated by radiation pressure near the stellar
surface, and that Coulomb interactions decelerate the gas to rest in the group 2 sources.
Methods. We derive a new expression for the critical luminosity, Lcrit, such that radiation pressure decelerates the matter to rest in
sources with X-ray luminosity LX > Lcrit. The formula for Lcrit is based on a simple physical model for the structure of the accretion
column in luminous X-ray pulsars that takes into account radiative deceleration, the energy dependence of the cyclotron cross section,
the thermodynamics of the accreting gas, the dipole structure of the pulsar magnetosphere, and the diffusive escape of radiation
through the column walls. We show that for typical neutron star parameters, Lcrit = 1.5 × 1037 B16/15

12 erg s−1, where B12 is the surface
magnetic field strength in units of 1012 G.
Results. The formula for the critical luminosity is evaluated for five sources, using the maximum value of the CRSF centroid energy
to estimate the surface magnetic field strength B12. The results confirm that the group 1 sources are supercritical (LX > Lcrit) and the
group 2 sources are subcritical (LX < Lcrit), although the situation is less clear for those highly variable sources that cross over the line
LX = Lcrit. We also explain the variation of the CRSF energy with luminosity as a consequence of the variation of the characteristic
emission height. The sign of this dependence is opposite in the supercritical and subcritical cases, hence creating the observed bimodal
behavior.
Conclusions. We have developed a new model for the critical luminosity in accretion-powered X-ray pulsars that explains the bimodal
dependence of the CRSF centroid energy on the X-ray luminosity LX. Our model provides a physical basis for the observed variation
of the CRSF energy as a function of LX for both the group 1 (supercritical) and the group 2 (subcritical) sources as a result of the
variation of the emission height in the column.
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1. Introduction

X-ray binary pulsars (XRBPs) were first observed by Giacconi
et al. (1971) and Tananbaum et al. (1972), and now include
many of the brightest sources in the X-ray sky. In XRBPs, the
main sequence companion star transfers matter to the neutron
star via Roche lobe overflow, or via a strong stellar wind (Frank
et al. 2002). The gas forms an accretion disk around the neu-
tron star, and the material spirals inward until the pressure of the
star’s dipole magnetic field becomes comparable to the ram pres-
sure of the matter in the disk. This occurs at the Alfvén radius,
located several thousand kilometers out in the accretion disk.

The fully-ionized accreting plasma is entrained by the magnetic
field at the Alfvén radius, and from there the matter is guided
through the magnetosphere, forming accretion columns at one
or both of the magnetic poles of the star. As the star spins, the
inclination angle between the star’s magnetic axis and the axis
of the accretion disk changes, and therefore the Alfvén radius
varies with the spin period of the star.

The observed X-ray emission is powered by the conver-
sion of gravitational potential energy into kinetic energy, which
is then transferred to the radiation field via electron scatter-
ing, and ultimately escapes through the walls of the column.
The structure of the accretion column is maintained by the
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Fig. 1. Schematic illustration of the geometry of the accretion column and the variation of the characteristic emission height and emission beam
pattern with increasing luminosity LX: a) subcritical, LX < Lcoul < Lcrit, pencil beam; b) subcritical, LX <∼ Lcoul < Lcrit, pencil beam; c) subcritical,
Lcoul < LX <∼ Lcrit, intermediate beam pattern; d) supercritical, LX >∼ Lcrit, fan beam.

strong magnetic field, with a surface strength B∗ >∼ 1012 G,
which results in a magnetic pressure far exceeding that of ei-
ther the gas or the radiation field. The high incident speed of
the freely-falling plasma, ∼0.6 c, creates very high tempera-
tures, T ∼ 108 K. However, the observed X-ray pulsar spectra are
highly nonthermal, indicating that the accreting gas is unable to
equilibrate during the accretion timescale. In this situation, bulk
and thermal Comptonization play key roles in establishing the
shape of the observed spectra (Becker & Wolff 2007).

The X-ray spectra of many XRBPs contain cyclotron reso-
nant scattering features (CRSFs) appearing as absorption lines.
The features are caused by resonant scattering of photons off
plasma electrons whose energy is quantized according to their
Landau level (see e.g. Trümper et al. 1978; Isenberg et al. 1998;
Araya-Góchez & Harding 2000). The CRSFs, when detected,
provide a direct measurement of the magnetic field strength at
the characteristic altitude of the X-ray emission. The energy of
the fundamental line and the spacing between the harmonics are
approximately proportional to the B-field strength.

Many XRBPs display X-ray spectra that vary significantly
with luminosity on timescales much longer than the pulsation
period. In particular, variations in the energy of CRSFs as a func-
tion of luminosity on timescales of days to months have been
detected in V 0332+53 (Mowlavi et al. 2006; Tsygankov et al.
2010), 4U 0115+63 (Mihara et al. 2004; Tsygankov et al. 2007),
and Her X-1 (Staubert et al. 2007; Vasco et al. 2011). In addi-
tion to the longer-term variability, there is also mounting evi-
dence for pulse-to-pulse variability, in which the spectral hard-
ness, the centroid energy of the CRSF, and the luminosity vary
in a correlated way (Klochkov et al. 2011). This short-timescale
variability is likely related to the non-stationarity of the accre-
tion flow, perhaps indicating that the entrainment of matter from
the disk onto the magnetic field lines results in filaments and

blobs of accreting gas which are then channeled onto the star in
a non-uniform way.

The data from both long-term and short-term (pulse-to-
pulse) observations point to the existence of two types/modes
of spectral variability (see discussion by Klochkov et al. 2011).
For sources in group 1 (e.g., V 0332+53), the centroid energy of
the CRSF is negatively correlated with luminosity. For sources
in group 2 (e.g., Her X-1), the opposite behavior is observed. The
type of spectral variability is likely driven by the mode of accre-
tion, which in turn is determined by the luminosity (see discus-
sion in Staubert et al. 2007). Staubert et al. (2007) and Klochkov
et al. (2011) have proposed that for sources in group 1, the decel-
eration of the flow to rest at the stellar surface is accomplished by
the pressure of the radiation field, and in the group 2 sources the
deceleration occurs via Coulomb interactions. In this interpre-
tation, a given source falls in one group or the other depending
on the value of its X-ray luminosity, LX, relative to the critical
luminosity, Lcrit. The hypothesis is that the group 1 sources are
supercritical, with X-ray luminosity LX > Lcrit, and the group 2
sources are subcritical (LX < Lcrit).

The theory predicts that sources in their supercritical state
should display a negative correlation between the luminosity
and the cyclotron energy, while sources in the subcritical state
should display the reverse behavior. Geometrically, the variation
of the CRSF energy with luminosity is connected with varia-
tion of the characteristic emission height, which is the altitude in
the accretion column where the cyclotron absorption feature is
imprinted on the observed spectrum. The variation of the emis-
sion height as a function of luminosity in the subcritical and
supercritical cases is indicated schematically in Fig. 1.

The general picture described above provides a qualitative
basis for the interpretation of the observed correlated varia-
tion of the CRSF centroid energy with X-ray luminosity in
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some XRBPs. However, in order to obtain a quantitative under-
standing of these observations, one must develop a more detailed
physical model for the critical luminosity, and for the depen-
dence of the CRSF energy on the luminosity in the subcritical
and supercritical regimes. The first goal of this paper is to derive
a new expression for the critical luminosity, taking into account
the magnetospheric connection between the radius of the accre-
tion column and the Alfvén radius in the disk, and the energy
and angle dependence of the cyclotron scattering cross section.
The second goal is to examine the dependence of the CRSF cen-
troid energy on the luminosity in the subcritical and supercritical
sources.

The remainder of the paper is organized as follows. In
Sect. 2, we obtain a fundamental expression for the critical
luminosity that depends on the stellar mass, radius, and surface
magnetic field strength. In Sect. 3 we develop simple physical
models for the variation of the characteristic emission height
as a function of the luminosity for subcritical and supercritical
sources. In Sect. 4, we evaluate the critical luminosity based on
measurements of the CRSF centroid energy for several XRBPs.
We use our subcritical and supercritical models for the variation
of the emission height to predict the variation of the CRSF en-
ergy as a function of luminosity. The predicted spectral variabil-
ity is compared with the observational data for each source. We
discuss our results and draw conclusions in Sect. 5.

2. Critical luminosity

2.1. Eddington luminosity and radiative deceleration

First we recall the definition of the standard Eddington lumi-
nosity, LEdd, for spherically symmetric accretion onto a cen-
tral mass M∗. If the accreting gas is fully-ionized hydrogen,
we obtain

LEdd =
4πGM∗mpc

σT
, (1)

where σT is the Thomson cross section, mp is the proton mass,
c is the speed of light, and G is the gravitational constant. When
the X-ray luminosity LX = LEdd, the rate at which momen-
tum is transferred to the gas via Compton scattering balances
the gravitational force. Hence if LX > LEdd, the net force is in
the outward direction and the gas decelerates as it falls toward
the central mass.

We need to make two adjustments to Eq. (1) in order to com-
pute the effective Eddington limit, L∗Edd, appropriate for treating
X-ray pulsar accretion columns. The first adjustment is to re-
place the Thomson cross section σT with σ||, which represents
the mean scattering cross section for photons propagating paral-
lel to the magnetic field axis. The second adjustment is to take
the geometry of the accretion flow into account by reducing the
luminosity by the ratio of the column cross-sectional area di-
vided by the surface area of the star. Employing these corrections
yields for the effective Eddington limit

L∗Edd = LEdd
σT

σ||

πr2
0

4πR2∗
=

GM∗mpc

σ||

πr2
0

R2∗
, (2)

where R∗ is the stellar radius and r0 denotes the radius of the
accretion column, which we assume to have an approximately
cylindrical geometry.

Based on Eq. (2), Basko & Sunyaev (1976) concluded that
for X-ray luminosities LX >∼ 1036 erg s−1, the incident, freely-
falling gas is decelerated by a vertical flux of radiation that is

locally super-Eddington. The scattering of the incident radiation
removes kinetic energy from the electrons (and from the protons
via Coulomb coupling), thereby decelerating the gas. Although
the radiation flux seen by the gas inside the column is propa-
gating upward, the X-rays that ultimately carry away the kinetic
energy actually escape through the walls of the column, rather
than the top, unless the luminosity LX <∼ 1036 erg s−1.

The deceleration of the gas begins when the freely-falling
material encounters a radiation-dominated shock whose height
above the star increases with increasing luminosity, reaching an
altitude of several kilometers for LX ∼ 1037−38 erg s−1. As the gas
passes through the shock, the accretion velocity is reduced by a
factor of ∼7. Even though the radiation flux inside the column
is super-Eddington, the height of the radiation-dominated shock
is stable. This reflects the fact that the shock is a wave structure,
and is not composed of a fixed population of particles. Matter
moves through the shock and decelerates, but the shock height
remains fixed, unless the luminosity changes. Unlike a classical
gas-mediated shock, the radiation-dominated shock is not dis-
continuous, and instead has a thickness that is a few times larger
than the mean-free path for radiation scattering.

Below the radiation-dominated shock, the matter is further
decelerated in the hydrostatic “sinking regime”, in which the
remaining momentum is transferred to the radiation field and
radiated away through the column walls (Basko & Sunyaev
1976). The specific mechanism accomplishing the final decel-
eration to rest at the stellar surface in the sinking region de-
pends on the luminosity of the accretion flow (see Fig. 1). At
the highest luminosities, LX ∼ 1037−38 erg s−1, the radiation field
accomplishes the deceleration all the way down to the stellar
surface (Basko & Sunyaev 1976). At intermediate luminosities
LX ∼ 1036−37 erg s−1, the final phase of deceleration may occur
via Coulomb breaking in a plasma cloud just above the stellar
surface (Nelson et al. 1993). It is expected that at very low lumi-
nosities, LX <∼ 1034−35 erg s−1, there is no radiation-dominated
shock at all, and the material passes through a conventional gas-
mediated shock at altitude z = hg before striking the stellar
surface (Langer & Rappaport 1982).

The angular pattern of the emitted radiation also depends
on the luminosity (see Fig. 1). In high-luminosity sources
(LX ∼ 1037−38 erg s−1), the emitted radiation primarily escapes
through the column walls in the sinking region, forming a “fan
beam” (Davidson 1973). For low-luminosity sources (LX <∼
1035 erg s−1), the emission escapes from the top of the column,
forming a “pencil beam” (Burnard et al. 1991; Nelson et al.
1993). In the intermediate range, LX <∼ 1035−37 erg s−1, the emis-
sion pattern may be a hybrid combination of these two types
(Blum & Kraus 2000).

Focusing on the high-luminosity case for now, we can esti-
mate the luminosity required to decelerate the gas to rest at the
stellar surface by considering the physical processes occurring
in the sinking region below the radiation-dominated shock. The
accreting matter approaches the top of the shock with the inci-
dent free-fall velocity, which we approximate using the value at
the stellar surface,

vff =

(
2GM∗

R∗

)1/2

· (3)

Advection is dominant over diffusion in the shock, and therefore
very little radiation energy escapes through the walls of the ac-
cretion column in the vicinity of the shock (Burnard et al. 1991).
Hence the shock jump conditions are well approximated by the
standard Rankine-Hugoniot relations for a gas with adiabatic
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index γ = 4/3 (Basko & Sunyaev 1976). In this case, the matter
leaves the shock with the post-shock velocity

vps =
1
7
vff =

1
7

(
2GM∗

R∗

)1/2

, (4)

where we have assumed that the shock is strong, which is rea-
sonable in the luminous sources (Becker 1998). If the altitude of
the radiation-dominated shock above the stellar surface is H, and
the gas decelerates at a constant rate a from the post-shock ve-
locity vff/7 to rest at the stellar surface in the dynamical time tdyn,
then we can write the simple kinematical relations

H =
1
2

a t2
dyn, vps = a tdyn. (5)

Upon elimination of tdyn, we obtain for the required upward
acceleration

a =
v2ps

2H
=

GM∗
49R∗H

· (6)

Since the effective gravity is reduced by the pressure of the
radiation field, the net acceleration can also be related to the
luminosity LX via

a =

(
LX

L∗Edd

− 1

)
GM∗

R2∗
· (7)

Setting Eqs. (6) and (7) equal and solving for LX yields

LX = Lcrit ≡ L∗Edd

( R∗
49H

+ 1
)
. (8)

Substituting for L∗Edd using Eq. (2), we obtain for the critical
luminosity

Lcrit =
GM∗mpc

σ||

πr2
0

R2∗

( R∗
49H

+ 1
)
. (9)

Our goal is to express the parameters r0, σ||, and H appearing on
the right-hand side of Eq. (9) in terms of observable quantities.

2.2. Radiation-dominated shock height

The altitude, H, of the radiation-dominated shock can be esti-
mated by considering the relationship between the dynamical
timescale for deceleration, tdyn, and the photon escape timescale,
tdiff , which is the mean time it takes the photons to diffuse
through the walls of the accretion column. In order for the gas
to come to rest at the stellar surface, these two timescales must
be comparable in the sinking region below the shock, which is
a general property of accretion flows onto white dwarf stars and
neutron stars (e.g., Imamura et al. 1987). Combining Eqs. (4)
and (5), we obtain for the dynamical time

tdyn =
2H
vps
= 14H

(
R∗

2GM∗

)1/2

· (10)

The escape timescale for the photons to diffuse through the
column walls is estimated by writing

tesc =
r0

vdiff⊥
, vdiff

⊥ =
c
τ⊥
, τ⊥ = r0neσT, (11)

where ne is the electron number density, vdiff⊥ is the photon dif-
fusion velocity perpendicular to the column axis, and τ⊥ is the

perpendicular optical thickness. The Thomson cross section σT
is appropriate for photons propagating perpendicular to the col-
umn axis (Wang & Frank 1981). The electron number den-
sity ne appearing in Eq. (11) can be eliminated using the mass
conservation relation,

Ṁ = πr2
0nempv, (12)

where Ṁ is the accretion rate and v is the inflow velocity, defined
to be positive. Combining relations, we can express the escape
time through the walls as

tesc =
ṀσT

πmpvc
· (13)

The deceleration in the sinking region begins on the downstream
side of the shock, and therefore we set v = vps in Eq. (13) and
equate tdyn and tesc to obtain

H =
ṀσT

2πmpc
, (14)

which is essentially the same result obtained by Burnard et al.
(1991). Expressing the accretion rate in terms of the luminosity
using the relation

LX =
GM∗Ṁ

R∗
(15)

yields the equivalent expression

H = 1.14 × 105 cm

(
M∗

1.4 M�

)−1 ( R∗
10 km

) ( LX

1037 erg s−1

)
· (16)

This confirms that the shock is located a few kilometers
above the stellar surface in the luminous sources with LX ∼
1037−38 erg s−1 (Basko & Sunyaev 1976). It follows that
R∗/(49H) � 1 for sources close to or above the critical
luminosity, and therefore Eq. (9) reduces to

Lcrit =
GM∗mpc

σ||

πr2
0

R2∗
, (17)

in agreement with Burnard et al. (1991). Note that in this limit,
the critical luminosity simply reduces to the effective Eddington
value given by Eq. (2).

2.3. Connection between column radius and Alfvén radius

In this section, we wish to relate the critical luminosity Lcrit in
Eq. (17) to the magnetic field strength at the stellar surface, B∗,
by utilizing the connection between the radius of the accretion
column, r0, and the Alfvén radius in the disk, RA. The inclina-
tion angle between the axis of the accretion disk and the star’s
magnetic axis varies with a period equal to the pulsar’s spin pe-
riod, and this causes an associated variation of the Alfvén radius.
However, for our purposes here, an adequate approximation is
obtained by using Eq. (13) from Lamb et al. (1973), which yields

RA = 2.73 × 107 cm

(
Λ

0.1

) (
M∗

1.4 M�

)1/7 ( R∗
10 km

)10/7

×
( B∗
1012 G

)4/7 (
LX

1037 erg s−1

)−2/7

, (18)

where the constant Λ = 1 for spherical accretion and Λ < 1
for disk accretion. A variety of uncertainties are folded into Λ,
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such as the spin-averaging of RA and the possible role of plasma
shielding and other magnetospheric effects. Based on Eq. (2)
from Harding et al. (1984), Λ can be approximated in the disk
application using

Λ ≈ 0.22 α18/69, (19)

where α < 1 denotes the Shakura-Sunyaev parameter (Shakura
& Sunyaev 1973). Although it is difficult to estimate α with
any certainty, we generally expect to find α ∼ 0.01−0.1. We
therefore set Λ = 0.1 in our numerical applications.

The Alfvén radius in the disk is connected with the outer
surface of the accretion column through the dipole shape of the
pulsar magnetosphere. The equation for the shape of the criti-
cal field line as a function of the polar angle θ is given by the
standard dipole formula

R = RA sin2 θ. (20)

Setting the radius R equal to the stellar radius R∗ yields for the
critical angle at the outer edge of the accretion column

sin2 θc =
R∗
RA
· (21)

Using the small-angle relation θc ≈ sin θc, we obtain for the
column radius

r0 = R∗ θc = R∗
(

R∗
RA

)1/2

· (22)

By substituting for the Alfvén radius in Eq. (22) using Eq. (18),
we find that the expression for the column radius r0 can be
rewritten in cgs units as

r0 = 1.93 × 105 cm

(
Λ

0.1

)−1/2 (
M∗

1.4 M�

)−1/14 ( R∗
10 km

)11/14

×
( B∗
1012 G

)−2/7 (
LX

1037 erg s−1

)1/7

· (23)

Using Eq. (23) to substitute for r0 in Eq. (17), and setting LX =
Lcrit, we obtain for the critical luminosity the new expression

Lcrit = 7.79 × 1035 erg s−1

(
Λ

0.1

)−7/5 (
σ||
σT

)−7/5

×
(

M∗
1.4 M�

)6/5 ( R∗
10 km

)−3/5 ( B∗
1012 G

)−4/5

, (24)

where we have also introduced the Thomson cross section σT as
a convenient scaling for the parallel scattering cross section σ||.
The next step is to evaluate the cross section ratioσ||/σT in terms
of observable source parameters.

2.4. Electron scattering cross section for parallel propagation

In typical X-ray pulsars, most of the observed radiation is emit-
ted at energies below the cyclotron energy, Ecyc. Hence the cross-
section ratio σ||/σT can be roughly approximated using (e.g.,
Arons et al. 1987).

σ||
σT
=

(
Ē

Ecyc

)2

, (25)

where Ē is a measure of the mean energy of the photons
propagating parallel to the magnetic field, and the cyclotron
energy Ecyc is given by

Ecyc = 11.58 keV
( B
1012 G

)
· (26)

The mean photon energy Ē in Eq. (25) can be estimated observa-
tionally by integrating the spectrum for a given source. However,
in luminous X-ray pulsars, most of the observed radiation es-
capes through the walls of the accretion column, perpendicular
to the magnetic field, and therefore the observed spectrum may
not be representative of the distribution of photons propagat-
ing along the column axis. As an alternative, we can estimate Ē
based on the thermal structure of the accreting gas. Specifically,
we assume that

Ē = wkTeff, (27)

where Teff is the effective temperature of the radiation in the
post-shock region, k is Boltzmann’s constant, and the con-
stant w depends on the shape of the spectrum inside the col-
umn. We expect that w ∼ 1−3, with the lower value corre-
sponding to bremsstrahlung and the upper value to a Planck
spectrum. Detailed models suggest that the spectrum inside the
column is dominated by bremsstrahlung emission (Becker &
Wolff 2007), and therefore we will set w = 1 in the numerical
results presented later.

The effective temperature is related to the post-shock
radiation pressure, Pr, via

aT 4
eff = 3Pr. (28)

The value of Pr can be estimated using the momentum balance
relation

Pr = ρffv
2
ff =

Ṁvff
πr2

0

, (29)

where ρff and vff (Eq. (3)) denote the upstream mass density and
velocity, respectively, just above the shock. Eliminating Pr be-
tween Eqs. (28) and (29), and substituting for Ṁ and r0 using
Eqs. (15) and (23), we find that

Teff = 4.35 × 107 K

(
Λ

0.1

)1/4 (
M∗

1.4 M�

)−5/56 ( R∗
10 km

)−15/56

×
( B∗
1012 G

)1/7 (
LX

1037 erg s−1

)5/28

· (30)

Combining Eqs. (25)−(27), and (30), we obtain for the required
cross section ratio the result

σ||
σT
= 0.106

(
Λ

0.1

)1/2

w2

(
M∗

1.4 M�

)−5/28 ( R∗
10 km

)−15/28

×
( B∗
1012 G

)−12/7 (
LX

1037 erg s−1

)5/14

· (31)

Using this result to substitute for σ||/σT in Eq. (24) yields the
final expression for the critical luminosity as a function of the
surface magnetic field strength,

Lcrit = 1.49 × 1037 erg s−1

(
Λ

0.1

)−7/5

w−28/15

×
(

M∗
1.4 M�

)29/30 ( R∗
10 km

)1/10 ( B∗
1012 G

)16/15

· (32)
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For typical neutron star parameters, with M∗ = 1.4 M�,
R∗ = 10 km, Λ = 0.1, and w = 1, we obtain Lcrit =

1.49×1037 erg s−1B16/15
12 , where B12 is the surface magnetic field

strength in units of 1012 G. In Sect. 4 we plot the critical luminos-
ity and compare it with the variability data for several XRBPs.

3. Variation of emission height

The new expression for the critical luminosity given by Eq. (32)
allows us to separate accretion-powered X-ray pulsars into sub-
critical and supercritical categories. Our hypothesis is that in the
subcritical sources with variable luminosity LX, the cyclotron
energy Ecyc will exhibit a positive correlation with LX, and in
the supercritical sources the reverse behavior will be observed.
The observed CRSF is imprinted on the spectrum at the altitude
where most of the emitted radiation escapes from the accretion
column. In order to quantify the expected behaviors in the sub-
critical and supercritical regimes, we must therefore explore the
expected variation of the emission height as a function of lumi-
nosity for both types of sources. The geometry of the super- and
subcritical sources is depicted schematically in Fig. 1.

3.1. Supercritical sources

In the supercritical sources (luminosity LX >∼ Lcrit), radiation
pressure dominates the flow dynamics all the way to the stel-
lar surface. Inside the radiation-dominated shock, the infalling
matter begins to decelerate as it first encounters the “cushion”
of radiation hovering at the shock altitude (Davidson 1973). At
this altitude, there is a local balance between downward advec-
tion and upward diffusion of radiation, and therefore the photon
distribution is roughly static. Most of the kinetic energy of the
accretion flow is carried away by the scattered radiation, which
is likely to be beamed in the downward direction due to special-
relativistic aberration (e.g., Ferrigno et al. 2009). Below the
shock altitude, the photons are trapped by advection, although
they eventually manage to escape by diffusing through the walls
of the column. Hence the observed radiation does not escape
from the shock altitude H, but rather from a lower altitude.

Our goal here is to estimate the typical altitude, denoted
by hs, at which the photons diffuse through the column walls
to form the observed X-ray spectrum in the supercritical case.
We assume that the observed CRSF is imprinted at this altitude,
because at higher altitudes the photons have not had enough
time to diffuse through the column and escape through the walls.
Conversely, at lower altitudes, the increasing density of the gas
in the column inhibits the escape of radiation. We therefore ex-
pect that the CRSF energy will reflect the cyclotron energy at the
altitude z = hs where the final deceleration phase begins.

We can estimate the emission height hs in the supercritical
sources by ensuring that all of the kinetic energy is radiated
through the walls by the escaping photons in the altitude range
0 < z < hs (Basko & Sunyaev 1976). Working in the frame co-
moving with the mean vertical velocity of the radiation in the
accretion column, we note that the fraction of the radiation es-
caping through the walls in the comoving time interval dt′ is
equal to dt′/tesc, where tesc is the escape time given by Eq. (13).
The requirement that all of the radiation escapes by the time the
matter reaches the stellar surface is therefore expressed by the
integral condition

∫ hs

0

∣∣∣∣∣ dt′

dz′

∣∣∣∣∣ dz′

tesc (z′)
= 1. (33)

Using Eq. (13) to substitute for tesc yields∫ hs

0

πmpvc

ṀσT

dz′

veff
= 1, (34)

where the effective velocity for the photon transport is defined by

veff ≡
∣∣∣∣∣dz′

dt′

∣∣∣∣∣ · (35)

The flow is expected to be almost perfectly “trapped” in the re-
gion below z′ = hs, meaning that advection and diffusion are
nearly balanced, leaving very little net flux of radiation (Becker
1998). This implies that the effective velocity veff is much smaller
than the flow velocity v. We define the parameter ξ as the ratio
of these two velocities,

ξ ≡ veff
v
· (36)

We demonstrate in Appendix A that the value of ξ can be
estimated using

ξ =
1

M∞2
, (37)

whereM∞ denotes the incident (upstream) Mach number of the
flow with respect to the radiation sound speed. In the sinking re-
gion below the shock, the effective velocity approaches zero as
the gas settles onto the stellar surface. The relationship between
the upstream Mach numberM∞ and the X-ray luminosity LX is
plotted in Fig. 12 from Becker (1998). For the parameter range
of interest here, it is sufficient to adopt a constant value for ξ in
the range ξ ∼ 10−2−10−3. The low value for the effective ve-
locity tends to make the emission region more compact in the
supercritical sources.

Combining relations, we find that∫ hs

0

πmpc

ṀσTξ
dz′ = 1, (38)

and therefore the altitude of the emission region is given by

hs =
ṀσTξ

πmpc
=

LXR∗σTξ

πmpcGM∗
, (39)

where the final result follows from Eq. (15). We can also
express hs in cgs units using

hs = 2.28 × 103 cm
(
ξ

0.01

) (
M∗

1.4 M�

)−1

×
( R∗
10 km

) ( LX

1037 erg s−1

)
· (40)

Note that the emission height in the supercritical sources varies
in proportion to the luminosity LX (see Fig. 1).

Based on Eqs. (16) and (40), we conclude that

hs

H
= 2.0 ξ � 1, (41)

and therefore the characteristic height of emission in the super-
critical sources is located far below the altitude of the radiation-
dominated shock. Eq. (40) indicates that the height of the emis-
sion region hs scales in proportion to the luminosity LX in
the supercritical sources, which is consistent with the observed
behavior in the group 1 sources (Klochkov et al. 2011).
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3.2. Subcritical sources

In the subcritical sources (luminosity LX <∼ Lcrit), the matter
still passes through a radiation-dominated shock, which accom-
plishes the initial deceleration, but the pressure of the radiation
is insufficient to bring the matter to rest at the stellar surface
(Basko & Sunyaev 1976). In this case, the final stopping occurs
via direct Coulomb interactions close to the base of the accre-
tion column (Burnard et al. 1991). Our goal in this section is
to estimate the characteristic emission height for the subcritical
sources, denoted by hc, which is the altitude at which Coulomb
interactions begin to decelerate the plasma to rest. The emission
is expected to be concentrated in this region because this is es-
sentially the first opportunity that the radiation inside the column
has to diffuse through the walls. At higher altitudes, the radiation
is swept along by advection, and there is not enough time for the
photons to escape. At lower altitudes, the radiation is trapped in
the column due to the increasing density, and therefore the emis-
sion through the walls tapers off as z → 0. Hence we expect
that in the subcritical case, the CRSF energy is imprinted at the
altitude z = hc where the strong Coulomb deceleration begins.

The Thomson optical depth, τ∗, required to stop the flow
via Coulomb interactions can be estimated in the typical pulsar
magnetic field regime using Eq. (3.34) from Nelson et al. (1993)
to write

τ∗ = 51.4

(
M∗

1.4 M�

)2 ( R∗
10 km

)−2 1
ln(2nmax)

, (42)

where the maximum excited Landau level, nmax, is given by

nmax =
mev

2
ff

2Ecyc
· (43)

A summary of the derivation leading up to Eq. (42) is provided
in Appendix B. Adopting typical X-ray pulsar parameters, we
find that τ∗ ∼ 20, which is the value utilized in our numerical
examples.

We can use Eq. (42) to estimate the emission height in the
subcritical sources, hc, as follows. The Thomson depth τ as a
function of the altitude z measured from the stellar surface is
computed using

τ(z) =
∫ z

0

ρ(z′)σT

mp
dz′, (44)

where ρ = nemp is the mass density, given by (see Eq. (12))

ρ(z) =
Ṁ

πr2
0v(z)
· (45)

Assuming that the gas decelerates uniformly in the Coulomb
stopping region (starting at altitude hc) from the post-shock ve-
locity vps, we find that the required deceleration is given by
a = v2ps/(2 hc) (cf. Eq. (6)). The velocity profile v(z) associated
with the constant deceleration a is computed using the standard
kinematical relations

a = −dv
dt
= v

dv
dz
=

1
2

dv2

dz
, (46)

where the negative sign appears because we have defined v and a
to be positive. Setting vps = vff/7 (see Eq. (4)), we obtain for the
deceleration a = v2

ff
/(98 hc). Upon integration of Eq. (46), we

therefore find that the velocity profile in the Coulomb stopping
region is given by

v(z) =
vff
7

√
z
hc
, (47)

where vff is evaluated using Eq. (3).

Using Eq. (47) to substitute for v(z) in Eq. (45) and carrying
out the integration in Eq. (44), we obtain for the optical depth
profile

τ(z) =
14ṀσT

πr2
0mp

(
2GM∗

R∗

)−1/2 √
hcz. (48)

Finally, setting z = hc and τ = τ∗, we find that the Thomson
optical depth required for Coulomb stopping is given by

τ∗ =
14ṀσThc

πr2
0mp

(
2GM∗

R∗

)−1/2

, (49)

which can be rearranged to obtain for the subcritical emission
height

hc =
πr2

0mpτ∗
14ṀσT

(
2GM∗

R∗

)1/2

· (50)

Substituting for Ṁ and r0 using Eqs. (15) and (23), respectively,
yields the equivalent cgs expression

hc = 1.48 × 105 cm

(
Λ

0.1

)−1 (
τ∗
20

) ( M∗
1.4 M�

)19/14 ( R∗
10 km

)1/14

×
( B∗
1012 G

)−4/7 (
LX

1037 erg s−1

)−5/7

· (51)

This result indicates that the emission height in the subcritical
sources decreases with increasing luminosity, which is consis-
tent with the behavior observed in the group 2 sources (Staubert
et al. 2007). As indicated in Fig. 1, in the subcritical case, a de-
crease in the luminosity causes the beam pattern to transition
from a pure fan configuration to a hybrid pattern that includes
a pencil component. At very low luminosities, the shock essen-
tially sits on the stellar surface, and the emission occurs via the
pencil component only (Burnard et al. 1991; Nelson et al. 1993).

3.3. Transition from Coulomb stopping to gas shock

Equation (51) gives the height of the emission zone in the sub-
critical case, based on the assumption that the final deceleration
to rest at the stellar surface occurs via Coulomb interactions. We
can estimate the minimum luminosity (or accretion rate) such
that Coulomb interactions are capable of stopping the flow by
requiring that hc < H, where H is the altitude of the radiation-
dominated shock. If this condition is violated, then the incident
velocity of the gas entering the Coulomb deceleration region be-
comes essentially the full free-fall velocity, vff , rather than the
reduced post-shock velocity, vps = vff/7. The associated drop
in the density causes the Thomson depth τ to fall below the
value τ∗ ∼ 20 required for the gas to be effectively stopped via
Coulomb interactions. It is not completely clear what happens in
this case, but we expect that the final phase of deceleration will
occur via passage through a gas-mediated shock near the stellar
surface (Langer & Rappaport 1982).

By combining Eqs. (14), (15) and (50), we can show that the
condition hc < H implies that

LX >
21/4πmpr0

σT

(
τ∗c
7

)1/2
(
GM∗

R∗

)5/4

· (52)

Substituting for r0 using Eq. (23) and rearranging, we obtain

LX > Lcoul, (53)
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Fig. 2. Variability of the cyclotron line energy with luminosity for different sources. The blue dashed line represents the critical luminosity, plotted
by setting LX = Lcrit and Ecyc = E∗, where Lcrit is evaluated using Eq. (55). The red dashed line represents the Coulomb stopping luminosity, plotted
by setting LX = Lcoul and Ecyc = E∗, where Lcoul is evaluated using Eq. (59). Left: observations on a pulse-to-pulse timescale. Right: observations
on longer timescales.

Table 1. Source sample characteristics.

Source Instrument Long-term Pulse-pulse ΔE Distance
correlation correlation (keV) (kpc)

4U 0115+63 INTEGRAL/RXTE cont. dependent1 negative6 [3−60] 8.07

V0332+53 INTEGRAL/RXTE negative2 negative6 [3−100] 7.58

Her X-1 RXTE positive3 positive6 [5−60] 6.49

A0535+26 INTEGRAL/RXTE no4 positive6 [3−50] 2.010

GX 304-1 RXTE/Suzaku positive5 – [3−100] 2.411

References. (1) Müller et al. (2011); (2) Tsygankov et al. (2010); (3) Staubert et al. (2007); (4) Caballero et al. (2007); (5) Yamamoto et al. (2011);
(6) Klochkov et al. (2011); (7) Negueruela & Okazaki (2001); (8) Negueruela et al. (1999); (9) Reynolds et al. (1997); (10) Steele et al. (1998);
(11) Parkes et al. (1980).

Notes. Our analysis is based on a combination of published data (references given) and reprocessed observational data for a number of cyclotron
line sources (Col. 1) as observed by different X-ray observatories (Col. 2), listed here. The cyclotron line sources have been observed to show
different types of correlation, or no correlation, of their cyclotron line energies with changes in the X-ray luminosity.

where

Lcoul = 1.17 × 1037 erg s−1

(
Λ

0.1

)−7/12 (
τ∗
20

)7/12
(

M∗
1.4 M�

)11/8

×
( R∗
10 km

)−13/24 ( B∗
1012 G

)−1/3

· (54)

For luminosities LX <∼ Lcoul, we expect that the characteris-
tic emission height settles down onto the stellar surface. For
very low luminosities, LX <∼ 1034−35 erg s−1, the radiation-
dominated shock and the Coulomb atmosphere both dissipate,
and the matter strikes the stellar surface after passing through
a gas-mediated shock (Langer & Rappaport 1982), as indicated
in Fig. 1.

4. Applications

Our final result for the critical luminosity as a function of the
surface magnetic field strength B∗ is given by Eq. (32), which
can be rewritten as

Lcrit = 1.28 × 1037 erg s−1

(
Λ

0.1

)−7/5

w−28/15

×
(

M∗
1.4 M�

)29/30 ( R∗
10 km

)1/10 ( E∗
10 keV

)16/15

, (55)

where

E∗ = 11.58 keV
( B∗
1012 G

)
(56)

denotes the surface value of the CRSF energy. This relation is
indicated by the dashed blue line in Fig. 2. Sources to the right
of this line are radiating supercritically, and consequently radia-
tion pressure accomplishes the deceleration all the way down to
the stellar surface. For sources to the left of this line, the final
deceleration occurs via Coulomb interactions.

It is now interesting to compute the critical luminosity for
a number of sources and to compare it with the observed vari-
ability of Ecyc as a function of LX for subcritical and supercriti-
cal cases. We have selected for this study the sources for which
the behavior of the cyclotron line energy with luminosity has
been studied sufficiently well, including both the variations on
long timescales (days to months) and short timescales (“pulse-
to-pulse”). Our source sample is listed in Table 1, where we also
summarize the reported Ecyc−LX behavior (positive/negative
correlation or no dependence) for each source. The two pan-
els in Fig. 2 depict the variability of Ecyc with luminosity both
on “pulse-to-pulse” (left) and longer (right) timescales for all
of the sources considered here. The corresponding references
for the data are given in Table 1. The data for the longer-term
variability are based on studies of the phase-averaged emis-
sion conducted either during outbursts of the transient sources
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Fig. 3. Same as Fig. 2 except with the x-axis rescaled as LX/Lcrit and the y-axis rescaled as Ecyc/E∗. The values of E∗ and Lcrit used for each source
are listed in Table 2. The solid curves associated with each group of data represent the theoretical predictions for the variation of the CRSF en-
ergy Ecyc as a function of LX for each source, computed using Eq. (58), with the emission height h evaluated using Eq. (40) for the supercritical
sources and Eq. (51) for the subcritical sources.

Table 2. Theoretical parameters for each source, based on analysis of the pulse-to-pulse variability and the longer-term variability.

Source Long-term Long-term E∗ Long-term Lcrit Pulse-pulse Pulse-pulse E∗ Pulse-pulse Lcrit

ξ [keV] [1037 erg s−1] ξ [keV] [1037 erg s−1]

4U 0115+63 5.72 × 10−2 17.0 2.24 2.14 × 10−2 16.5 2.17
V 0332+53 7.86 × 10−3 29.7 4.06 1.43 × 10−3 27.0 3.67
Her X-1 – 43.5 6.11 – 43.5 6.11
A 0535+26 – 48.0 6.78 – 48.0 6.78
GX 304-1 – 58.0 8.30 – – –

Notes. The parameter ξ is relevant only for the two supercritical sources, 4U 0115+63 and V 0332+53 (see Sect. 3.1).

(Tsygankov et al. 2007, 2010), or following the long-term vari-
ation of the emission from the persistent sources (Staubert et al.
2007). For the pulse-to-pulse variability we refer to the results of
Klochkov et al. (2011) who have shown that for a set of pulsars
the cyclotron line energy varies with the amplitude of individual
pulses. This amplitude most probably reflects the instantaneous
mass accretion rate.

The luminosities for A 0535+26, 4 U0115+63 and Her X-1
were calculated by integrating the flux of each source over a
nearly identical energy range ΔE (see Table 1). For V 0332+53
(Tsygankov et al. 2010) and GX 304-1 (Yamamoto et al. 2011)
published values for LX and Ecyc were taken, where the lumi-
nosity has been calculated over a slightly larger energy range
[3−100] keV. The luminosities were computed using the source
distances listed in Table 1. It should be noted that uncertainties in
the distances will create additional uncertainties in our computed
luminosities, which have not been considered here. However,
the typical effective uncertainties of ∼10% in the calculated
luminosities do not strongly affect our results.

One can see that the sign of the correlation between the cy-
clotron line energy and the luminosity, when detected, is con-
sistent between the long-term and pulse-to-pulse studies. This
suggests that both are reflecting the same underlying physics. It
is clear that the variation of Ecyc with LX for sources on each
side of the critical line LX = Lcrit is qualitatively consistent
with the theoretical predictions, i.e., the correlation between Ecyc
and LX is negative for the supercritical sources, and positive for
the subcritical ones, reflecting the positive variation of the emis-
sion height h = hs (Eq. (40)) with increasing LX for the former
sources and the negative variation of the emission height h = hc

(Eq. (51)) for the latter sources. In the next section, we explore
the variation of Ecyc as a function of LX in more detail.

4.1. Variation of Ecyc with LX

The observed value of Ecyc is connected with the local field
strength B at the emission altitude h via Eq. (26), where B has
the dipole dependence

B(R)
B∗
=

(
R
R∗

)−3

, R = R∗ + h. (57)

The corresponding variation of Ecyc as a function of the emission
height h is therefore given by

Ecyc

E∗
=

(
R∗ + h

R∗

)−3

, (58)

where E∗ is the surface value for the cyclotron energy, computed
using Eq. (56). Note that we have neglected the variation of
the gravitational redshift factor, which is reasonable given the
level of approximation employed here (Staubert et al. 2007).
In applying Eq. (58) to the supercritical and subcritical cases,
we set h = hs (Eq. (40)) and h = hc (Eq. (51)), respectively.
Hence Eq. (58) can be used to develop theoretical predictions
for the variation of Ecyc as a function of LX for supercritical and
subcritical sources.

In Fig. 3 we replot the Fig. 2 data based on a rescaling of the
vertical and horizontal axes using the parameters E∗ and Lcrit,
respectively, which are related to each other via Eq. (55). The
value of Lcrit used for each source is listed in Table 2, along with

A123, page 9 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219065&pdf_id=3


A&A 544, A123 (2012)

the corresponding value for the surface cyclotron energy E∗ ob-
tained by comparing the theoretical variation of Ecyc with the ob-
served variation for each source. In computing Lcrit, we assume
for all sources the same canonical neutron star mass and radius
values M∗ = 1.4 M� and R∗ = 10 km, and we set Λ = 0.1 and
w = 1 based on the theoretical considerations discussed above.
The vertical dashed line marked LX = Lcrit separates the sources
into their sub- and supercritical luminosity states. It should be
noted that, as M∗ and R∗ are also input parameters for Lcrit, the
exact positioning of the source data on the x-axis is driven also
by the assumed canonical mass and radius values, which might
in fact differ between the individual sources.

Figure 3 also includes curves representing the expected the-
oretical variation of the CRSF energy Ecyc as a function of the
luminosity LX, computed using Eq. (58) with either h = hs
(Eq. (40)) for the supercritical sources or h = hc (Eq. (51))
for the subcritical ones. We again adopt the canonical values
M∗ = 1.4 M�, R∗ = 10 km, Λ = 0.1, and w = 1, and we set the
Coulomb stopping optical depth using τ∗ = 20. The values of E∗
and ξ are varied for each source so as to improve the agreement
with the data (see Table 2). The parameter ξ is only relevant for
the supercritical sources. The values of ξ reported in Table 2 for
V 0332+53 and 4U 0115+63 are in the range ξ ∼ 10−2−10−3,
as expected for marginally trapped accretion columns (Becker
1998). Based on the results depicted in Fig. 3, we conclude that
the agreement between the observed variation of Ecyc and that
predicted by the theoretical models developed here is reasonably
close for both the supercritical and subcritical sources.

A special case is 4U 0115+63. This source was previously
observed to show an anticorrelation (e.g. Tsygankov et al. 2007
and references therein). The right panels of our Figs. 2 and 3
(observations on longer timescales) include the results for Ecyc
and LX obtained by Tsygankov et al. (2007). However, recent
studies have shown that the presence of the anticorrelation de-
pends on the choice of the continuum model (Müller et al. 2011).

4.2. Comparison of LX with Lcoul

It is also interesting to compare the observed luminosities with
the minimum value, Lcoul, required for Coulomb stopping to de-
celerate the flow to rest at the stellar surface, given by Eq. (54).
By combining Eqs. (54) and (56), we find that Lcoul is related
to E∗ via

Lcoul = 1.23 × 1037 erg s−1

(
Λ

0.1

)−7/12 (
τ∗
20

)7/12
(

M∗
1.4 M�

)11/8

×
( R∗
10 km

)−13/24 ( E∗
10 keV

)−1/3

· (59)

This relation is indicated by the dashed red line in Fig. 2.
For sources to the left of this line, we expect that the ef-
fect of Coulomb interactions is reduced, and the final stop-
ping occurs via passage through a discontinuous, gas-mediated
shock (Langer & Rappaport 1982). Hence we anticipate that the
emission region approaches the stellar surface as LX is reduced
below Lcoul. This interpretation is consistent with the observa-
tional data plotted in Figs. 2 and 3, which indicate that Ecyc ap-
proaches a constant value in the limit LX/Lcoul � 1.

Following our hypothesis, sources in their supercritical state
(LX/Lcrit >∼ 1) should display a negative correlation between the
luminosity and the cyclotron energy while sources in the sub-
critical state (LX/Lcrit <∼ 1) should display the reverse behavior.
V 0332+53 and Her X-1 in their super- and subcritical luminos-
ity states nicely fit into that hypothesis on both long and very

short timescales. In particular, we note that the model parame-
ters listed in Table 2 for Her X-1 are the same for both the long-
term and pulse-to-pulse data. Hence the model developed here
for the variation of Ecyc as a function of LX provides a robust
connection with the data across the entire range of luminosity
variation for this source, which implies that the underlying phys-
ical mechanism of variation is the same for the long-term and
pulse-to-pulse variations.

The subcritical source A 0535+26 shows no significant trend
on long timescales (Fig. 2, right), perhaps due to the fact that the
luminosity is always close to or below the Coulomb stopping
limit, Lcoul, which suggests that we should expect little varia-
tion of Ecyc with LX. On pulse-to-pulse timescales, A 0535+26
shows some suggestion of a positive correlation (Fig. 2, left), as
expected for a subcritical source. The positive correlation sug-
gested by the short-timescale data may reflect the fact that the
luminosity is somewhat higher than Lcoul, which places it in the
subcritical regime according to our theory. However, we note
that our model for the variation of Ecyc with LX does not work
well for A 0535+26, unless we choose an unreasonably large
value for E∗ relative to the observational data. We believe this
reflects the inapplicability of our model in very low-luminosity
sources with LX <∼ Lcoul. For GX 304-1, only an indication of a
positive Ecyc−LX correlation, consistent with its subcritical state,
can be seen, as also reported by Yamamoto et al. (2011). No
pulse-to-pulse spectra are yet available for GX 304-1.

5. Conclusions

We have examined the hypothesis that observed bimodal vari-
ability of the CRSF energy Ecyc with luminosity LX in accretion-
powered X-ray pulsars reflects the dominant mode of accre-
tion, as proposed by Staubert et al. (2007) and Klochkov et al.
(2011). In particular, we have derived an expression for the crit-
ical luminosity Lcrit such that the dynamics in the supercritical
sources is determined by the radiation pressure, and the dy-
namics in the subcritical sources is determined by a combina-
tion of radiation pressure and either Coulomb interactions or
gas pressure. The detailed formula for Lcrit is given by Eq. (32),
but essentially we find that for typical neutron star parameters,
Lcrit ∼ 1.5×1037B16/15

12 erg s−1, where B12 is the surface magnetic
field strength in units of 1012 G.

The formula for the critical luminosity was evaluated for
5 sources, based on the maximum value for the CRSF centroid
energy for each source, E∗, which is treated as a variable param-
eter in our approach. The results obtained for E∗ are close to the
maximum observed values for the CRSF energy. The results de-
picted in Fig. 2 confirm that LX > Lcrit in the group 1 sources and
LX < Lcrit in the group 2 sources. The situation is less clear for
highly variable sources with luminosity LX that crosses over the
line LX = Lcrit, such as V 0332+53 and 4U 0115+63. These two
sources display a negative correlation between Ecyc and LX in the
supercritical regime, as expected, but the trend does not reverse
as predicted by our model when LX < Lcrit. This suggests that
these sources may actually always remain supercritical, despite
the fact that they cross the vertical line in Fig. 3. This behavior
can be accommodated within our model by slightly changing the
parameters Λ and w in Eq. (55). Or, alternatively, the behavior
of these sources could indicate that their mass and radius values
deviate from the canonical values assumed here.

We have developed simple physical models describing the
quantitative variation of Ecyc with LX in the supercritical and
subcritical sources, given by Eq. (58), with the emission height h
set using h = hs (Eq. (40)) for the supercritical sources (group 1),
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and h = hc (Eq. (51)) for the subcritical sources (group 2). In
Fig. 3 the formulas we derived for Ecyc as a function of LX
were compared with the data for the supercritical and subcrit-
ical sources. The agreement between the theoretical predictions
and the data suggests that our fundamental model for the phys-
ical processes operating in these systems is essentially correct.
It is important to note that our formulas for the emission heights
hc and hs are not equipped to handle the trans-critical case with
LX ∼ Lcrit, and therefore further work is required in order to treat
sources such as V 0332+53 and 4U 0115+63.

Although the observational picture is still not complete, es-
pecially for sources with highly variable luminosities, nonethe-
less we believe that the emerging bimodal paradigm for the vari-
ability of the CRSF energy with luminosity in XRBPs supports
the hypothesis that we are seeing direct evidence for two dif-
ferent accretion regimes, depending on whether the luminos-
ity is above or below the corresponding value of Lcrit for the
given surface magnetic field strength B∗. The agreement be-
tween the theoretical predictions and the observational data is
rather surprising given the level of approximation employed
here. We therefore believe that these ideas can provide a useful
framework for future detailed modeling of XRBPs with variable
luminosities, as well as motivation for further observations.
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Appendix A: Effective velocity

The characteristic emission height in the supercritical sources
treated in Sect. 3.1 is estimated by comparing the vertical trans-
port time for the radiation with the mean escape time for the
photons to diffuse out through the walls of the accretion column.
This requires a determination of the “effective velocity”, veff ,
which is defined as the net photon transport velocity in the ver-
tical direction, taking into account the competing effects of ad-
vection and diffusion. The former process tends to drag photons
downward toward the stellar surface, and the latter process tends
to transport photons in the opposite direction, upward through
the accretion column. The relationship between the effective ve-
locity veff and the flow velocity v is expressed by the dimension-
less parameter ξ, defined by

ξ ≡ veff
v
· (A.1)

In “trapped” regions of the flow, vertical advection and diffu-
sion are nearly balanced, and consequently veff � v and ξ � 1
(Becker 1998). Trapping tends to occur in the lower, hydrostatic
region of the accretion column in the supercritical sources. In
this situation, the photons tend to “hover” in a small altitude
range until they escape through the walls of the accretion col-
umn. Hence this effect reduces the size of the emission region in
the supercritical sources treated in Sect. 3.1.

The gas enters the top of the accretion column moving su-
personically, but it must come to rest at the stellar surface, and
therefore the flow passes through a sonic point somewhere in the
column. The sonic point is located in the middle of the radiation-
dominated shock, where the flow begins to decelerate from the

incident free-fall velocity vff (Eq. (3)). Hence the sonic point rep-
resents the top of the hydrostatic sinking region, where the radi-
ation tends to escape, and we will therefore estimate the value
of ξ using conditions there.

In order to determine the flow velocity at the sonic point, it
is useful to consider the conservation of mass and momentum in
the hydrostatic region of the column. We have

J ≡ ρ v = const., I ≡ Pr + ρ v
2 = const., (A.2)

where J and I denote the fluxes of mass and momentum, respec-
tively. These two fluxes are conserved in the roughly cylindrical,
hydrostatic portion of the accretion column.

We can use Eqs. (A.2) to obtain a relationship between the
flow velocity v and the radiation Mach number,M, defined by

M ≡ v
a
, (A.3)

where a denotes the radiation sound speed, given by

a =

√
γPr

ρ
, γ =

4
3
· (A.4)

The result obtained is

I
J
= v

(
1 +

1
γM2

)
=

7
4
vc, (A.5)

where vc denotes the flow velocity at the radiation sonic point,
whereM = 1.

The value of ξ can be estimated by examining the vertical
propagating of the photons in a radiation-dominated accretion
column described by the exact dynamical solution obtained by
Basko & Sunyaev (1976) and Becker (1998). This solution as-
sumes a cylindrical geometry in the hydrostatic lower region
of the accretion column. The total radiation energy flux in the
vertical direction is given by

Er = 4Prv +
c

neσ||
dPr

dz
, (A.6)

where Pr is the radiation pressure, and the first and second
terms on the right-hand side represent advection and diffusion,
respectively. We define veff by writing

4Prveff ≡ Er, (A.7)

so that veff represents the “effective” bulk velocity that would
yield the correct energy flux.

By combining Eqs. (A.6) and (A.7), we obtain

veff = v +
c

4 neσ||Pr

dPr

dz
, (A.8)

or, equivalently,

ξ =
veff
v
= 1 +

cmp

4σ||JPr

dPr

dz
, (A.9)

where we have eliminated the electron number density using the
relation J = nempv. The pressure Pr can be expressed in terms of
the flow velocity v by using Eqs. (A.2) to write

Pr(z) = I − J v(z). (A.10)
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Using this relation to substitute for the pressure Pr in Eq. (A.9)
yields

ξ = 1 − cmp

4σ||(I − Jv)
dv
dz
· (A.11)

The exact solution for the flow velocity profile v(z) in a cylin-
drical accretion column is given by (Basko & Sunyaev 1976;
Becker 1998)

v(z) = vc

(
14

7 + 2εc

) ⎡⎢⎢⎢⎢⎢⎣1 −
(

14
7 − 2εc

)−z/zst
⎤⎥⎥⎥⎥⎥⎦ , (A.12)

where

εc =
3 m2

pc2

8r2
0 J2σ⊥σ||

(A.13)

denotes the value of the dimensionless total energy flux (Er +
ρv3/2)/(Jv2c) at the sonic point, and

zst = r0

(
8εcσ⊥
3σ||

)1/2 (
2

7 + 2εc

)
ln

(
14

7 − 2εc

)
(A.14)

is the altitude of the sonic point above the stellar surface.
Combining Eqs. (A.11)−(A.14), we obtain after some

algebra

ξ = 1 −
(
1 − 4v

7vc

)−1 [
1 −

(
7 + 2εc

14

)
v

vc

]
· (A.15)

In particular, at the sonic point (z = zst), we have v = vc, and
therefore our result for ξ reduces to

ξ

∣∣∣∣∣
z=zst

=
2εc − 1

6
· (A.16)

The dimensionless energy flux is related to the incident Mach
number of the flow,M∞, via (Becker 1998)

εc =
1
2
+

3

M2∞
· (A.17)

Combining Eqs. (A.16) and (A.17) yields for the value of ξ at
the radiation sonic point

ξ

∣∣∣∣∣
z=zst

=
1

M∞2
· (A.18)

We use this relation in Sect. 3.1, where we estimate the height of
the emission region in the supercritical sources.

Appendix B: Coulomb stopping depth

In the subcritical sources treated in Sect. 3.2, radiation pressure
is insufficient to decelerate the flow to rest at the stellar surface.
In this regime, the final deceleration likely occurs via Coulomb
interactions between the infalling plasma and the mound of
dense gas that has built up just above the stellar surface. We can
estimate the vertical extent of this region, and therefore obtain
an approximation of the characteristic emission altitude in the
subcritical sources, by computing the Thomson optical depth,
τ, measured from the stellar surface, and setting it equal to the
value required to stop the flow, denoted by τ∗. Nelson et al.
(1993) carried out a detailed calculation of τ∗, and the final re-
sult is presented in their equation Eq. (3.34). In this section we
summarize the derivation.

In a magnetized pulsar accretion column, the Coulomb stop-
ping of the gas occurs via coupling between infalling protons
and stationary electrons in the mound. The corresponding rate
of change of the proton kinetic energy,

Ep =
1
2

mpv
2, (B.1)

is given by Eq. (3.31) from Nelson et al. (1993), which states
that

dEp

dz
=

4πnee4

mev2
lnΛc, (B.2)

where lnΛc is the Coulomb logarithm and v is the velocity of
the protons. Note that the right-hand side of Eq. (B.2) is posi-
tive in our sign convention since the value of Ep decreases with
decreasing altitude.

Using Eq. (B.1) to substitute for v yields the equivalent form

dE2
p

dz
=

mp

me
4πnee

4 lnΛc. (B.3)

We can transform from the altitude dz to the Thomson depth dτ
using

dτ = neσTdz, (B.4)

which yields

dE2
p

dτ
=

mp

me

4πe4

σT
lnΛc. (B.5)

Treating the Coulomb logarithm as a constant and integrating
with respect to τ, we obtain the solution

Ep(τ) = E0

(
1 − τ
τ∗

)1/2

, (B.6)

where the stopping depth, τ∗, is defined by

τ∗ =
me

mp

σTE2
0

4πe4 lnΛc
, (B.7)

and the incident proton kinetic energy, E0, is equal to the free-fall
value,

E0 =
1
2

mpv
2
ff . (B.8)

Substituting for the Thomson cross section, σT, in Eq. (B.7)
using

σT =
8πe4

3c4m2
e
, (B.9)

yields the equivalent result

τ∗ =
1

6 lnΛc

mp

me

v4
ff

c4
· (B.10)

In magnetized pulsar accretion columns, with discrete Landau
levels, the Coulomb logarithm is given by Eq. (3.32) from
Nelson et al. (1993), which states that

lnΛc = ln (2nmax) , (B.11)
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where the maximum excited Landau level, nmax, is given by

nmax =
mev

2
ff

2Ecyc
· (B.12)

Combining Eqs. (B.10) and (B.11) and substituting for vff using
Eq. (3) gives the final result,

τ∗ = 51.4

(
M∗

1.4 M�

)2 ( R∗
10 km

)−2 1
ln (2nmax)

, (B.13)

in agreement with Eq. (3.34) from Nelson et al. (1993). For typ-
ical X-ray pulsar parameters, we obtain τ∗ ∼ 20, and this is the
value utilized in computing the characteristic emission height in
the subcritical sources in Sect. 3.2.
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