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ABSTRACT

Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often
characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We
develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried
out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the
emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The
model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag
behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission
components, from submillimeter to γ -rays. We discuss applications to BL Lacertae objects and to flat-spectrum
radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We
also find that FSRQs should have steeper γ -ray PSD power-law indices than BL Lac objects at Fourier frequencies
�10−4 Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.
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1. INTRODUCTION

Blazars, active galactic nuclei (AGNs) with jets moving
at relativistic speeds aligned with our line of sight, are the
most plentiful of the identified point sources observed by the
Fermi Large Area Telescope (LAT; Abdo et al. 2010b; Nolan
et al. 2012). Their spectral energy distributions (SEDs) are
dominated by two components. At lower frequencies there is
a component produced via synchrotron emission, peaking in the
radio through X-rays. There is also a high-energy component
in γ -rays, most likely due to Compton-scattered emission. The
seed photons for Compton scattering could be the synchrotron
photons themselves (synchrotron self-Compton or SSC; Bloom
& Marscher 1996), or they could be produced outside the jet
(external Compton or EC) by the accretion disk (Dermer &
Schlickeiser 1993, 2002), the broad-line region (Sikora et al.
1994), or a dust torus (Kataoka et al. 1999; Błażejowski
et al. 2000). The Doppler boosting due to the combination of
relativistic speed and a small jet inclination angle amplifies the
observed flux, shifting the emission to higher frequencies, and
decreasing the variability timescale.

The LAT monitors the entire sky in high-energy γ -rays
every 3 hr, providing well-sampled light curves of blazars
on long timescales. For some sources, γ -ray data have been
supplemented by high cadence observations in the radio through
very high energy (VHE) γ -rays creating unprecedented light
curves with few gaps in wavelength or time (e.g., Abdo et al.
2011b, 2011c). Blazar variability is often characterized by power
spectral densities (PSDs; e.g., Abdo et al. 2010c; Chatterjee
et al. 2012; Hayashida et al. 2012; Nakagawa & Mori 2013;
Sobolewska et al. 2014), which are essentially representations
of the Fourier transform without phase information. Although
the LAT can provide long baseline, high cadence light curves,
it has difficulty probing short timescales for all but the brightest
flares. However, shorter-timescale variability may be observed
with optical, X-ray, or VHE instruments (e.g., Zhang et al. 1999,

2002; Kataoka et al. 2001; Cui 2004; Aharonian et al. 2007; Rani
et al. 2010). Less often, Fourier frequency-dependent time lags
between two energy channels are computed from light curves
(e.g., Zhang 2002). The PSDs of light curves at essentially all
wavelengths resemble power laws in frequency, S(f ) ∝ f −b,
with typically b ∼ 1–3, usually steeper than PSDs found from
Seyfert galaxies (Kataoka et al. 2001). Despite the popularity of
PSDs for characterizing variability, their theoretical motivation
has not been thoroughly explored (although see Mastichiadis
et al. 2013).

In this paper, our goal is to bridge the gap between theory
and observations by exploiting a powerful new mathematical
approach for the modeling and interpretation of observed PSDs
and time lags. Theoretically, the variability of blazars is often
described by a continuity equation (e.g., Chiaberge & Ghisellini
1999; Li & Kusunose 2000; Böttcher & Chiang 2002; Chen
et al. 2011, 2012). This equation describes the evolution of
electrons in a compact region of the jet, which is homogeneous
by assumption. The electrons are injected as a function of
time and energy and the electron distribution evolves due to
energy loss and escape. The expected electromagnetic emission
observers might detect can be compared with observations (e.g.,
Böttcher & Reimer 2004; Joshi & Böttcher 2007). This can
allow one to explore individual flares; however, in this paper,
we take a different approach, by studying the electron continuity
equation in the Fourier domain. This allows the exploration
of individual flares, as well as the study of aggregated long-
timescale variability of sources using Fourier transform-related
quantities such as PSDs and phase and time lags. We focus
here on long-timescale variability, including multiple epochs
of flaring and quiescence. A similar study applying the same
Fourier transform concept to the modeling of time lags in
accreting Galactic black hole candidates has been recently
carried out by Kroon & Becker (2014).

We begin in Section 2, by defining the Fourier transform and
its inverse, and various other functions used throughout the rest
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of the paper. In Section 3, we explore analytic solutions to the
continuity equation in the Fourier domain, and present solutions
in terms of PSDs. In Section 4, we explore the solutions in
terms of time lags between different electron Lorentz factor
“channels” as a function of Fourier frequency. We explore
the expected synchrotron, SSC, and EC PSDs and Fourier
frequency-dependent time lags in Section 5, including light
travel time effects due to the emitting region’s finite size. We
discuss applications to some PSDs and time lags in the literature
in Section 6, and conclude with a discussion of our simplifying
assumptions and observational prospects in Section 7. Several
of the detailed derivations are relegated to the appendices.

2. DEFINITIONS

Several definitions of the Fourier transform and associated
quantities are used throughout the literature. Here we make the
definitions used in this paper explicit. For a real function x(t),
we define the Fourier transform by

x̃(f ) =
∫ ∞

−∞
dt x(t) e2πif t =

∫ ∞

−∞
dt x(t) eiωt , (1)

where i2 = −1. We will indicate the Fourier transform by a
tilde, the Fourier frequency by f, and the angular frequency by
ω = 2πf . We define the inverse Fourier transform by

x(t) =
∫ ∞

−∞
df x̃(f ) e−2πif t = 1

2π

∫ ∞

−∞
dω x̃(ω) e−iωt . (2)

We define the PSD

S(f ) = |x̃(f )|2 = x̃(f )x̃∗(f ), (3)

where the asterisk indicates the complex conjugate. We will
make use of the related representation of the Dirac δ-function

δ(t − t0) =
∫ ∞

−∞
df e2πif (t−t0). (4)

We will use two versions of the Heaviside function, a “step”
function defined by

H (x) =
{

1 x > 0
0 otherwise , (5)

and the two-sided Heaviside “top-hat” function,

H (x; a, b) =
{

1 a < x < b
0 otherwise . (6)

In Section 3.5 we will use the lower incomplete Gamma function
given by

γg(a, x) =
∫ x

0
dy ya−1e−y. (7)

3. CONTINUITY EQUATION IN FOURIER SPACE

3.1. General Solution

The evolution of electrons in a nonthermal plasma “blob” can
be described by a continuity equation given by (e.g., Chiaberge
& Ghisellini 1999; Li & Kusunose 2000; Böttcher & Chiang
2002; Chen et al. 2011, 2012)

∂Ne

∂t
+

∂

∂γ
[γ̇ (γ, t)Ne(γ ; t)] +

Ne(γ ; t)

tesc(γ, t)
= Q(γ, t), (8)

where Ne(γ ; t) dγ gives the number of electrons with Lorentz
factor between γ and γ + dγ at time t. Here γ̇ (γ, t) is the
rate at which electrons lose or gain energy, tesc(γ, t) is the
escape timescale, and Q(γ, t) is the rate at which electrons
are injected in the jet. In the simple model presented here, we
will assume that the size of the plasma blob does not change
with time, so that adiabatic losses can be neglected. We will also
assume that the electron distribution in the blob is homogeneous
and isotropic, and that variations occur throughout the blob
simultaneously. This is a common and useful assumption,
although it is somewhat unphysical, as in order for the blob
to be causally connected, variations cannot propagate through
the blob faster than the speed of light c.

Assuming that γ̇ and tesc are independent of t, we can take
the Fourier transform of both sides of the continuity equation
leading to

− 2πif Ñe(γ, f ) +
∂

∂γ
[γ̇ (γ )Ñe(γ, f )]

+
Ñe(γ, f )

tesc(γ )
= Q̃(γ, f ), (9)

where Q̃(γ, f ) is the Fourier transformed source term. This is a
linear ordinary first-order differential equation with a relatively
simple solution. It is shown in Appendix A that if γ̇ � 0

Ñe(γ, f ) = 1

|γ̇ (γ )|
∫ ∞

γ

dγ ′ Q̃(γ ′, f )

× exp

[
−

∫ γ ′

γ

dγ ′′

|γ̇ (γ ′′)|
(

1

tesc(γ ′′)
− iω

)]
. (10)

If tesc is independent of γ and cooling is from synchro-Compton
processes, so that γ̇ = −νγ 2, then one can perform the integral
in the exponent, and

γ 2Ñe(γ, f ) = 1

ν
exp

[−1

νγ

(
1

tesc
− iω

)] ∫ ∞

γ

dγ ′ Q̃(γ ′, f )

× exp

[
1

νγ ′

(
1

tesc
− iω

)]
. (11)

3.2. Green’s Function Solution

Consider an instantaneous injection of monoenergetic elec-
trons with Lorentz factor γ0 at t = 0. Then Q̃(γ, f ) =
Q0δ(γ − γ0) in Equation (11) and one gets

γ 2Ñe(γ, f ) = Q0

ν
exp

[−1

ν

(
1

γ
− 1

γ0

)(
1

tesc
− iω

)]
× H (γ0 − γ ). (12)

The PSD is

S(γ, f ) = |γ 2Ñe(γ, f )|2 =
[
Q0

ν

]2

exp

[ −2

νtesc

(
1

γ
− 1

γ0

)]
× H (γ0 − γ ). (13)

The result is white noise for all electron Lorentz factors (γ ) and
Fourier frequencies (f).
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3.3. Colored Noise

Since the PSDs of blazars resemble colored noise, and
electrons are generally thought to be injected as power laws
in γ , one might expect that

Q̃(γ, f ) = Q0(f/f0)−a/2γ −qH (γ ; γ1, γ2)H (f ; f1, f2),

(14)

where f0 is some constant frequency and a � 0. That is, in the jet,
shocks will occur randomly which accelerate and inject particles
as a power-law distribution in γ between γ1 and γ2 with index
q. We will deal only with frequencies in the range f1 � f � f2.
These limits are needed for the PSD to be normalized to a
finite value. Frequencies greater than the inverse of the blob’s
light crossing timescale are particularly unphysical, although we
allow this for two reasons. First, it allows us to compare with
other theoretical studies that allow variations faster than the light
crossing timescale (e.g., Chiaberge & Ghisellini 1999; Zacharias
& Schlickeiser 2013). Second, our blob is already unphysical,
since we allow variations throughout the blob simultaneously
in the blob’s comoving frame. The normalization constant is
related to the time-averaged power injected in electrons 〈Linj〉
over a time interval Δt by

Q0 = 2πΔt〈Linj〉
mec2G

√
I 2
r + I 2

i − 2IrI0 + I 2
0

. (15)

A derivation of this equation and definitions of the quantities G,
Ir, Ii, and I0 can be found in Appendix B. With Q̃(γ, f ), given
by Equation (14), Equation (11) can be rewritten as

γ 2Ñe(γ, f ) = Q0(f/f0)−a/2 exp

[−1

νγ

(
1

tesc
− iω

)]
νq−2

×
(

1

tesc
− iω

)1−q ∫ umax

umin

du uq−2 eu, (16)

where

umin = 1

νγ2

(
1

tesc
− iω

)
(17)

and

umax = 1

ν max(γ, γ1)

(
1

tesc
− iω

)
. (18)

3.4. Electron Injection Index q = 2

It is instructive to look at the case where q = 2. In this case,
the remaining integral in Equation (16) can easily be performed
analytically. Then

γ 2Ñe(γ, f ) = Q0(f/f0)−a/2

1/tesc − iω
exp

[−1

νγ

(
1

tesc
− iω

)]
× [eumax − eumin ], (19)

and the PSD is

S(γ, f ) = |γ 2Ñe(γ, f )|2 = exp

[ −2

νγ tesc

]
Q2

0(f/f0)−a

×
(

1

t2
esc

+ ω2

)−1
{

exp

[
2

νγ2tesc

]
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Figure 1. Electron PSD from Equation (20) resulting from an instantaneous
flash (a = 0) of electrons injected with a power-law energy index q = 2. Here
we set tesc = 105 s, ν = 3.1 × 10−8 s−1, 〈Linj〉 = 1042 erg s−1, Δt = 1 yr,
γ1 = 102, γ2 = 105. Dashed lines indicate f = t−1

cool for each curve, and the
dotted line indicates f = (2πtesc)−1.

(A color version of this figure is available in the online journal.)

+ exp

[
2

ν max(γ, γ1)tesc

]

− 2 exp

[
1

νtesc

(
1

max(γ, γ1)
+

1

γ2

)]

× cos

[
ω

ν

(
1

max(γ, γ1)
− 1

γ2

)]}
. (20)

We identify asymptotes for the PSD for q = 2, Equation (20).
For these asymptotes we assume γ 
 γ2.

1. If 1/(νtesc) 
 γ and 2πf/ν 
 γ , then

S(γ, f ) ≈ Q2
0(f/f0)−a

ν2γ 2
. (21)

2. If 1/(νtesc) 
 γ 
 2πf/ν, then

S(γ, f ) ≈ Q2
0(f/f0)−a−2

f 2
0 π2

sin2

(
πf

νγ

)
. (22)

3. If γ 
 1/(νtesc), then

S(γ, f ) ≈ Q2
0(f/f0)−a

1/t2
esc + (2πf )2

exp

[−2

tesc

(
1

νγ
− tcool

)]

×
{

1 − exp

[
− tcool

tesc

]
cos[2πf tcool]

}
, (23)

where we define t−1
cool = ν max(γ, γ1).

The electron PSD resulting from Equation (20) is plotted in
Figure 1 for parameters described in the caption, which are
fairly standard ones for flat-spectrum radio quasars (FSRQs).
We use a = 0 here, which represents an instantaneous injection
of power-law particles at t = 0, to more easily display the
observable features, a number of which are present. For the
γ = 78, 170, and 103 curves, where γ 
 (νtesc)−1), a break in
the power law from

S(γ, f ) ∝ f −a
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to

S(γ, f ) ∝ f −(a+2)

is apparent, and the break frequency is at

f ≈ (2πtesc)−1.

This is in agreement with asymptote 3 above. In general, by
examining asymptote 3, it is clear that for low γ a break in
the PSD will be found at a frequency of f = (2πtesc)−1. Since
the PSD measures periodic variability, this indicates that for
low γ , periodic variability on timescales less than the escape
timescale is less preferred. This is because electrons will always
be escaping at a single timescale, which does not vary with
time. One can also see in the γ = 170 curve in Figure 1 at high
f structure related to the cosine seen in asymptote 3, with local
minima at integer multiples of tcool.

In the γ = 103 and γ = 104 curves, at high γ (γ � (νtesc)−1)
the PSD will transition from

S(γ, f ) ∝ f −a

to

S(γ, f ) ∝ f −(a+2),

but in this case the transition is at

f = t−1
cool,

in agreement with asymptotes 1 and 2. Thus, variability on
timescales less than the cooling timescales will be less periodic,
since cooling on those smaller timescales will always be present.
It is also clear that at high f minima from the sin2 term in
asymptote 2 occur at integer multiples of t−1

cool. Since at high
values of γ , where the cooling is strongest, cooling on timescales
tcool will be immediate, and so periodic variability on timescales
that are integer multiples of tcool will also be strongly avoided.

3.5. Electron Injection Index q = 2

In this case, there is no simple analytic solution to
Equation (16), although it can be written with the incomplete
Gamma function as

γ 2Ñe(γ, f ) = Q0(f/f0)−a/2 exp

[−1

νγ

(
1

tesc
− iω

)]
νq−2

×
(

iω − 1

tesc

)1−q

[γg(q − 1,−umax)

− γg(q − 1,−umin)]. (24)

We compute the function numerically, and results can be seen
in Figure 2 for q = 2.5. This confirms the features seen in the
q = 2 case are also seen for other values of q, although the
minima at high γ are not as pronounced.

4. TIME LAGS

The phase lag between two electron Lorentz factor
“channels,” γa and γb, as a function of Fourier frequency (f)
can be calculated from

Δφ(γa, γb, f ) = arctan

{
YI (γa, γb, f )

YR(γa, γb, f )

}
, (25)
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Figure 2. Same as Figure 1, except that we set the injection power-law index
q = 2.5.

(A color version of this figure is available in the online journal.)

where

[γ 2
a Ñe(γa, f )][γ 2

b Ñe(γb, f )]∗ = YR(γa, γb, f ) + iYI (γa, γb, f ).

(26)

This implies that

YR(γa, γb, f ) = Re
[
γ 2

a Ñe(γa, f )
]
Re

[
γ 2

b Ñe(γb, f )
]

+ Im
[
γ 2

a Ñe(γa, f )
]
Im

[
γ 2

b Ñe(γb, f )
]

(27)

and

YI (γa, γb, f ) = Re
[
γ 2

b Ñe(γb, f )
]

Im
[
γ 2

a Ñe(γa, f )
]

− Re
[
γ 2

a Ñe(γa, f )
]

Im
[
γ 2

b Ñe(γb, f )
]
. (28)

The time lag can be calculated from the phase lag,

ΔT (γa, γb, f ) = Δφ(γa, γb, f )

2πf
. (29)

For our solution, Equation (19), the time lag is

ΔT (γa, γb, f ) = 1

2πf
arctan

{
ZI (γa, γb, f )

ZR(γa, γb, f )

}
, (30)

where

ZI (γa, γb, f ) = exp

[
− 1

νtesc

(
1

γa

+
1

γb

)]

×
{

exp

[
2

νtescγ2

]
sin

[
ω

ν

(
1

γa

− 1

γb

)]

+ exp

[
1

νtesc

(
1

max(γ1, γa)
+

1

max(γ1, γb)

)]

× sin

[
ω

ν

(
1

max(γ1, γb)
− 1

γb

+
1

γa

− 1

max(γ1, γb)

)]

− exp

[
1

νtesc

(
1

max(γ1, γa)
+

1

γ2

)]

× sin

[
ω

ν

(
1

γa

− 1

max(γ1, γa)
+

1

γ2
− 1

γb

)]
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Figure 3. Electron time lags with various values of γa and γb . Parameters are
the same as in Figure 1.

(A color version of this figure is available in the online journal.)

− exp

[
1

νtesc

(
1

γ2
+

1

max(γ1, γb)

)]

× sin

[
ω

ν

(
1

γa

− 1

γ2
+

1

max(γ1, γb)
− 1

γb

)] }
(31)

and ZR(γa, γb, f ) is the same as ZI (γa, γb, f ) except with cos
in place of sin. Several examples of electron time lags can be
seen in Figure 3.

For f 
 νγa/(2π ) and f 
 νγb/(2π ) the time delay will
be approximately independent of frequency, with value

ΔT (γa, γb, f ) ≈ 1

ν

AI (γa, γb)

AR(γa, γb)
, (32)

where

AI (γa, γb, f ) =
(

1

γa

− 1

γb

)
exp

[ −1

νtesc

(
1

γa

+
1

γb

)]

+
1

γb

exp

[ −1

νtescγb

]
− 1

γa

exp

[ −1

νtescγa

]
(33)

and

AR(γa, γb, f ) = 1 + exp

[ −1

νtesc

(
1

γa

+
1

γb

)]

− exp

[ −1

νtescγb

]
− exp

[ −1

νtescγa

]
, (34)

where we also assumed γ1 < γa 
 γ2 and γ1 < γb 
 γ2. At
these low values of f, the lags are positive for γa > γb indicating
the smaller γ lags behind the larger γ . This is due to the fact
that electrons with smaller γ will take longer to cool than those
with larger γ . If also (νtesc)−1 
 γa and (νtesc)−1 
 γb then

ΔT (γa, γb, f ) ≈ 1

2ν

(
1

γa

− 1

γb

)
. (35)

An example of this can be seen in Figure 3, with the γa = 103,
γb = 104 curve. If γa 
 (νtesc)−1 
 γb then

ΔT (γa, γb, f ) ≈ tesc

{
1 − 1

νtescγb

− 1

νtescγa

exp

[ −1

νtescγa

]}
.

(36)

In Figure 3, an example can be seen with the γa = 170, γb = 103

curve.
If γa 
 (νtesc)−1 and γb 
 (νtesc)−1 then ΔT (γa, γb, f ) →

0. In Figure 3, the curve that most closely approximates this is
the γa = 100, γb = 120 curve.

At high f, The behavior is quite complex. By inspecting
Equation (31), we can see that the important frequencies are
those that make the sine or cosine terms go to 0. They will be
the integer or half-integer multiples of

f = t−1
cool,a = νγa (37)

f = t−1
cool,b = νγb (38)

f = (tcool,a − tcool,b)−1. (39)

There are many local minima and maxima at the integer or
half-integer multiples of these values.

5. EMISSION AND LIGHT TRAVEL TIME EFFECTS

In the previous sections we have explored the PSD and time
lags for the electron distribution. However, what is observed is
the emission of these electrons, through synchrotron or Compton
scattering. We will assume that the emitting region is spherical
with co-moving radius R′ and homogeneous, containing a
tangled magnetic field of strength B. The blob is moving with
a relativistic speed βc (c being the speed of light), giving it
a bulk Lorentz factor Γ = (1 − β2)−1/2. The blob is moving
with an angle θ to the line of sight giving it a Doppler factor
δD = [Γ(1 − β cos(θ ))]−1. Although we make the simplifying
assumption that the blob is homogeneous, with variations
in the electron distribution taking place throughout the blob
simultaneously, since it has a finite size, photons will reach the
observer earlier from the closer part than the farther part, and
thus one must integrate over the time in the past, t ′. This is
similar to the “time slices” of Chiaberge & Ghisellini (1999).
We note again that Fourier frequencies higher than the inverse of
the light crossing timescale are unphysical in the simple model
we present here.

5.1. Synchrotron and External Compton

Taking the light travel time into account, in the δ-
approximation the observed νFν flux at observed energy ε (in
units of the electron rest energy) from synchrotron or Compton
scattering of an external isotropic monochromatic radiation field
as a function of the observer’s time t is

Fε(t) = K(1 + z)

tlcδD

∫ 2R′/c

0
dt ′ Ne

(
γ ′; tδD

1 + z
− t ′

)
, (40)

where

tlc = 2R′(1 + z)

cδD
(41)

is the light crossing time in the observer’s frame. A derivation
of the light travel time effect can be found in Appendix C. For
synchrotron emission,

K = Ksy = δ4
D

6πd2
L

cσTuBγ ′3
sy , (42)
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and

γ ′ = γ ′
sy =

√
ε(1 + z)

δDεB

. (43)

The Thomson cross-section is σT = 6.65 × 10−25 cm2, the
Poynting flux energy density is uB = B2/(8π ), εB = B/Bc

where Bc = 4.414 × 1013 G, the redshift of the source is z, and
the luminosity distance to the source is dL. For EC scattering,

K = KEC = δ6
D

6πd2
L

cσTu0γ
′3
EC, (44)

γ ′ = γ ′
EC = 1

δD

√
ε(1 + z)

2ε0
(45)

(Dermer & Menon 2009). Here the external radiation field
energy density and photon energy (in units of the electron
rest energy) are u0 and ε0, respectively. This approximation is
valid in the Thomson regime, i.e., when γ ′ � (Γε0)−1. Primed
quantities refer to the frame co-moving with the emitting region.
The cooling rate parameter is

ν = 4

3mec2
cσT(uB + Γ2u0), (46)

where we ignore the effects of SSC cooling.
It is shown in Appendix D that the Fourier transform of

Equation (40) is

F̃ε(f ) = K(1 + z)

2πif tlcδD
Ñe

(
γ ′,

(1 + z)f

δD

)

×
{

exp

[
4πif (1 + z)R′

cδD

]
− 1

}
. (47)

Equation (47) implies the PSD of the synchrotron or EC flux is

S(ε, f ) = |F̃ε(f )|2 = K2(1 + z)2

(πf tlcδD)2

×
∣∣∣∣Ñe

(
γ ′,

(1 + z)f

δD

)∣∣∣∣
2

sin2 (πf tlc) . (48)

If the emitting region is very compact, i.e., if R′ 
 cδD(2f (1 +
z))−1, then

S(ε, f ) ≈ K2(1 + z)2

(πf tlcδD)2

∣∣∣∣Ñe

(
γ ′,

(1 + z)f

δD

)∣∣∣∣
2

(πf tlc)2

S(ε, f ) ≈ K2(1 + z)2

δ2
D

∣∣∣∣Ñe

(
γ ′,

(1 + z)f

δD

)∣∣∣∣
2

. (49)

So in the case of a very compact emitting region, the light
travel time effects play no part in the PSD, as one would
expect.

The observed flux PSDs from synchrotron and EC one would
expect are shown in Figure 4, calculated from Equations (48)
and (20). The parameter values are the same as in Figure 1, with
additional parameters given in the caption. The seed photon
source is assumed to be Lyα photons, presumably from a broad-
line region. Again, parameters are chosen to be consistent with
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Figure 4. Flux PSD computed from Equations (48) and (20) using the same
parameters as in Figure 1. Additional parameters are δD = Γ = 30, B = 1 G,
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redshift with a cosmology (h, Ωm, ΩΛ) = (0.7, 0.3, 0.7), dL = 2 × 1028 cm.
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cool

for each curve (dashed lines), (2πtesc)−1 (dotted line), and t−1
lc (dashed-dotted

line), all computed in the observer’s frame.

(A color version of this figure is available in the online journal.)

those one would expect from an FSRQ. Synchrotron PSDs
are shown for 1012 Hz, 12 μm (the WISE W3 filter’s central
wavelength), and 0.648 μm (the central wavelength of the
Johnson R band). EC PSDs are shown for 0.1 and 1.0 GeV, which
are within the Fermi-LAT energy range. Frequencies lower than
1012 Hz can be affected by synchrotron self-absorption, which
is not considered in this paper. X-rays are not shown as they
are likely dominated by SSC emission, which is considered in
Section 5.2 below. Also note that in real FSRQs the 12 μm
PSD could suffer from contamination from dust torus emission
(e.g., Malmrose et al. 2011) and the R band could suffer from
contamination from accretion disk emission, and we do not take
either of these possibilities into account.

Figure 4 shows many of the features seen in Figure 1. For
photons generated from electrons with low γ ′ the PSDs show a
break from

S(ε, f ) ∝ f −a

to

S(ε, f ) ∝ f −(a+2)

at approximately

f = (2πtesc)−1,

as seen in the 1012 Hz and 0.1 GeV PSDs. For synchrotron, if
uB 
 Γ2u0, as is usually the case for FSRQs, this regime occurs
when

ν 
 νcr,sy = 1013 Hz

(
δD

Γ

)(
Γ
30

)−3 (
u0

10−3 erg cm−3

)−2

×
(

tesc

105 s

)−2 (
B

1 G

)
1

1 + z
. (50)
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Figure 5. Same as Figure 4 except that we set a = 1.

(A color version of this figure is available in the online journal.)

For EC, this regime occurs when

mec
2ε 
 Ecr,EC = 2 GeV

(
δD

Γ

)2 (
Γ
30

)−2

×
(

u0

10−3 erg cm−3

)−2 (
tesc

105

)−2 (
ε0

2 × 10−5

)
1

1 + z
.

(51)

If uB � Γ2u0, then

νcr,sy = 5 × 1015 Hz

(
δD

30

)2 (
tesc

105 s

)−2 (
B

1 G

)−3 1

1 + z

(52)

and

Ecr,EC = 1 TeV

(
δD

30

)2 (
tesc

105

)−2 (
B

1 G

)−4

×
(

ε0

2 × 10−5

)
1

1 + z
. (53)

For photons generated from electrons with high γ ′ (ν � νcr,sy

or mec
2ε � Ecr,EC for synchrotron or EC, respectively), minima

are seen at integer multiples of f = t−1
cool, as seen in the

12 μm, R band and 1.0 GeV PSDs, as well as a break of 2
at approximately f = t−1

cool. There is an additional feature in
Figure 4 not seen in Figure 1 related to the light travel timescale.
In agreement with Equation (48), sin2 minima can be seen at
integer multiples of f = 1/tlc which appear in the PSDs
at all photon energies. Additionally, there is a break of 2 at
approximately this frequency, in agreement with Equations (48)
and (49).

In Figure 5 we plot observed PSDs for the parameter a = 1.
This demonstrates that our model can reproduce any color noise
in a synchrotron or EC PSD for an appropriate choice of a,
and that the features described above are preserved for different
values of a.

For synchrotron or EC emission, in our simple model, the
time delays will play no role in the Fourier frequency-dependent
time lags (Section 4). It is easy enough to see by inspecting
Equation (47) that terms associated with the light travel time
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emission is from EC.

(A color version of this figure is available in the online journal.)

will cancel when calculating time lags. However, one must be
careful to shift the time lag and frequency into the observed
frame by multiplying by (1 + z)/δD and δD/(1 + z), respectively.
An example of observed time lags can be seen in Figure 6 for
synchrotron emission and EC emission.

5.2. Synchrotron Self-Compton

The synchrotron-producing electrons will also Compton scat-
ter the synchrotron radiation they produce, leading to SSC emis-
sion. Again, assuming the blob is homogeneous, and taking into
account light travel time effects, we have

F SSC
ε (t) = KSSC(1 + z)

tlcδD

∫ 2R′/c

0
dt ′

∫ min[ε′,ε′−1]

0

dε′
i

ε′
i

× Ne

(√
ε′

ε′
i

; tδD

1 + z
− t ′

)
Ne

⎛
⎝

√
ε′
i

εB

; tδD

1 + z
− t ′

⎞
⎠ , (54)

where

KSSC = δ4
Dcσ 2

TR′uB

12πd2
LV ′

(
ε

εB

)3/2

, (55)

V ′ = 4

3
πR′3 (56)

is the blob volume in the comoving frame, and

ε′ = (1 + z)ε

δD

(57)

(Dermer & Menon 2009). Following the same procedure for
synchrotron and EC, for the Fourier transform we get

F̃ SSC
ε (f ) = KSSC(1 + z)

2πitlcf δD

{
exp

[
4πif (1 + z)R′

cδD

]
− 1

} ∫ ∞

−∞
df ′

×
∫ min[ε′,ε′−1]

0

dε′
i

ε′
i

Ñe

(√
ε′

ε′
i

; (1 + z)f

δD
− f ′

)
Ñe

⎛
⎝

√
ε′
i

εB

; f ′

⎞
⎠.

(58)
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Note, however, that we ignore the effects of SSC cooling. In
this case, γ̇ (γ ) would be dependent on the electron distribution,
γ 2N (γ ; t) (or γ 2Ñ (γ, f )) leading to a non-linear differential
equation. This is treated in detail for the continuity equation by
Schlickeiser (2009), Schlickeiser et al. (2010), and Zacharias &
Schlickeiser (2010, 2012a, 2012b). The SSC PSD is

SSSC(ε, f ) = ∣∣F̃ SSC
ε (f )

∣∣2 =
(

KSSC(1 + z)

2πtlcf δD

)2

× sin2(πf tlc)|I (ε, f )|2, (59)

where

I (ε, f ) =
∫ ∞

−∞
df ′

∫ min[ε′,ε′−1]

0

dε′
i

ε′
i

Ñe

(√
ε′

ε′
i

; (1 + z)f

δD
− f ′

)

× Ñe

⎛
⎝

√
ε′
i

εB

; f ′

⎞
⎠ . (60)

At low frequencies, f 
 (πtlc)−1 and f ′ 
 (πt ′esc)−1,

SSSC(ε, f ) ≈ K2
SSC(1 + z)2

4δ2
D

(Q0tesc)4

(
δDεB

ε(1 + z)

)2

× [C1(a, εmin, εmax)C2(a, fmin, fmax)]2, (61)

where

C1(a, εmin, εmax) =
∫ εmax

εmin

dε′
i

ε′
i

{
exp

[
−1

νtesc

(√
ε′
i

ε′ +
√

εb

ε′
i

)]

− exp

[
−1

νtesc

√
ε′
i

ε′

]
− exp

[ −1

νtesc

√
εb

εi

]
+ 1

}
, (62)

C2(a, fmin, fmax) = f a
0 ×

{
(f 1−a

max − f 1−a
min )(1 − a)−1 a = 1

ln(fmax/fmin) a = 1
,

(63)

fmin = max

[
f1,

(1 + z)f

δD
− f2

]
, (64)

fmax = min

[
f2,

(1 + z)f

δD
− f1

]
, (65)

εmin = max
[
γ 2

1 εB, ε′/γ2
]
, (66)

and

εmax = min
[
ε′, ε′−1, γ 2

2 εB, ε′/γ 2
1

]
. (67)

If f2 > (1 +z)f/δD � f1, then at low frequencies the SSC PSD
will go as

SSSC(ε, f ) ∝ f −(2a−2).

Synchrotron and SSC PSDs are shown in Figure 7. The
parameters were chosen to be those one would expect from
a high-peaked BL Lac object. At low frequency, they agree
with the asymptote above. Here, the PSDs are flatter (the PSD
power-law index is smaller) than for synchrotron or EC. At
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Figure 7. Synchrotron and SSC flux PSD computed from Equation (59).
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(A color version of this figure is available in the online journal.)

high frequency the behavior is complex, but the features from
the light crossing timescale are apparent. There are no features
associated with the cooling timescale of the electrons which
produce SSC photons, since the SSC emission for a particular
observed energy will be produced by a broad range of electrons.
This is in contrast to synchrotron or EC where the photons at a
particular energy can be approximated as being produced by a
single electron Lorentz factor.

6. APPLICATIONS

The PSDs of blazars are almost always power laws, S(ε, f ) ∝
f −b (i.e., colored noise), although there is sometimes evidence
that they deviate from this. As seen in Section 5, our model
can reproduce this, since in our model at low frequency for
synchrotron or EC the PSD goes as Ssy/EC(ε, f ) ∝ f −a and
for SSC SSSC(ε, f ) ∝ f −(2a−2), where a is the parameter from
Equation (14). For an appropriate choice of a, it can reproduce
any power-law PSD. At higher frequencies, our model predicts
features in PSDs that deviate from a strict single power law. In
this section, we explore some of the applications of our model
to observed PSDs from the literature.

6.1. The VHE Gamma-Ray PSD of PKS 2155−304

In the PSD measured by HESS from PKS 2155−304,
Aharonian et al. (2007) found a power law with S(ε, f ) ∝ f −2,
out to f � 10−3 Hz. There does appear to be a minimum feature
at f ≈ 1.2 × 10−3 Hz. It is not clear if there is a break in the
PSD at higher frequencies that this. If this feature is associated
with the light crossing timescale, then

R′ ≈ ctlcδD

2(1 + z)
= 6.5 × 1014

(
δD

60

)
cm. (68)

Such a high Doppler factor is needed for these flares to avoid
γ γ attenuation (Begelman et al. 2008; Finke et al. 2008). Since
the γ -rays from this source are likely associated with the SSC
mechanism for this source, this association in unambiguous.
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There are no PSD features associated with a cooling timescale
for SSC, as shown in Section 5.2.

6.2. The X-Ray Timing Properties of Mrk 421

Zhang (2002) constructed PSDs from BeppoSAX data on Mrk
421. They construct PSDs with data from two energy intervals:
0.1–2 keV, and 2–10 keV (see their Figure 4). Both PSDs show
a minimum feature at f ≈ 4.3 × 10−5 Hz. Although the feature
is tentative, since it is only dependent on one point for each
PSD, and there are no error bars, the fact that the feature is
at the same frequency in both energy bands is a hint that the
feature is associated with the light crossing timescale. In this
case, tlc = 2.3 × 104 s = 6.4 hr and

R′ ≈ ctlcδD

2(1 + z)
= 1.0 × 1016

(
δD

30

)
cm. (69)

Zhang (2002) also provides time lags as a function of
Fourier frequency between the two energy bands, 0.1–2 keV
and 2–10 keV (see their Figure 5), giving us an opportunity to
compare them with the results of Section 4. Zhang (2002) finds
time lags at f � 10−4 Hz that are approximately constant
at ΔT ≈ 103 s. The approximate independence of the lag
with frequency implies that the lag is in the regime where
(νtesc)−1 
 γa and (νtesc)−1 
 γb, and the lag ΔT ′ can be
approximated by Equation (35). Note that this equation gives
the lag in the jet comoving frame; in the observer’s frame,
ΔT = ΔT ′(1 + z)/δD . The X-rays for Mrk 421 are likely
produced by synchrotron emission and the external energy
density (u0) is likely to be negligible for a BL Lac object, so one
can combine Equation (35) with Equations (43) and (46) to get

B = Bc

(δDεaεb)1/3

{
3(1 + z)mec

2
(
ε

1/2
b − ε

1/2
a

)
8cσTuBcΔT

}2/3

, (70)

where uBc = B2
c /(8π ). With z = 0.03 for Mrk 421 and

mec
2εa = 0.1 keV and mec

2εb = 2 keV,

B = 0.7

(
δD

30

)−1/3 (
ΔT

103 s

)−2/3

G. (71)

6.3. The Gamma-Ray PSDs of FSRQs and BL Lac Objects

Nakagawa & Mori (2013) used more than four years of Fermi-
LAT data to compute the PSD of 15 blazars. Each PSD is fit
with either a single or broken power-law model. Their values of
b from their fits, where S(ε, f ) ∝ f −b from the single power-
law fit or lower index from the broken power-law fit if that fit
is statistically significant are given in Table 1. We neglect the
FSRQ S4 1030+61, which has poor statistics. There is a clear
separation between b for FSRQs and BL Lac objects. All BL
Lac objects have b � 0.6, while all FSRQs except for PKS
1222+216 have b > 0.7. PKS 1222+216 seems to be an outlier
in terms of its PSD power-law index, although its b is still larger
than for any of the BL Lac objects. We also compute the value of
a from our model (recall its definition in Equation (14)) needed
to reproduce the values of b. For FSRQs, presumably emitting
by EC, this is just

a = bEC,

while for BL Lac objects, presumably emitting by SSC, this is

a = bSSC + 2

2

Table 1
Fermi-LAT PSD Power-law Indices (b) from Nakagawa & Mori (2013)

and the Values of a from Our Model Needed to Reproduce Them

Object b a

FSRQs

4C +28.07 0.93 ± 0.23 0.93
PKS 0426−380a 1.16 ± 0.47 1.16
PKS 0454−234 0.78 ± 0.27 0.78
PKS 0537−441a 0.86 ± 0.64 0.86
PKS 1222+216 0.65 ± 0.21 0.65
3C 273 1.30 ± 0.27 1.30
3C 279 1.23 ± 0.35 1.23
PKS 1510−089 1.10 ± 0.30 1.10
3C 454.3 1.00 ± 0.24 1.00
PKS 2326−502 1.26 ± 0.44 1.26

Mean 1.01 1.01
S.D. 0.26 0.26

BL Lac Objects

3C 66A 0.60 ± 0.44 1.22
Mrk 421 0.38 ± 0.21 1.19
PKS 2155−304 0.58 ± 0.33 1.29
BL Lac 0.41 ± 0.47 1.21

Mean 0.49 1.23
S.D. 0.11 0.07

Note. a PKS 0426−380 and PKS 0537−441 were previously
classified as BL Lac objects.

(recall Section 5.2). The mean values of a for FSRQs and BL
Lac objects are within one standard deviation (S.D.) of each
other. The values of b from Nakagawa & Mori (2013) are in
agreement with our theory with values of a that cluster around
a ∼ 1.

Based on the traditional classification, PKS 0537−441 and
PKS 0426−380 are classified as BL Lac objects. However, based
on the new classification by Ghisellini et al. (2011) they are
considered FSRQs (see also Sbarrato et al. 2012). We use the
more recent classification. For a discussion see D’Ammando
et al. (2013) for PKS 0537−441 and Tanaka et al. (2013) for
PKS 0426−380.

The PSD indices found by Nakagawa & Mori (2013) are
in general not reproduced by an independent analysis by
Sobolewska et al. (2014). This could be due to the different
analysis techniques used by the different authors. More work is
needed to resolve the discrepancies.

Ideally, to test our theory one would want simultaneous light
curves from synchrotron emission (say, optical) and GeV γ -ray
emission over a long timescale. The PSDs could be computed
from these light curves. One expects that if the γ -rays are
emitted by EC, they would have the same b as synchrotron
(bsy = bEC = a). But if the γ -rays are produced by SSC
emission, one would expect b to be less steep than for the γ -rays
compared to the optical, with the relation between the SSC and
synchrotron PSD indices given by bSSC = 2bsy − 2 = 2a − 2.
Of course this could be complicated by emission from a thermal
accretion disk unrelated to the jet emission.

6.4. The Gamma-Ray PSD of 3C 454.3

The PSD of 3C 454.3 from Nakagawa & Mori (2013) shows
a break at frequency fbrk = 1.5 × 10−6 Hz, corresponding to
a timescale of 6.8 × 105 s = 190 hr = 7.9 days. Their broken
power-law fit to the PSD, where S(ε, f ) ∝ f −b1 at f < fbrk

9
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and S(ε, f ) ∝ f −b2 at f > fbrk, shows b1 ≈ 1 and b2 ≈ 3. This
is a break of about 2, which is what is expected from our theory.
The timescale could correspond to the light crossing, cooling,
or escape timescales. If one interprets it as the light-crossing
timescale, tlc, then

R′ ≈ ctlcδD

2(1 + z)
= 1.7 × 1017

(
δD

30

)
cm. (72)

Interpreting it as the cooling timescale, tcool, and assuming
δD = Γ, the external radiation field is

u0 ≈ 3mec
2

4cσTΓ2t ′coolγ
′ = 9.6 × 10−6

(
Γ
30

)−2 (
E

100 MeV

)−1/2

×
(

ε0

5 × 10−7

)1/2

erg cm−3

= 6.1 × 10−5

(
Γ
30

)−2 (
E

100 MeV

)−1/2

×
(

ε0

2 × 10−5

)1/2

erg cm−3, (73)

where E is the observed photon energy. The first line assumes
the seed photon source is a dust torus with temperature 1000 K;
the second assumes it is Lyα, presumably from the broad-line
region. Both numbers give rather low values for u0.

However, interpreting the break as either the cooling
timescale or the light crossing timescale is problematic, since
variations on timescales much shorter than this have been ob-
served from 3C 454.3, including decreases on much faster
timescales (Ackermann et al. 2010; Abdo et al. 2011a). But
one could also associate the break with the escape timescale
for electrons in the blob, as shown in Section 5.1. This break
will occur at f = (2πtesc)−1, so if tlc = tesc, the break will
still be at a frequency 2π lower than the one related to the light
crossing timescale. Furthermore, the escape timescale could in
principle be longer than the light crossing timescale, since mag-
netic fields in the blob would curve the electron’s path and
decrease the time it takes to escape. We note that in Figure 4,
the break in the 0.1 GeV PSD is indeed associated with the
escape timescale, f = (2πtesc)−1, showing that this is at least
plausible. If the break in the PSD of 3C 454.3 (Nakagawa &
Mori 2013) is due to electron escape, then the escape timescale
in the observer’s frame will be tesc = 7.9 days/(2π ) = 30 hr,
and in the comoving frame,

t ′esc = 20 days

(
δD

30

)
. (74)

How could one distinguish between these interpretations?
One possibility would be to observe the PSDs at more than one
waveband. If the break is due to the light-crossing timescale, the
break frequency should be present independent of the waveband.
The escape timescale break could also be independent of
frequency if the escape timescale is energy independent, as
it is in our model. The cooling timescale should be energy-
dependent, and thus the break frequency will be different in
different wavebands. For 3C 454.3, the light-crossing timescale
interpretation is disfavored since smaller timescale fluctuations
are present in its light curve (e.g., Ackermann et al. 2010; Abdo
et al. 2011a).

6.5. Optical PSDs of Blazars

Chatterjee et al. (2012) compute R band PSDs for 6 blazars
based on about 200–250 days of continuous data. Their PSDs
have power-law indices that are significantly steeper than those
from the same objects’ γ -ray PSDs from Nakagawa & Mori
(2013). The exception is PKS 1510−089, for which Chatterjee
et al. (2012) compute b = 0.6+0.2

−0.5, significantly flatter than
the γ -ray PSD. Our theory predicts that synchrotron and EC
emission should have the same PSD slopes if produced by
the same electron energies, and all but one of their sources
are FSRQs, which are expected to emit γ -rays by EC. One
possible reason for the discrepancy could be the contamination
in the optical by the accretion disk. Another possibility is that the
time intervals used by Chatterjee et al. (2012) are significantly
shorter than the ones used by Nakagawa & Mori (2013). As
Chatterjee et al. (2012) point out, the large number of bright
flares in their time interval for PKS 1510−089 could be the cause
of its especially flat R band PSD power-law index. It could also
be that the different analysis methods used by Chatterjee et al.
(2012) and Nakagawa & Mori (2013) could lead to different
results. Finally, it could be that one of the assumptions of our
theory is just not correct.

The Kepler mission, with its excellent relative photometry
and short timescale sampling is well-suited for measuring high-
frequency PSDs. Wehrle et al. (2013) reported the Kepler
PSDs of several radio-loud AGNs, and found no departure
from a single power law up to ∼10−5 Hz, above which
white noise dominates. Edelson et al. (2013) explored the
Kepler PSD of the BL Lac object W2R1926+42 and found a
“bending” power law provided a good fit to its PSD, with “bend
frequency” corresponding to ≈4 hr. The source W2R1926+42
has a synchrotron peak at 1014.5 Hz according to Edelson et al.
(2013), making it an intermediate synchrotron peaked object by
the classification of Abdo et al. (2010a). However, its optical
SED appears to be dominated by accretion disk emission,
implying its synchrotron peak is probably at �1013.5 Hz,
which would make it a low-synchrotron peaked (LSP). The
Kepler light curve could have a contribution from both the
thermal accretion disk emission and the nonthermal jet emission,
making interpretation of its PSD difficult. If the optical band is
dominated by synchrotron emission, its status as an LSP implies
that the electrons that produce its optical emission are in the
regime γ ′ � (νt ′esc)−1, meaning the “bend frequency” could
be associated with the light-crossing timescale or the cooling
timescale. If it is associated with the light-crossing timescale,
the size of the emitting region is

R′ ≈ 5.5 × 1015

(
δD

30

)
cm. (75)

If it is associated with the cooling timescale, the cooling is
dominated by EC, and δD = Γ, then

u0 ≈ 3.2 × 10−5

(
Γ
30

)−5/2 (
B

1 G

)1/2

×
(

λobs

5000 Å

)−1/2

erg cm−3, (76)

where λobs is the observed wavelength. If the cooling is
dominated by synchrotron, then the cooling timescale can be
used to estimate the magnetic field,

B ≈ 0.81

(
δD

30

)−1/3 (
λobs

5000 Å

)−1/3

G. (77)
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6.6. The X-Ray PSD of 3C 273

An X-ray PSD of 3C 273 based on data combined from RXTE,
EXOSAT, and other instruments was reported by McHardy
(2008). Similar to the γ -ray PSD of 3C 454.3, the PSD shows
two power laws with b1 ≈ 1.1, b2 ≈ 2.9, with fbrk ≈
1.0 × 10−6 Hz. The break is close to 2, and the break frequency
corresponds to a timescale of 1.0 × 106 s ≈ 280 hr ≈12 days.
The interpretation for this break is more difficult than the γ -ray
PSD for 3C 454.3, since it is not clear whether the X-rays are
produced by SSC, EC, or even by a hot corona at the base of the
jet. If the X-ray emission is dominated by EC, the most likely
interpretation of the break is with the escape timescale, since the
electrons generating the EC emission will almost certainly have
Lorentz factors γ 
 (νtesc)−1. In this case the escape timescale
in the observer’s frame is tesc = 12 days/(2π ) = 46 hr.

6.7. Quasi-periodic Oscillations

A number of quasi-periodic oscillations (QPOs) have been
reported in the X-ray and optical PSDs of blazars. These QPOs
could be associated with the maxima at half-integer values of
either the light crossing timescale (tlc) or the cooling timescale
(tcool). See for example Figure 4, where maxima in the 0.648 μm
or 1.0 GeV PSDs could be confused with QPOs in noisy
PSDs. If this interpretation is correct, one could distinguish
between these possibilities (tlc or tcool) by observing the PSDs at
more than one wavelength. If the QPO appears at the same
frequency independent of wavelength, it would argue for a
tlc interpretation. If QPOs are found at different frequencies
at different wavelengths, it argues for the tcool interpretation.
Assessing the significance of QPOs in red noise PSDs can be
subtle (e.g., Vaughan 2005; Vaughan & Uttley 2006).

As an example, we look at the claimed QPO reported in
XMM-Newton observations of PKS 2155−304 (Lachowicz et al.
2009). Visually inspecting their PSD from data taken between
0.3 and 10 keV, one sees significant maxima at ∼3.5 × 10−5 Hz
and ∼7.0×10−5 Hz. Lachowicz et al. (2009) also examined the
PSDs in the energy bands 0.3–2 keV and 2–10 keV, and found
the maxima were significant in the soft band but not in the hard
band, although they were still found in the hard band. Gaur
et al. (2010) and González-Martı́n & Vaughan (2012) find this
QPO in only one of many XMM-Newton observations of this
source. If the maxima are significant and found in both energy
bands, this argues for a light crossing time interpretation, with
timescale tlc = 3.8 × 104 s and

R′ ≈ ctlcδD

2(1 + z)
= 3.1 × 1016

(
δD

60

)
cm. (78)

This is larger than the size from the HESS observation
(Section 6.1). The XMM-Newton observations were taken on
2006 May 1, and the HESS observations on 2006 July 28,
which could account for the discrepancy. The emitting region
size could have been different at different times. A number of
claimed significant detections of QPOs from the literature are
listed in Table 2.

7. DISCUSSION

We have presented a new theoretical formalism for modeling
the variability of blazars, based on an analytical solution
to the underlying electron continuity equation governing the

Table 2
Claimed QPOs from Blazars Reported in the Literature

Authors Object Bandpass QPO Frequency
(Hz)

Espaillat et al. (2008)a 3C 273 0.75–10 keV 3.0 × 10−4

Lachowicz et al. (2009) PKS 2155−304 0.2–10 keV 6 × 10−5

Gupta et al. (2009) S5 0716+714 V and R band Various
Rani et al. (2010) S5 0716+714 R band 1.1 × 10−3

Note. a This claimed QPO is disputed by Mohan et al. (2011) and González-
Martı́n & Vaughan (2012).

distribution of radiating electrons in a homogeneous blob
moving out in the jet. The analysis was carried out in the Fourier
domain, and the results are therefore directly comparable with
observational Fourier data products such as the PSDs and time/
phase lags. This formalism assumes emission from a jet closely
aligned with the line of sight, so that the emission produced in
the comoving frame is Doppler shifted into the observer’s frame.
Internal shocks in the jet randomly accelerate electrons to high
energies, which are then injected into an emitting region at
random intervals with that variability characterized by a power
law in Fourier space. The observable radiation produced by
the electrons is affected by cooling, electron escape, and the
light-travel time across the blob. The model makes specific
predictions regarding the PSDs and Fourier-dependent time lag
components resulting from synchrotron, EC, and SSC emission,
and it successfully reproduces the characteristics of the colored
noise seen in nearly all blazars.

The study presented here is a first attempt at examining blazar
variability with this formalism. As such, it makes a number of
simplifying assumptions.

1. It assumes the only thing which varies with time in a
blazar is the rate at which electrons are injected into the
emitting region. All other parameters—the magnetic field
strength (B), the size of the emitting region (R′), the electron
injection power-law index (q), the jet’s angle to the line of
sight (θ ), and so on—are assumed not to vary. Although
this is likely an over-simplification, we note that the PSDs
of PKS 0537−441 can be explained by only varying the
electron distribution of the source (D’Ammando et al.
2013), so that in some cases this may be justified.

2. In computing emission, we have used simplified δ-function
expressions for the synchrotron and Compton emission,
and assumed Thomson scattering. Using more accurate
expressions, in particular, the full Compton cross-section
for the energy losses could lead to interesting effects
(Dermer & Atoyan 2002; Moderski et al. 2005; Sikora et al.
2009; Dotson et al. 2012).

3. The calculations neglect SSC cooling, which is quite
difficult to model analytically (Schlickeiser 2009; Zacharias
& Schlickeiser 2010, 2012a, 2012b). This would likely not
be important for FSRQs, where the EC component probably
dominates the cooling, but could be important for BL Lac
objects that do not have a strong external radiation field.

4. We have neglected the details of the acceleration mecha-
nism. Such a mechanism may produce interesting features
in PSDs that could be observable.

5. Although we take light travel-time effects into account, we
assume all parts of the blob vary simultaneously, which is
obviously not the case.

11
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In the future, we will perform more detailed analyses which
explore these more complicated cases.

What are the best wavebands to observe blazars and compare
with the theory outlined in this work? Observations at (electro-
magnetic) frequencies lower than ∼1012 Hz would not be useful,
since here the emission is likely dominated by the superposition
of many self-absorbed jet components (Konigl 1981). For LSP
blazars (including almost all FSRQs; Finke 2013), The optical
and GeV γ -rays would have features at high Fourier frequen-
cies due the rapid energy losses of electrons that produce this
radiation, and thus this emission could be quite interesting to
observe. Observing such short timescales with the Fermi-LAT
could be difficult, since for this instrument one must usually
integrate over fairly long timescales (�a few hours for all but
the brightest sources) to get a significant detection. Bright flares
and adaptive light curve binning may be helpful in produc-
ing accurate LAT PSDs at high Fourier frequencies (Lott et al.
2012). Significant detections can be made in the optical with
shorter integration times (∼ a few minutes or even fractions of
a minute), leading to better PSDs at high frequencies (e.g., Rani
et al. 2010), although in FSRQs this could be contaminated by
thermal emission from an accretion disk.

Observing LSPs at wavebands (e.g., infrared) where emission
is dominated by less energetic electrons could probe the escape
timescale. PSDs produced from simultaneous light curves at
multiple frequencies would be extremely helpful for verifying
the predictions of this paper. At low Fourier frequencies the
PSDs should have essentially identical power-law shapes at
all wavebands, and at higher Fourier frequencies features
associated with the light-crossing timescale could be identified,
and should be the same in all wavebands. This could serve as a
strong test for the theory presented in this paper. We also predict
that all breaks in observed synchrotron and EC PSD power laws
should be by 2, i.e., from ∝ f −a to ∝ f −(a+2), and more gradual
breaks could be observed in SSC PSDs. Kataoka et al. (2001)
observed smaller breaks in the X-ray PSDs of Mrk 421, Mrk
501, and PKS 2155−304 based on ASCA and Rossi X-ray Timing
Explorer observations. However, note that they did not obtain
acceptable fits to their PSDs with broken power laws with all
parameters left free to vary. Also, it may be that including SSC
cooling could modify the PSD so that breaks other than 2 are
possible, although that is beyond the scope of this paper.

For high synchrotron-peaked blazars (HSPs), almost all of
which are BL Lac objects, the γ -ray emission is expected to be
from SSC. We do not predict any features in SSC PSDs from
cooling or escape, although features from the light crossing
time are still expected. These predictions could be tested with
Fermi-LAT and VHE γ -ray instruments such as MAGIC, HESS,
VERITAS, and the upcoming CTA. For synchrotron emission,
however, features from cooling and escape should be present.
An X-ray telescope could be used to probe emission from the
highest energy electrons potentially seeing cooling features.
The proposed Large Observatory for X-ray Timing (LOFT)
spacecraft could be very useful for this (Donnarumma et al.
2013). LOFT will provide excellent timing coverage (∼ ms) with
a relatively large effective area. PSDs produced from optical
light curves of HSPs could be used to probe the escape timescale.
As with LSP blazars, PSDs produced by simultaneous light
curves from multiple wavebands would be extremely helpful
for the study of HSP blazars.

We are grateful to the anonymous referee for insightful
suggestions that helped improve the discussion and presentation,

and to C. Dermer for useful discussions. J.D.F. was supported
by the Office of Naval Research.

APPENDIX A

SOLUTION TO THE FOURIER TRANSFORM
OF THE CONTINUITY EQUATION

Here we solve the differential equation

− 2πif Ñe(γ, f ) +
∂

∂γ
[γ̇ (γ )Ñe(γ, f )]

+
Ñe(γ, f )

tesc(γ )
= Q̃(γ ; f ) (A1)

for γ̇ � 0. This equation can be rearranged,

∂

∂γ
[γ̇ (γ )Ñe(γ, f )] +

[
1

tesc
− iω

]
Ñe(γ, f ) = Q̃(γ ; f ),

(A2)

recalling that ω = 2πf . One can multiply both sides by

exp

[∫ ∞

γ

dγ ′

|γ̇ (γ ′)|
(

1

tesc
− iω

)]
(A3)

and then rearrange the left side so that

d

dγ

{
γ̇ (γ )Ñe(γ, f ) exp

[∫ ∞

γ

dγ ′

|γ̇ (γ ′)|
(

1

tesc
− iω

)]}

= Q̃(γ ; f ) exp

[∫ ∞

γ

dγ ′

|γ̇ (γ ′)|
(

1

tesc
− iω

)]
. (A4)

Integrating both sides gives

|γ̇ (γ )|Ñe(γ, f ) exp

[∫ ∞

γ

dγ ′

|γ̇ (γ ′)|
(

1

tesc
− iω

)]

=
∫ ∞

γ

dγ ′ Q̃(γ ′; f ) exp

[∫ ∞

γ ′

dγ ′′

|γ̇ (γ ′′)|
(

1

tesc
− iω

)]
.

(A5)

Solving this for Ñ (γ, f ) results in

Ñe(γ, f ) = 1

|γ̇ (γ )|
∫ ∞

γ

dγ ′ Q̃(γ ′; f )

× exp

[
−

∫ γ ′

γ

dγ ′′

|γ̇ (γ ′′)|
(

1

tesc(γ ′′)
− iω

)]
. (A6)

APPENDIX B

NORMALIZATION OF ELECTRON INJECTION
FUNCTION

The time average of the total power injected in electrons is

〈Linj〉 = mec
2

Δt

∫ ∞

1
dγ γ

∫ Δt

0
dt Q(γ, t), (B1)

where Δt is the length of the time interval over which the
electrons are injected. Using Equation (2),

〈Linj〉 = mec
2

Δt

∫ ∞

1
dγ γ

∫ ∞

−∞
df Q̃(γ, f )

×
∫ Δt

0
dt exp[−2πif t]. (B2)
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Substituting Equation (14),

Q̃(γ ; f ) = Q0(f/f0)−a/2γ −qH (γ ; γ1, γ2)

× H (f ; f1, f2), (B3)

and integrating over γ , one gets

〈Linj〉 = mec
2

Δt
Q0 G(q, γ1, γ2)

∫ f2

f1

df (f/f0)−a/2

×
∫ Δt

0
dt exp[−2πif t], (B4)

where

G(q, γ1, γ2) =
{(

γ
2−q

1 − γ
2−q

2

)
/(q − 2) for q = 2

ln(γ2/γ1) for q = 2
. (B5)

Performing the integral over time gives

〈Linj〉 = mec
2

−2πiΔt
Q0 G(q, γ1, γ2)

∫ f2

f1

df

f
(f/f0)−a/2

× [exp(−2πif Δt) − 1]. (B6)

This can be rewritten as

〈Linj〉 = mec
2

−2πiΔt
Q0 G(q, γ1, γ2) [Ir (a, f1, f2)

− iIi(a, f1, f2) − I0(a, f1, f2)], (B7)

where

Ir (a, f1, f2) =
∫ f2

f1

df

f
(f/f0)−a/2 cos(2πf Δt), (B8)

Ii(a, f1, f2) =
∫ f2

f1

df

f
(f/f0)−a/2 sin(2πf Δt), (B9)

and

I0(a, f1, f2) =
∫ f2

f1

df

f
(f/f0)−a/2

=
{

2/a[(f1/f0)−a/2 − (f2/f0)−a/2] a = 0

ln(f2/f1) a = 0
. (B10)

Multiplying Equation (B7) by its complex conjugate gives

|〈Linj〉|2 =
[
mec

2Q0G

2πΔt

]2 [
I 2
r + I 2

i − 2IrI0 + I 2
0

]
, (B11)

or, solving for Q0,

Q0 = 2πΔt〈Linj〉
mec2G

√
I 2
r + I 2

i − 2IrI0 + I 2
0

. (B12)

APPENDIX C

LIGHT TRAVEL TIME

Let us take a cylindrical blob, as shown in cross section in
Figure 8. The blob has length 2R, and everywhere within the

x

to observer

Δx

2R

Figure 8. Sketch of the geometry of the emitting blob for the purpose of
computing light travel time effects. This sketch is in the frame co-moving with
the blob. The blob of length 2R is divided into N pieces each with length Δx.

blob radiation is emitted simultaneously as a function of time
t as g(t). The entire blob has length 2R and is divided into
N individual segments, each with length Δx = 2R/N . The
radiation emitted by each individual segment is a corresponding
fraction of the whole, g(t)/N = g(t)Δx/2R. The radiation an
observer co-moving with the blob sees at any given time tobs
will be a sum over the individual segments at that time,

h(tobs) = g(tobs − x1/c) Δx/(2R) + g(tobs − x2/c) Δx/(2R)

+ . . . + g(tobs − 2R/c) Δx/(2R) (C1)

or

h(tobs) = 1

2R

N∑
j=1

g(tobs − xj/c) Δx. (C2)

As N → ∞,

h(tobs) → 1

2R

∫ 2R

0
dx g(tobs − x/c). (C3)

Since t = x/c,

h(tobs) = c

2R

∫ 2R/c

0
dt g(tobs − t). (C4)

Let us now move to a frame where the blob is moving relative
to the observer so that she or he sees a time tobs = t ′obs(1 +z)/δD,
where now all lengths and times in the co-moving frame will be
primed. Then

h(tobs) = c

2R′

∫ 2R′/c

0
dt ′ g(t ′obs − t ′)

= c

2R′

∫ 2R′/c

0
dt ′ g

(
tobsδD

1 + z
− t ′

)
. (C5)

This is similar to the “time slices” of Chiaberge & Ghisellini
(1999). We use a cylindrical normal blob geometry for simplicity
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here, although a spherical one would be more consistent with the
SSC calculation. Since the actual geometry of an emitting blob
is not known, differences should not be too great. A similar
derivation for a spherical geometry is given by Zacharias &
Schlickeiser (2013).

APPENDIX D

FOURIER TRANSFORM INCLUDING LIGHT
TRAVEL TIME

In this appendix we derive Equation (47) from
Equation (40). From the definition of the inverse Fourier trans-
form, Equation (2),

Ne(γ ; t) =
∫ ∞

−∞
df Ñe(γ, f ) exp(−2πif t). (D1)

Putting this in Equation (40) and rearranging gives

Fε(t) = K(1 + z)

tlcδD

∫ ∞

−∞
df ′Ñe(γ ′, f ′)

× exp

[
−2πif ′δDt

1 + z

] ∫ 2R′/c

0
dt ′ exp (2πif ′t ′), (D2)

recalling that tlc = 2R′(1 + z)/(cδD). Performing the integral
over t ′ gives

Fε(t) = K(1 + z)

2πitlcδD

∫ ∞

−∞

df ′

f ′ Ñe(γ ′, f ′) exp

[−2πif ′δDt

1 + z

]

×
{

exp

[
4πif ′R′

c

]
− 1

}
. (D3)

The Fourier transform of the synchrotron flux light curve is
defined as (see Equation (1))

F̃ε(f ) =
∫ ∞

−∞
dt Fε(t) exp(2πif t). (D4)

Substituting Equation (D3) for Fε(t) in this equation gives

F̃ε(f ) = K(1 + z)

2πitlcδD

∫ ∞

−∞

df ′

f ′ Ñe(γ ′, f ′)
{

exp

[
4πif ′R′

c

]
− 1

}

×
∫ ∞

−∞
dt exp

[
2πit

(
f − f ′δD

1 + z

)]
. (D5)

The integral over t has the form of a Dirac δ-function
(Equation (4)), so

F̃ε(f ) = K(1 + z)

2πitlcδD

∫ ∞

−∞

df ′

f ′ Ñe(γ ′, f ′)

×
{

exp

[
4πif ′R′

c

]
− 1

}
δ

(
f − f ′δD

1 + z

)
. (D6)

Using the well-known property for δ functions,

δ

(
f − f ′δD

1 + z

)
= 1 + z

δD
δ

(
f ′ − (1 + z)f

δD

)
, (D7)

one can perform the integral over f ′ in Equation (D6) to get

F̃ε(f ) = K(1 + z)

2πif tlcδD
Ñe

(
γ ′,

(1 + z)f

δD

)

×
{

exp

[
4πif (1 + z)R′

cδD

]
− 1

}
. (D8)

This is Equation (47).
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Böttcher, M., & Reimer, A. 2004, ApJ, 609, 576
Chatterjee, R., Bailyn, C. D., Bonning, E. W., et al. 2012, ApJ, 749, 191
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