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Abstract

The broadband spectrum from the 2013 December 20 g-ray flare from 3C279 is analyzed with our previously
developed one-zone blazar jet model. We are able to reproduce two spectral energy distributions (SEDs), a
quiescent and flaring state, the latter of which had an unusual SED, with hard g-ray spectrum, high Compton
dominance, and short duration. Our model suggests that there is insufficient energy for a comparable X-ray flare to
have occurred simultaneously, which is an important constraint given the lack of X-ray data. We show that first-
and second-order Fermi acceleration are sufficient to explain the flare, and that magnetic reconnection is not
needed. The model includes particle acceleration, escape, and adiabatic and radiative energy losses, including the
full Compton cross section, and emission from the synchrotron, synchrotron self-Compton, and external Compton
processes. We provide a simple analytic approximation to the electron distribution solution to the transport
equation that may be useful for simplified modeling in the future.

Unified Astronomy Thesaurus concepts: Radio-loud quasars (1349); Nonthermal radiation sources (1119); Active
galactic nuclei (16); Jets (870); Galaxy jets (601); Blazars (164); Relativistic jets (1390); Radio jets (1347)

1. Introduction

Blazars, the most energetic sustained phenomena in the
known universe, are radio-loud active galactic nuclei (AGNs)
with relativistic jets closely aligned with our line of sight. The
broadband spectral energy distributions (SEDs) from blazars
are dominated by beamed jet emission. Blazars are known for
their variable broadband spectral features, extending from radio
through γ-rays. Their broadband SEDs are characterized by
two primary features. In leptonic models, those include a
synchrotron peak at lower energies and a Compton peak at
higher energies. Alternatively, the high-energy peak can be
produced by proton synchrotron (e.g., Aharonian 2000; Mücke
et al. 2003; Reimer et al. 2004) or the decay products of
proton–photon interactions (e.g., Sikora et al. 1987; Mannheim
& Biermann 1992; Protheroe 1995), however hadronic
processes are disfavored in some cases due to the excessive
energy requirements (e.g., Böttcher et al. 2013; Zdziarski et al.
2015; Petropoulou & Dermer 2016). Blazars are divided into
flat-spectrum radio quasars (FSRQs) and BL Lac objects based
on their optical spectra, with the former having strong broad
emission lines, while the latter do not. FSRQs are thought to
have their g-ray emission dominated by the external Compton
(EC) process, where the seed photon fields for Compton
scattering come from outside the jet, from sources such as the
broad-line region (BLR; e.g., Sikora et al. 1994; Blandford &
Levinson 1995; Ghisellini & Madau 1996), dust torus (e.g.,
Kataoka et al. 1999; Błażejowski et al. 2000), and accretion
disk (e.g., Dermer et al. 1992; Dermer & Schlickeiser 1993).

Blazars are characterized by stochastic variability (e.g.,
Finke & Becker 2014, 2015; Lewis et al. 2016, hereafter
Paper I). For example, the FSRQ 3C 279 alternates between
quiescence and flaring states over periods of a few days to
several weeks (e.g., Hayashida et al. 2012, 2015). Additionally,
FSRQs can exhibit isolated flaring activity at optical, X-ray,
or g-ray energies (e.g., Osterman Meyer et al. 2009; Hayashida
et al. 2012; MacDonald et al. 2017), or correlated flares

(e.g., Hayashida et al. 2012; Marscher 2012; Liodakis et al.
2018). A single blazar can also exhibit different types of flares
at different times (e.g., Hayashida et al. 2012; Vittorini et al.
2014; Kaur & Baliyan 2018, and references therein), and
currently there is no consensus on an explanation for why some
flares exhibit correlated variability and some do not.
Particle acceleration is a necessity in astrophysical jets in

order to explain how the radiating particles reach the energies
required to produce the observed emission. However, currently
there is no consensus on the precise combination of required
acceleration mechanisms, or on their effects on the observed
blazar spectra (e.g., Madejski & Sikora 2016; Romero et al.
2017). The first-order Fermi process, resulting from accelera-
tion at a shock front, is widely assumed to contribute to particle
acceleration in blazars (e.g., Bednarek & Protheroe 1997;
Tavecchio et al. 1998; Bednarek & Protheroe 1999; Finke et al.
2008; Dermer et al. 2009; Hayashida et al. 2012). On its own,
first-order Fermi acceleration produces a power-law particle
spectrum (Fermi 1949). This can be attenuated by radiative loss
mechanisms, especially synchrotron, which impose an expo-
nential cutoff at high energies. Second-order Fermi (stochastic)
acceleration is also thought to contribute to electron energiza-
tion in blazars (e.g., Summerlin & Baring 2012; Baring et al.
2017). Stochastic acceleration alone gives a log-parabola
electron distribution (ED) (e.g., Tramacere et al. 2011).
We previously developed a steady-state model for particle

acceleration and emission in blazar jets which included first-
and second-order Fermi acceleration of particles, and radiation
by synchrotron, synchrotron self-Compton (SSC), and EC
mechanisms (Lewis et al. 2018, hereafter Paper II). EC of
photons from a realistic, stratified BLR (Finke 2016) and dust
torus were included. Here we exercise this model in a new
situation: modeling the extreme flare from 3C 279 observed on
2013 December 20.
The familiar blazar 3C 279 has been very well observed at

all wavelengths for many years (e.g., Grandi et al. 1996;
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Wehrle et al. 1998; Chatterjee et al. 2008; Hayashida et al.
2012). On 2013 December 20, the source was observed by the
Fermi Large Area Telescope (LAT) to have a flare that was
extremely hard in g rays (photon spectral index G ~g 1.7,
compared to 2.4 right before the flare), with the peak of the
g-ray emission shifting from below the Fermi-LAT energy
range (hνpeak100MeV) immediately before the flare, to
over a decade in energy higher, hνpeak  2 GeV (Hayashida
et al. 2015). At the same time, the peak of the synchrotron
spectrum stayed nearly constant, and may have even shifted to
slightly higher frequencies; the Compton dominance was
estimated to be an extreme = g A L L 300C syn . The flux-
doubling timescale was rapid, ≈2 hr, although still less extreme
than the minute-scale variability found by Ackermann et al.
(2016) for the 2015 June flare from 3C 279.

The 2013 December 20 flare has attracted some attention
from modelers due to its unusual properties (e.g., Asano &
Hayashida 2015; Hayashida et al. 2015; Paliya et al. 2016),
although no firm conclusions regarding the particle acceleration
mechanism have been drawn. Here we apply our steady-state
blazar acceleration and emission model to this problem.

The paper is organized as follows. In Section 2, we give a
brief summary of our jet model, which includes a steady-state,
self-consistent electron transport equation (including first- and
second-order Fermi acceleration; synchrotron and Compton
losses). In Section 3, we apply the model to the extreme 2013
December 20 g-ray flare of 3C 279 (as well as the preceding
quiescent period) to obtain new physical insights. We discuss
and interpret the results of the analysis in Section 4. We include
a derivation of the simplified analytic ED in Appendix A. In
Appendix B, we provide derivations related to the physical
interpretation of the ED shape.

2. Model

The blazar jet originates from a supermassive black hole
(BH), perhaps accelerated by a rapidly spinning BH threaded
with magnetic fields anchored in an accretion disk (Blandford
& Znajek 1977). The jet plasma moves outward from the BH,
and toward the observer, with some bulk Lorentz factor

( )bG = - -1 2 1 2, which is related to the relativistic bulk
speed v=βc, where c is the speed of light. The material moves
relativistically toward the observer, within some small angle
θ to the line of sight, leading to a Doppler factor d =D

[ ( )]b qG - -1 cos 1 . We assume d = GD .
The primary emitting region is modeled as a single, compact

homogeneous zone or “blob.” The co-moving blob is causally
connected by the light-crossing timescale, tvar, which is the
minimum variability timescale in the observer’s frame. Thus,
the radius of the blob (in the frame co-moving with the jet)
must be ( )/d¢ +R c t z1b D var , where z denotes the cosmolo-
gical redshift of the source. Radio emission is produced
throughout the jet via synchrotron emission (e.g., Blandford &
Königl 1979; Königl 1981; Finke 2019). The relatively small
size of the blob radius implied by the observed variability
timescales suggests that significant synchrotron self-absorption
occurs in the blob, making it unlikely that the blob is the source
of the observed radio emission. The radio emission thus
provides upper limits on the emission from the region
considered here.

2.1. Electron Energy Distribution

Throughout the data comparison process, we use the
numerical model, including the self-consistent ED (Paper II).
We describe the ED ( )gNe in the frame of the blob using a
steady-state Fokker–Planck equation,

˙ ( ) ( )
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where ( )g º E m ce
2 is the electron Lorentz factor, me is

the electron mass, and c is the speed of light in a vacuum.
Since this is a steady-state equation, we have set ¶ ¶ =N t 0e .
The acceleration and synchrotron energy loss timescales are
appreciably shorter than the observed rise time of the flare (see
Section 3.5), making the steady-state calculation appropriate in
this case. We note that we use the term “electrons” here and
throughout this paper to refer to both electrons and positrons.
In Equation (1), the energy-dependent particle escape

timescale, tesc, is related to the dimensionless escape parameter
τ via

( ) ( )g
t
g

=t
D

, 2esc
0

where

( )t º
¢R qBD

m c
, 3b

e

2
0

3

in the Bohm limit (Paper I), and q is the fundamental charge.
The Lorentz factor of the injected electrons is ginj in the particle
injection rate

˙ ( )
g

=N
L

m c
, 4

e
inj

e,inj

2
inj

where Le,inj is the electron injection luminosity. Both ginj and
Le,inj are implemented as free parameters, but the former is held
constant in the subsequent analysis at the lower numerical grid
limit to simulate a thermal particle source. We solved
Equation (1) using the full Compton energy loss rate
numerically, as described in Paper II.
In Equation (1), the broadening coefficient

( )s
g=

d

dt
D

1

2
, 5

2

0
2

is consistent with hard-sphere scattering, where µ -D s0
1 (Park

& Petrosian 1995) is a free parameter. The drift coefficient
expresses the mean rate at which each process contributes

( ) ( )( ) ( )
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where second-order Fermi acceleration occurs at a rate of

˙ ( )g g= D4 , 7sto 0

and

˙ ( )g g gº º+ +aD A , 8ad sh 0 ad sh

2
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where a is a dimensionless free parameter that includes first-
order Fermi acceleration and adiabatic cooling.5 The coeffi-
cients Ash and Aad represent the first-order Fermi acceleration
rate and the adiabatic loss rate, respectively. The rate of
synchrotron cooling is

∣ ˙ ∣ ( )g g
s
p

gº =D b
B

m c6
, 9

e
syn 0 syn

2 T
2

2

where s = ´ -6.65 10T
25 cm2 is the Thomson cross section

and B is the strength of the tangled, homogeneous magnetic
field. Similarly, the Compton cooling rate for each individual
component is

∣ ˙ ∣ ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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Here ( )b j
C is a dimensionless constant related to Compton

cooling for the different external radiation fields j, with energy
densities ( )u j

ph . The function H(y) is a complicated expression
related to mitigation of energy losses with the full Compton
cross section (Böttcher et al. 1997). We include a dust torus and
26 broad lines, for a total of J=27 EC components
(Finke 2016).

2.2. Thomson Regime Approximation

In the Thomson limit, y 1, ( ) H y 1, the steady-state
Fokker–Planck equation (Equation (1)) has the analytic
solution (see Paper I for details)
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syn 1 C , k m , and k m , are Whittaker
functions (Slater 1960), with coefficients
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We found the analytic Thomson regime solution,
Equation (11), previously (Paper I). Here we provide a useful
approximation,
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in the g g<inj regime (where most of our analysis takes place),
and where gb 1 and (bτ)−1=1 are the simplifying
assumptions, which are valid in all blazar analyses we have
examined, both here and in Paper II. The precision of these
assumptions is addressed further in Appendix A, however the
simplified solution is relatively accurate for most applications,
except where (bτ)−11.

The constraint gb 1 indicates that the rate of particle energy
lost to synchrotron (Equation (9)) and Thomson processes

(Equation (10), for ( )g =H 1)), where ( ( )= +b b b j
syn C ) must

be smaller than the rate at which energy is gained by the second-
order Fermi process (Equation (7)). Thus, the emitting blob must
be in the acceleration region, which can be demonstrated by the
energy budget for the flare presented in this work (Section 3.4).
Similarly, the requirement (bτ)−1=1 is analogous to the
expectation that the energy losses due to the synchrotron and
Thomson processes outpace energy lost due to particle escape
(i.e., the fast-cooling regime), which is apparent in the present
application by examining the energy budget (Section 3.4).
The full derivation and complementing solution for g g> inj

are given in Appendix A. The main shape of the ED is
governed by two components: one is driven by a balance
between first- and second-order Fermi acceleration ( gµ + ;a 2

orange curve in Figure 1) and the other is due to second-order
Fermi acceleration ( gµ - ;1 green curve in Figure 1; see
Appendix B). The ratio of first- to second-order Fermi
acceleration acceleration (parameterized by = +a A Dad sh 0)
impacts the shared term. When a<−2, the lower energy
power law is negative, and when a>−2, the gµ +a 2 term is
increasing with increasing energy. In practice, the shape of the
the term does not vary significantly for most analyses, but is
important in simulating the flare examined here. The
exponential cutoff is governed by the emission mechanisms,
which are constrained to the Thomson limit for the analytic
solution. Appendix A discusses the interpretation of the
acceleration mechanisms in the simplified solution in further
detail.
The analytic solution and others derived from it, are useful

for physical interpretation of the shape of the ED with regard to
acceleration mechanisms. However, all of the data interpreta-
tion here is performed with the full numerical model using the
full Compton cross section and energy losses.

2.3. Spectral Emission Processes

We include thermal emission from the accretion disk
(Shakura & Sunyaev 1973) and dust torus, in addition to
emission from the jet from synchrotron, SSC, and EC of dust

Figure 1. This sample ED uses contrived parameters to showcase the two
components from the g g inj branch of Equation (13). The orange line is given
by a balance between the the first-order Fermi/adiabatic and second-order
acceleration terms (Appendix B), and a>−2, giving a positive power law,
and an excess of high-energy particles. The green line is dominated by second-
order Fermi (stochastic) acceleration of particles to higher energies
(Appendix B). Both terms are independently affected by the exponential
cutoff due to emission mechanisms. The black line is the full Thomson regime
solution (Equation (11)).

5 For a>0 first-order Fermi acceleration dominates over adiabatic losses; for
a<0, the opposite is true.
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torus and BLR photons. The source 3C 279 has redshift
z=0.536, giving it a luminosity distance = ´d 9.6 10 cmL

27

in a cosmology where (h, Ωm, ΩΛ)=(0.7, 0.3, 0.7).
The νFν disk flux is approximated as

( )
⎛
⎝⎜

⎞
⎠⎟p

= -
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 f
d

e
1.12

4
, 14
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2
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4 3
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(Dermer et al. 2014), where ( )= +  z1obs and
=m c 10 eVe

2
max . The νFν dust torus flux is approximated

as a blackbody,
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where again ( )= +  z1obs , and also Θ=kBTdust/(mec
2),

Tdust is the dust temperature, and kB is the Boltzmann constant.
The jet blob νFν flux is computed using the ED solution to

the electron Fokker–Planck equation (Equation (1)), ( )g¢ ¢Ne .
We now add primes to indicate the distribution is in the frame
co-moving with the jet blob.

The synchrotron flux
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and R(x) is defined by Crusius & Schlickeiser (1986).
Synchrotron self-absorption is also included. The SSC flux
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(e.g., Finke et al. 2008), where ( ) d¢ = +  z1s s D, ¢ =*( ) d+ z1 D* , and
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The function FC(p, q) was originally derived by Jones (1968),
but had a mistake that was corrected by Blumenthal & Gould
(1970). The EC flux (e.g., Georganopoulos et al. 2001; Dermer
et al. 2009)
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and u* and * are the energy density and dimensionless photon
energy of the external radiation field, respectively. For the dust

torus photons,

( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

x
= = ´*

- -u u
T

2.2 10
0.1 1000K

erg cm , 22dust
5 dust dust

5.2
3

and

( )⎜ ⎟⎛
⎝

⎞
⎠= = ´ -  T

5 10
1000 K

, 23dust
7 dust

*

consistent with Nenkova et al. (2008). Here ξdust is a free
parameter indicating the fraction of disk photons that are
reprocessed by the dust torus. For the BLR photons,

( )
( )= =

+ b
u u

u

r r1
, 24line

line,0

blob line
*

where β≈7.7 (Finke 2016), rblob is the distance of the
emitting blob from the BH (a free parameter). The line radii
rline and initial energy densities uline,0 for all broad lines used
are given by the Appendix of Finke (2016) relative to the Hβ
line based on the composite Sloan Digital Sky Survey (SDSS)
quasar spectrum of Vanden Berk et al. (2001). The parameters
rline and uline,0 are determined from the disk luminosity using
relations found from reverberation mapping, as described by
Finke (2016) and in Paper II.

2.4. High-energy Attenuation

Since the analysis of the 2013 December 20 flare predicts
very high-energy g-rays, which could be attenuated, we include
gg-absorption from the dust torus and BLR photons following
Finke (2016). Absorption attenuates the emerging jet emission
by a factor [ ( )]t- gg exp 1 , where ( )tgg 1 is the absorption
optical depth and ò1 is the dimensionless energy of the higher
energy photon produced in the jet. We have computed the
Doppler factor where gg absorption with internal synchrotron
photons becomes important (e.g., Dondi & Ghisellini 1995;
Finke et al. 2008) and found that the minimum Doppler factor
is much lower than the value used in our models here (Table 1).
Therefore, we hereafter neglect internal synchrotron
photoabsorption.
Emission from the BLR comes from a relatively narrow

region at sub-parsec scales from the BH and different lines are

Table 1
Free Model Parameters

Parameter (Unit) Model A Model B1 Model B2 Model B3

tvar (s) 1.5×104 3.5×104 2.3×103 9.0×102

B (G) 1.3 0.07 0.21 0.3
δD 30 18 49 70
rblob (cm) 1.9×1017 1.4×1017 1.6×1017 1.3×1017

ξdust
a 0.1 0.1 0.1 0.1

Tdust
a (K) 1470 1470 1470 1470

Ldisk
a (erg s−1) 1.0×1045 1.0×1045 1.0×1045 1.0×1045

D0 (s
−1) 7.0×10−6 2.5×10−6 9.0×10−6 1.5×10−5

a −4.1 +1.0 −2.0 −0.5
γinj

b 1.01 1.01 1.01 2.01b

Linj (erg s−1) 8.8×1028 1.0×1032 8.5×1030 5.4×1030

Notes.
a Parameter held constant during analysis, although implemented as free.
b The positive slope in the ED at g  10 confounds the numerical normal-
ization scheme, but the results are essentially equivalent to a Model B3 with
γinj=1.01 due to low particle injection number.

4

The Astrophysical Journal, 884:116 (14pp), 2019 October 20 Lewis, Finke, & Becker



produced at different radii (e.g., Peterson & Wandel 1999;
Kollatschny 2003; Peterson et al. 2014), which can consist of
concentric, infinitesimally thin, spherical shells for each
emission line or concentric, infinitesimally thin rings Similarly,
the dust torus can be modeled as a ring with an infinitesimally
thin annulus or a more extended flattened disk with defined
inner and outer radii. After testing each geometry, we find
that in all cases gg-absorption is unimportant to model the
energy range studied here, although attenuation by dust torus
photons can have some effect at 800 GeV. The following
analysis utilizes the concentric shell BLR and ring dust
torus geometries, which are consistent with the emission
calculations.

3. Application to 3C 279: 2013 December Flare and
Preceding Quiescent Period

The 3 days immediately preceding the extreme, Compton-
dominant flare of the FSRQ, 3C 279, were quiescent and
apparently unremarkable for the source. This period, dubbed
“Epoch A” in Hayashida et al. (2015), where the data were
originally published occurred on 2013 December 16–19, and is
analyzed to look for any unusual parameter values and to
provide context for the flare analysis. The isolated g-ray flare
occurred during a 12 hr period on 2013 December 20, dubbed
“Epoch B” by Hayashida et al. (2015). In both Epochs A and
B, besides the g-ray data from Fermi-LAT, optical and IR data
were collected by the Kanata Telescope and the Small and
Medium Aperture Research Telescopes (SMARTS). During
Epoch A, radio observations were made by the Submillimeter
Array (SMA), UV and optical data were collected by Swift’s
Ultraviolet and Optical Telescope (UVOT), and X-ray data
were collected by both NuSTAR and Swift-XRT. Due to the
unexpected nature and short duration of the flare (Epoch B),
there were no radio or X-ray observations during that time. We
analyzed these SEDs using the model described in Section 2
with the full Compton expressions for radiative cooling and
emission, and the numerical solution to the Fokker–Planck
equation.

3.1. Particle Acceleration and Spectral Emission

We first analyzed Epoch A with our model. The νFν SED
data for Epoch A is shown in Figure 2 with our model result,

and our model parameters are in Table 1. Figure 2 demonstrates
that the g-ray data is described by a 27 component EC model,
including the dust torus and a stratified BLR. Scattering of dust
torus photons is the largest single contributor to the production
of g-ray emission, although the sum of all BLR photon
scattering is similar. The X-ray data are predominantly
reproduced by the SSC process although EC/dust contributes
heavily at harder energies. The IR-UV data is reproduced
primarily by synchrotron radiation, which includes self-
absorption at lower energies. Note that the radio emission is
produced outside of the modeled region, so that the data are
upper limits on the model.
Figure 3 shows spectral data for Epoch B, which was

observed during a 12 hr period on 2013 December 20,
immediately following Epoch A. There are no X-ray data
available during the 12 hr of peak flare for Epoch B, on 2013
December 20, and as shown in the analysis of Epoch A
(Figure 2), the X-rays constrain primarily the SSC component
of the spectrum. Thus, the variability timescale tvar and Doppler
beaming factor dD are not well constrained for this epoch.
However, since the ED informs the SED and the parameters for
the SED emission are all included in the ED as loss parameters,
none of the jet components in the spectral model are fully
independent from one another. We explore the parameter space
with three models, each making different predictions for X-ray
emission. Our model parameters for each one are in Table 1.
Model B1 is the only one to reproduce the “ankle” in the g-ray
spectrum (i.e., the change in spectral index around 300 MeV),
but requires a high SSC flux not previously observed for this
source, leading to a very hard X-ray spectrum. For all of the
Epoch B models, the g-ray emission is dominated by scattering
of BLR photons (unlike our model for Epoch A, where it was
dominated by the scattering of dust photons). Model B2 is an
intermediate possibility and predicts a more moderate X-ray
spectrum. Model B3 has both the lowest flux and the lowest
frequency peak for the SSC. Model B3 also has the smallest
timescale for particle acceleration (Section 3.5), which is
important since the flux-doubling timescale for the flare was
quite short (∼ 2 hr). Model B3 has a high Doppler factor,
indicating a very high blob velocity. All of the models for
Epoch B have different dD (and therefore G) from the Epoch A
model. However, this is not a problem, as the emission in

Figure 2. SED of 3C 279 during Epoch A (2013 December 16–19; Hayashida
et al. 2015) and our model results. Curves are labeled in the legend.

Figure 3. SED of 3C 279 during Epoch B (2013 December 20; Hayashida
et al. 2015) and our three model results (Models B1, B2, and B3). Curves are
labeled in the legend. The data and model for Epoch A are also shown in light
gray for reference.
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Epochs A and B are likely produced by different blobs, which
can be moving with different G, since within a few days for the
observer, the distance of a given emitting blob from the BH
rblob will change significantly. In Figure 3 the results of the
Epoch A analysis are also shown for reference, demonstrating
both the difference in the observed g-ray spectra, as well as the
possible changes to the X-rays. All of the B models have harder
X-ray spectra for the flare than was observed during the
quiescent period, which is qualitatively consistent with the
optical and g-ray hardness changes. Hayashida et al. (2015)
estimate the Compton dominance AC�300 for Epoch B, and
thus classify the flare as a rare, extreme Compton flare. We
predict Compton dominance values up to AC=1800 for
Model B3 (Table 2).

Throughout the simulations, we hold constant several
parameters that the model can in principle vary (see Table 1).
The parameters Ldisk, ξdust, and Tdust are not expected to vary
significantly on timescales of days. The Lorentz factor of
particles injected into the base of the blob ginj is generally taken
to be near unity as these particles are expected to originate from
the thermal population in the accretion disk. However the
numerical machinery can produce incomplete solutions for
positive ED slopes near ginj when g ginj max is very small (and
for negative ED slopes near ginj as g ginj max goes to 1). Thus,
for Model B3, we used g = 2inj . However, since the number of
particles injected into the blob is low compared to the total
number of particles in the ED at the injection energy, the ED
solution is effectively the same.

Models A, B2, and B3 have stronger second-order Fermi
acceleration (as indicated by a larger D0), while in Model B1 a
first-order Fermi process dominates over adiabatic cooling
( >+A 0ad sh ). Notably, all of the models are able to represent
the available broadband multiwavelength data, suggesting that
it is possible for Fermi acceleration processes to meet the
acceleration requirements for the observed emission.

In Figure 3, the data suggest that the peak luminosity of the
synchrotron emission decreases during the flare, which might
indicate a decrease in the magnetic field B for a similar particle
distribution. In Model B1, this effect is exaggerated, with the
particle distribution being much more energetic than in Model
A, and thus the magnetic field strength is especially low (see
Table 1).
The dust and BLR energy densities (udust and uBLR,

respectively) represent the energy in the incident photon fields
in the AGN rest frame, and that are available for EC scattering.
The combined BLR energy density is elevated by a factor of a
few in Model B1 from the Model A values, which are within
the previously observed range. The elevated energy density of
EC photon sources should be expected of an orphaned g-ray
flare for a similar ED, since the Compton dominance AC is high
(see Table 2). However, in the case of Model B1, the requisite
external energy densities are lower because more of the
scattering energy is provided by the elevated energy in the ED.
Thus Model B1 has more moderate energy requirements from
the environment outside the jet than Models B2 and B3.
Models B2 and B3 employ more moderate estimates of the

SSC flux, and the magnitude and spectral index in the X-rays
are closer to those observed during Epoch A (Figure 3). In both
Models B2 and B3, the magnetic field B0.3 G (Table 1), is
consistent with the analysis in Hayashida et al. (2015). These
higher (than Model B1) values for the magnetic field strength
produce similar synchrotron simulations because in Models B2
and B3, there is less energy in the jet electrons (Figure 4) and a
lower dD. Additionally, the lower energy ED requires higher dD
and higher energy densities of the external radiation fields due
to dust and the BLR to maintain the Compton dominance in the
EC portion of the simulation.

3.2. The Particle Distribution

Since the ED for each SED is produced independently from
the others, and is an integral part of the simulation, it is
instructive to look at the shapes produced for each model.
Figure 4 has ED curves for each SED model in Figure 3, with
the same color scheme. Model A (gray) appears as a relatively
simple power law with an exponential cutoff, which is due to
the balance between first-order Fermi (including adiabatic

Table 2
Calculated Parameters

Parameter (Unit) Model A Model B1 Model B2 Model B3

aRLy (cm) 2.7×1016 2.7×1016 2.7×1016 2.7×1016

RHβ (cm) 1.0×1017 1.0×1017 1.0×1017 1.0×1017

¢Rb (cm) 8.5×1015 1.2×1016 2.4×1015 1.2×1015

fj,min () 1.3 2.4 0.4 0.5

PB (erg s−1) 8.2×1044 1.6×1042 4.5×1042 5.0×1042

Pe (erg s−1) 8.6×1045 2.2×1046 9.0×1045 4.3×1045

ζe
a 1.0×101 1.4×104 2.0×103 8.5×102

μa
b 3.8 8.8 3.6 1.7

uext (erg cm−3) 3.5×10−4 9.6×10−4 5.8×10−4 1.3×10−3

udust (erg cm
−3) 1.6×10−4 1.6×10−4 1.6×10−4 1.6×10−4

uBLR (erg cm−3) 1.9×10−4 8.0×10−4 4.2×10−4 1.1×10−3

AC 4.7 1600 800 1800
Ljet (erg s−1) 5.0×1044 5.4×1046 4.5×1045 3.1×1045

σmax 4.3 2.9 2.2 1.8

Notes.
a
ζe=ue/uB=Pe/PB is the equipartition parameter, where ζe=1 indicates

equipartition.
b ( )m º +P P Pa B e a is the ratio of jet to accretion power. Magnetically
arrested accretion explains values of μaa few.

Figure 4. Numerical EDs for the model SEDs in Figure 3. Models B2 and B3
have more particles at higher energies than Model A. Similarly, Model B1 has
the most particles occupying the highest energies.
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expansion) and second-order Fermi accelerations, where the
ratio between the two a=−4.1<acritical=−2, thus ( )gN is
decreasing with increasing g . The second-order Fermi accel-
eration dominated portion of the solution is subdominant in
Epoch A (acceleration dependencies in the ED are derived in
Appendix B).

In each of the Epoch B model EDs, both terms from
Equation (13) are apparent, but they are arranged differently in
Figure 4 than in Figure 1. The second-order Fermi term, which
was cut off around g ~ 10max

5 in Figure 1 is cut off at
g ~ 10max

7 for Model B1 and g ~ 10max
6.5 for Models B2 and

B3 (Figure 4). It is interesting to note that for Model B1, the
second-order Fermi component dominates at 102γ 105.
All of the cutoffs occur at much higher Lorentz factors than
Model A, indicating that acceleration is providing more energy
to the particles. So, regardless of the particular simulation, the
flare requires more high-energy particles than does the
preceding quiescent period. The feature in the EDs at
g » 103.5 is due to the first-order Fermi/adiabatic/second-
order Fermi term in Equation (13). Model B2 has a=−2,
which produces a slope of 0 in that term. Models B1 and B3
have a>−2, and produce positive slopes at g  103.5 in the
balanced term. Positive slopes indicate that acceleration
outpaces emission in that energy range. However, the
combined term acceleration is damped by emission mechan-
isms at much lower energies than the second-order Fermi
dominated term for all three Epoch B models.

The approximation Equation (13) is based on the analytic
derivation in the Thomson limit. In the numerical solution, we
include the full Compton cross section, and it is possible to
separate the loss mechanisms. Figure 5 shows the rate of
energy gain and loss at each Lorentz factor for Model B1. The
red acceleration curve in Figure 5 is given by the sum of
acceleration rates for first- and second-order Fermi processes
(Equations (8) and (7), respectively). Acceleration dominates at
Lorentz factors g  103.5, where it is intersected by the blue
Compton curve, which corresponds to the first turnover in the
ED (Figure 4). The Compton loss rate (Equation (10)) changes
at higher energies due to the Klein–Nishina effect, which
allows it to trace the acceleration rate through g ~ 105, causing
a decline in the ED over the same range (Figure 4). The
synchrotron loss rate (Equation (9)) is subdominant until

g  106, at which point it provides the definitive exponential
cutoff to the ED.

3.3. Jet Dynamics and Geometry

Our model gives rblob∼(5–7)×1017 cm during previous
quiescent and flare states of 3C 279 (Paper II). If the X-ray
emission does not significantly change between Epochs A and
B, then the emitting region size ¢Rb may decrease as
acceleration and emission increase. In all our models the
minimum jet opening angle has a reasonable value.
It is clear within our analysis that first- and second-order

Fermi accelerations are sufficient to power the observed flare,
even assuming that the source particles are from a thermal
distribution. Thus, no other forms of acceleration are necessary
to explain the behavior. However, we briefly explore
reconnection because it is part of the existing conversation in
the literature of this particular flare’s acceleration. Magnetic
reconnection can in principle describe a rapid flare with very
short variability timescale and a hard particle spectrum, both of
which are observed. It requires a magnetization parameter,
s 1. This can be constrained by (Paper I)

( )s s< =
¢D R

c

3
, 25b

max
0

based on the maximum Larmor radius of an electron that fits
inside the blob. The model calculations of σmax can be found in
Table 2. In all models, σmax∼1. Since particle reconnection
generally requires σ?1 , a lack of particle acceleration by
reconnection is consistent with our models. First- and second-
order Fermi acceleration are sufficient to explain the emission
during the epochs explored here.
Equipartition is used in a wide range of astrophysical

analyses, and can be used as a simplifying assumption for
otherwise poorly constrained parameters (e.g., Dermer et al.
2014). There is an uncertainty involved, since the power in
protons (either accelerated or “cold”) is poorly constrained
from the modeling (e.g., Beck & Krause 2005). In the
discussion in the rest of this section, we neglect the presence
of protons in the jet; however, this uncertainty should be kept
in mind. In our models for 3C 279 we find the power in the
field PB is not always equivalent to the power in the jet
electrons Pe, although PB∼Pe within an order of magnitude or
two for previously examined epochs (Paper II). Our Model A
analysis shows the quiescent jet was close to equipartition
(Table 2), where the equipartition parameter z º =P P 1e e B
represents an equipartition state. However, in all of the B
models PB=Pe (Table 2), and the jet is strongly electron
dominated. The larger the frequency integrated flux, the larger
the equipartition parameter for Epoch B. This is consistent with
the analysis by Hayashida et al. (2015) for the Epoch B flare;
they also found the jet was matter dominated. A matter
dominant jet might be indicative of a larger than usual influx of
electrons into the emitting region. An analysis for Epoch B was
attempted, in which PB≈Pe, but the jet opening angle was
unphysically large, and therefore it is not presented here.
Neglecting protons, the total jet power PB+e=Pe+PB. For

a maximally rotating BH, one expects that the accretion power
Pa=Ldisk/0.4, giving = ´ -P 2.4 10 ergsa

45 1 for our models.
For all our models except Model B1, m º +P Pa B e a is a factor ∼
a few (Table 2). This is consistent with extracting spin from a
BH with a magnetically arrested accretion disk (Tchekhovskoy

Figure 5. Electron acceleration rate and synchrotron and Compton scattering
radiative loss rates in the co-moving frame for Model B1.

7

The Astrophysical Journal, 884:116 (14pp), 2019 October 20 Lewis, Finke, & Becker



et al. 2011). However, for Model B1, μa=8.8, which may be
too large too extract from the Blandford & Znajek (1977)
process.

The total jet luminosity due to particle radiation (e.g., Finke
et al. 2008)
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is reported in Table 2. The radiative efficiency Ljet/PB+e is
expected to be <1. This is indeed the case, for all models
except for Model B1.

Based on the excessive μa and large radiative efficiency
(Ljet/PB+e>1), we believe Model B1 is unphysical and
cannot explain Epoch B.

The injection luminosity Linj of Epoch A is similar to other
injection luminosities we have found for 3C 279 in other
epochs (Paper II). The injection luminosities for the B models
are somewhat higher due primarily to the increased rate of
particle injection. This supports the idea of an influx of
particles from the accretion disk area instigating the flare.

3.4. Energy Budget

One benefit of the Fokker–Planck equation (or transport
equation) formalism is the conservation of energy. We can
compute the rate of energy gains and losses in electrons (in the
co-moving frame: that is, injected into the system ( ¢Pinj);
escaping the system ( ¢Pesc); accelerated by the second-order
Fermi acceleration process ( ¢Psto); accelerated by first-order
Fermi acceleration or lost by adiabatic expansion ( ¢ +Psh ad); lost
by synchrotron ( ¢Psyn) or EC radiation ( ¢PEC)). The first-order
Fermi acceleration and adiabatic losses are taken together,
since in practice separating them introduces an unconstrainable
free parameter in our formalism. (See Paper II for the details on
how these rates are calculated.)

The component powers resulting from our simulations for the
epochs examined here can be found in Table 3. The relative error
percentages found by adding up the powers are low (within
expected numerical errors), indicating the expected energy balance.

Since in all cases ¢ > ¢ +P Psto sh ad, the particles are primarily
accelerated by the second-order Fermi process, rather than first-
order Fermi acceleration. This is consistent with our results for
other SEDs in Papers I and II. First-order Fermi acceleration
dominates over adiabatic losses for only Model B1, since this is
the only simulation where ¢ >+P 1sh ad . This is consistent with
this being the only model with >+A 0ad sh (Table 1). For the
other models, adiabatic losses are an important energy loss
mechanism. For Model A, adiabatic losses dominate over
radiative losses by a factor of ∼100. For Models B2 and B3,

they are the same order of magnitude as radiative losses. We
note the Epoch B models have a much larger ¢ ¢P PEC syn than the
Epoch A simulation, as expected, since Epoch B has a much
larger AC than Epoch A.
The injection energy is not an important contribution to the

energy budget. The escape power is always slightly larger in
magnitude than the injection power because the escape occurs
in the Bohm limit, meaning higher energy particles are
preferentially lost from the electron population (Paper I).

3.5. Acceleration Timescales

An additional benefit of the particle transport method we
employ is the ability to compare the timescales for each
physical process, as expressed by the coefficients in
Equations (7)–(10), which have units of [s−1] (Paper I). Of
particular interest during the flare is the acceleration timescale,
because the flare duration is short (∼12 hr) and the flux-
doubling timescale is rapid (∼2 hr). Hence the acceleration
mechanism providing energy to the flare must act on
commensurate timescales (e.g., Hayashida et al. 2015; Paliya
et al. 2016).
The mean timescale for the second-order Fermi acceleration

of electrons via hard-sphere scattering with magnetohydro-
dynamic (MHD) waves is computed in the frame of the
observer using

( )
d

=
+

t
z

D

1 1

4
, 27sto

D 0

where the factor of 4 comes from the derivative separating the
broadening and drift coefficient components of the second-
order Fermi up-scattering. First-order Fermi acceleration is
closely linked with adiabatic expansion in the transport model
during analysis of the SED, since both processes have the same
energy dependence (Paper I). However, we constrain the first-
order Fermi acceleration timescale by assuming that the energy
loss rate due to adiabatic expansion during the flare, Aad

flare, is
the same as during quiescence, Aad

quiescent. Thus, the first-order
Fermi acceleration timescale during the flare can be constrained
using Model A as the limiting case, which yields

( )
d
+

-+

t
z

A A

1 1
, 28sh

D ad sh
flare

ad
quiescent

where +A Aad
quiescent

sh ad
quiescent (values in Table 1). The total

acceleration timescale, tacc, depends on both the first- and
second-order Fermi timescales, tsh and tsto, respectively, via

( )=
+- -t

t t

1
, 29acc

sh
1

sto
1

Table 3
Power in the Physical Components

Variable (Unit) Model A Model B1 Model B2 Model B3

¢Pesc (erg s−1) −6.0×1031 −5.3×1035 −9.6×1033 −2.9×1033

¢Pinj (erg s−1) 8.8×1029 1.0×1032 8.6×1030 1.3×1031

¢Psto (erg s−1) 3.2×1043 1.9×1044 7.2×1042 1.4×1042

¢ +Psh ad (erg s−1) −2.4×1043 +4.7×1043 −3.6×1042 −1.8×1041

¢Psyn (erg s−1) −2.4×1041 −6.3×1041 −1.3×1040 −3.0×1039

¢PEC (erg s−1) −8.6×1041 −2.4×1044 −3.6×1042 −1.3×1042

%σerr 2.9 0.03 0.03 0.04
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where the value of tsh is an upper limit given by Equation (28).
The values provided in Table 4 for tacc are therefore also upper
limits. Thus, first- and second-order Fermi acceleration rates, as
included in the model, are sufficiently rapid to produce the
observed flux-doubling timescale for the 2013 flare.

4. Discussion

In the following section, we discuss the physical implica-
tions of the analysis, compare our results with previous
literature, and summarize our primary findings.

4.1. Physical Interpretations

Blazar jets are thought to contain standing shocks (e.g.,
Marscher et al. 2008). A superluminal blob passing through a
standing shock will increase the amount of first-order Fermi
acceleration (e.g., Marscher 2012), which is consistent with the
Epoch B models, compared with our model for Epoch A
(Table 1). MHD simulations demonstrate that first-order Fermi
acceleration gives rise to higher levels of stochastic turbulence
downstream of the shock (e.g., Inoue et al. 2011), which agrees
with the increase in second-order Fermi acceleration during the
flare analyses (Table 1). Both the first- and second-order Fermi
acceleration contribute to the higher maximum electron Lorentz
factor as well as the higher number of high-energy particles
(see Figure 4). These are important to the higher frequency
position of each emission component in the SED.

As particle energy increases, so does the Larmor radius
( g= - -r m c q BeL

2 1 1). A particle with a larger Larmor radius,
will travel preferentially closer to the edge or sheath of the jet
(e.g., Hillas 1984). If the magnetic field is radially dependent
(stronger near the jet core), then the apparent magnetic field of
the jet may be lower by a factor of a few when more particles
spend more time near the edge of the emitting region in the jet.
Massaro et al. (2004) discuss a log-parabolic particle distribu-
tion (which can be formed by second-order Fermi acceleration;
Tramacere et al. 2011) as one in which the confinement
efficiency of a collimating magnetic field decreases with
increasing gyro-radius. This physical interpretation can explain
the smaller magnetic field (Table 1) and the greater loss to
escaping particles (Table 3), during the flare.

In Model B1, the first-order Fermi acceleration contributes
more than in Models B2 and B3. This is consistent with the
smaller bulk Lorentz factor (recall we assume d = GD ,
Table 1), since increased first-order Fermi acceleration
indicates a given particle is scattered through the shock front
more times. Thus, even larger Larmor radii may indicate that
emitting particles occupy some of the jet sheath, where the
magnetic field is significantly lower, which explains the 95%
drop in field strength in the analysis of the flare (Table 1).
While the interpretation is somewhat more extreme for Model
B1, the second-order Fermi acceleration coefficient and
variability timescale are more similar to Model A than are
Models B2 and B3. However, Model B1 has an unphysical

radiative efficiency (Table 2), suggesting that the simulation of
extreme SSC emission employed therein is not an appropriate
representation of the data.
Models B2 and B3 are also well described by a large influx

of material injected into the base of the jet, which may
strengthen the effects of particle acceleration at a shock while
temporarily weakening the comparative power of the magnetic
field, without initiating widespread reconnection. It would be
particularly interesting to study high-energy polarization in
blazar flares, especially as several new instruments are in the
planning stages. X-ray and g-ray polarimetry can more
definitively separate leptonic from hadronic models, elucidate
the shock versus magnetic reconnection debate, and provide a
new avenue through which to explore the geometry of the
acceleration/emission region (e.g., Dreyer & Böttcher 2019).

4.2. Comparison with Previous Work

Besides reporting on the 2013 December epochs that we
model here (and other epochs that we do not consider),
Hayashida et al. (2015) also modeled these epochs with the
BLAZAR code (Moderski et al. 2003). They used a double
broken power-law ED to model Epoch A, and a broken power-
law distribution to model Epoch B. Similar to our modeling,
Hayashida et al. (2015) found that EC/dust dominated the
g-ray emission during Epoch A and EC-BLR dominated during
Epoch B. For Epoch A, they found a larger magnetic field,
lower G, and larger rblob. They modeled Epoch B with two sets
of parameters. Their model parameters for this epoch are
generally similar to ours for our Models B2 and B3, although
or magnetic field for our Model B1 is quite lower compared to
their models. Our models for Epoch B have similar rblob, but
larger G for our Models B2 and B3.
Asano & Hayashida (2015) model the 2013 December flare

with a time-dependent model (Asano et al. 2014) that treats
particle acceleration quite similar to ours. They model both the
SED and the g-ray light curve. In their model, scattering of a
UV field (presumably representing a BLR) dominates the g-ray
emission and they have G = 15 and rblob∼6×1016 cm, so
their emitting region is closer to the BH than in our models (to
a degree consistent with our use of a stratified BLR, Paper II).
Their model successfully reproduces the observed LAT γ-ray
light curve, although the high G may be a problem for models
of jet acceleration by magnetic dissipation.
The 2013 flare was further examined by Paliya et al. (2016)

using time-dependent lepto-hadronic and two-zone leptonic
models. Those authors examined a 3 day window that included
the flare, and noted a 3 hr flux-doubling timescale. They
adopted a smooth broken power law as the particle distribution,
and found that the isolated flare could represent γ-ray emission
from a smaller blob, while the rest of the spectrum was
produced in a larger volume. Another possibility is that proton
acceleration could power the enhanced g-ray emission. The
inclusion of significant non-flare data in the analysis of Paliya
et al. (2016) raises concerns about identifying the physics of the
flare specifically. Hence the shape of the ED and the nature of
the associated particle acceleration mechanism(s) during the
2013 flare from 3C279 are still open questions.

4.3. Summary

Our model from Paper II included a numerical steady-state
solution to a particle transport equation that included first- and

Table 4
Simulated Emission and Acceleration Timescales

Variable (Unit) Model A Model B1 Model B2 Model B3

tsto (hr) 0.7 2.5 0.2 0.1
tsho (hr) L  1.1 3.5 0.5
tacc (hr) �0.7 0.7 0.2 0.1
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second-order Fermi acceleration and particle escape. Particles
in this single homogeneous blob can lose energy to adiabatic
expansion, synchrotron radiation, and inverse-Compton scat-
tering of incident photon fields, including SSC, EC/disk, EC/
dust, and EC/BLR, where the BLR is composed of 26
individual lines radiating at infinitesimally thin concentric
shells. We added to this gg-absorption due to the accretion
disk, dust torus, and stratified BLR consistent with the emission
and Compton scattering geometry (Finke 2016). We applied
our model to the SED of the extremely Compton-dominant
flare of 3C 279 observed on 2013 December 20 (Hayashida
et al. 2015). The preceding 3 days of quiescent data are
similarly analyzed as a baseline for the flare simulations. We
derive a simplified version of the Thomson regime approx-
imation (Paper I), which assists in the interpretation of the ED.
Our primary results are as follows:

1. It is possible to simulate the acceleration in the flare SED
with reasonable levels of only first- and second-order
Fermi processes (with the latter process dominating in our
models). Acceleration by reconnection is not needed, and
the maximum magnetization parameter (σ) found from
our model parameters is consistent with this.

2. It is possible for the BLR to be the dominant EC
component without significant gg absorption from BLR
photons.

3. The quiescent period displays electron and field powers
near equipartition, while the flare is strongly electron
dominated.

4. There is insufficient energy available for the X-rays to
have undergone a flare comparable to the g-ray flare
simultaneously.

5. The simplified ED analysis clarifies that first- and second-
order Fermi acceleration can influence different compo-
nents of the overall ED.

6. Based on our modeling of Epoch B, the νFν flux at
≈10MeV is likely< - - -10 ergs cm9 1 2 (i.e., Model B1 is
highly unlikely). The emission in this energy range could
be probed by a future g-ray mission such as e-Astrogam
or the All-sky Medium Energy Gamma-ray Observatory
(AMEGO), which could provide further constraints on
blazar SEDs.

This model has been informative in the analysis of this
particularly unusual flare. We plan to use the same model to
analyze other intriguing blazar behaviors. Additionally the
simplified analytic ED can be applied to astrophysical jets more
broadly, where both first- and second-order Fermi acceleration
are expected to contribute.

We thank the anonymous referee for insightful comments,
which improved the presentation and clarity of the manuscript.
We thank Masaaki Hayashida for furnishing the SED data for
our analysis. T.R.L was partially supported by a George Mason
University Dissertation Research Grant and the Zuckerman
Institute as a Zuckerman Postdoctoral Scholar. J.D.F. was
supported by NASA under contract S-15633Y.

Appendix A
Derivation of the Thomson ED Features

In Paper I, the electron transport equation is solved
analytically in the Thomson limit. That steady-state analytic

solution (Equation (11))
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˙ [ ]
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introduces the idea that the ED shape can be interpreted
physically if it comes from first principles. In this appendix,
that solution is simplified by making some mathematical
approximations for the phase spaces applicable to the physical
regimes of interest for blazars. The simplified functions
provided, may provide insight into a broader range of blazar
activity in consistent parameter spaces, as well as any
astrophysical jet for which the same assumptions are valid.
The ED as stated in Equation (11) for the steady-state

solution is branched, with continuity enforced at the injection
energy. The derivation begins with the branch above the
injection energy, g g<inj
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because the injection energy is almost always smaller than the
energies of interest in the rest of the ED, since the injection
energy originates from a thermal distribution before arriving in
the emitting blob.
The Whittaker functions are replaced with their confluent

hypergeometric counterparts

( )
˙

[ ]
[ ]

[ ]

[ ] ( )

( )

( ) ( )

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

g g g
g

g m k
m

g
g

m k m g
g

g

m k m g

=

´ -
G + -

G +

´
-

´ + - +

´
-

´ + - +

m m

m m

- - -

+ +

+ +

N
N

D
b

b

b

b
b

M b

b
b

U b

exp
2

exp
2

1 2

1 2

exp
2

1 2 , 1 2 ,

exp
2

1 2 , 1 2 , , 32

a ainj

0

1 2
inj

2 2 inj

inj 1 2
inj
1 2

inj

1 2 1 2

(Slater 1960), and the electron number distribution is
simplified,
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where the Whittaker coefficients are
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as stated after Equation (11).
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The exact expression for the confluent hypergeometric U-
function is given by

[ ˆ ˆ ˆ]
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2
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b1

(Slater 1960; Abramowitz & Stegun 1972), which is undefined
for nonpositive integer inputs to the G-functions.

In comparing the model with blazar SED data, the combined
emission coefficient is small (b∼10−6), which makes the final
argument in the confluent hypergeometric functions small at
most Lorentz factors for which there is a meaningful number of
electrons (g - bmax

1). When gb 1 is assumed, the
confluent hypergeometric M-function can be approximated as

[ ˆ ˆ ˆ ] ( ) =M a b x, , 0 1 36

(Slater 1960; Abramowitz & Stegun 1972). Thus, the electron
number distribution can be expressed as
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3

with appropriate substitutions, and incomplete factoring which
becomes convenient. It will also become convenient to name
the first term on the right-hand side of the equation (RHS-1)
and the second term on the right-hand side of the equation
(RHS-2).

Both terms (RHS-1 and RHS-2) can be simplified, using
combinations of the reflection and recursion relations for
G-functions,

[ ] [ ]
[ ]

( )p
p

G G - =z z
z

1
sin

, 38

and

[ ] [ ] ( )G + = Gz z z1 , 39

respectively (Abramowitz & Stegun 1972).
Applying Equations (38) and (39) to the ED in

Equation (37), the solution is simplified to
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In each blazar and epoch examined in this work and previous
analyses (Papers I and II) the Bohm timescale τ?b−1. It
follows that ( ) ∣ ∣t +-b a 31 , and adopting this approx-
imation, the G-functions can be simplified as
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since [ ] ( )G = +- z z z1 2 for z=1 (Abramowitz & Stegun
1972). Applying the approximation in Equation (41) to the ED
in Equation (40) gives
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This equation was tested for a range of parameter values, and
found to agree completely with the analytic solution for
parameters consistent with the stated assumptions, namely,
g g> inj, gb 1 and (bτ)−1=1.

Figure 6 explores the precision of the approximations in the
simplified analytic ED (Equation (42)) in comparison to the full
analytic Thomson ED (Equation (31)) for g g<inj . The
parameters used in this example are similar to those from
Model B1 (Table 1), however that model formally included the
Klein–Nishina cross section. Mathematically, we assume that
gb 1 in order to use the approximation in Equation (36),

however at g ~ 107, g ~b 25 for the case where (bτ)−1=1
(black and cyan), and there is no discernible difference between
the simplified and Thomson solutions. Attempts at increasing
the value of b, generally resulted in both solutions experiencing
exponential drops at a comparably smaller Lorentz factor g .
Thus, the approximation is fairly robust. Conversely, Figure 6
demonstrates that the simplified ED is more sensitive to the
limit (bτ)−1=1 required for Equation (41). When the limit is
satisfied, the simplified and Thomson solutions are in
agreement (black and cyan), and where (bτ)−1?1, the
solutions diverge. In the case of (bτ)−11, the simplified
solution is visibly different, but perhaps sufficient for some
applications.
Equation (42) is shown in Figure 7 for a sample set of

parameters that illustrate the features well, and wherein only
the first-order Fermi/adiabatic parameter a is varied, while all
other parameters are fixed. The high-energy turnover in the ED
is controlled by the leading exponential g-e b . RHS-1 from
Equation (42) can be the dominant term throughout, especially
for more negative values of a in this example, but also
depending on b and D0 more generally. For less negative (or
increasingly positive) values of a, sometimes, RHS-2 becomes
the dominant term at low energies, depending on the relative
magnitude of each power law. RHS-2 is defined by a g-1

power law in all cases, until the exponential turnover. RHS-1 is

Figure 6. Simplified ED (Equation (42)) is more sensitive to the limit of
(b τ)−1=1 than to gb 1, when compared with the full Thomson ED
(Equation (31)) in the g g<inj regime.
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defined by a g +a 2 power law, which is why the lower energy
slope of this curve changes with a, and always produces a
horizontal feature for a=−2, regardless of the other
parameters.

In this paper, we argue against using substantial injection
energies. Thus, all of our EDs are essentially calculated for
g g inj. However, the original steady-state analytic solution
(Paper I) did not carry that constraint. So, for completeness, in
the case where g g inj, the ED is given by
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Following the same arguments presented above, the ED can be
simplified to
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In this approximate ED, RHS-1 is identical to RHS-1 in
Equation (42), and essentially makes no contribution. In
Equation (44), RHS-2 normalizes the ED to the appropriate
magnitude for the injection energy, and g +a 2 still governs the
shape.
For physical SED evaluations, the analysis tends to

concentrate in the regions of parameter space where RHS-1 in
Equation (42) dominates. This expression could be helpful to
those who assume a power-law ED with an exponential cutoff,
since it provides a physical interpretation behind that general
shape, including first-order Fermi and diffusive acceleration, as
well as synchrotron and Thomson emission. However the
analysis of Epoch B demonstrates the usefulness of the full
simplified solution in Equation (42) for a variety of ED shapes.
To further expound upon Equation (42), the leading factor
g-e b provides a turnover in the ED at high energies, which is

dependent upon the nonthermal cooling coefficients for
synchrotron radiation and Compton scattering. Note the first
term on the right-hand side of Equation (42), where

( )g gµ +N a 2 implies that where this term dominates, the
lower energy slope is defined by (a+2), where the first-order
Fermi acceleration/adiabatic expansion coefficient a is often
negative in blazar spectral analysis (Papers I and II), and will
always be flat for a=−2.
There are parameter regimes, especially in the samples

provided in Figure 8, where a>−2, and it is possible to see
the second term in Equation (42) become dominant in the lower
energy domain (but still above the injection energy). In this
scenario, the change occurs where the two terms in
Equation (42) become equivalent, or at the Lorentz factor

[ ] ( )
( )

⎜ ⎟⎛
⎝

⎞
⎠g g

t
= =

G + +

b

a

b

1 3
, 45

a

dip

1 3

as is the case for the Epoch B analysis in Section 3.
For g g g< <inj dip, if RHS-2 dominates in Equation (42),

then the electron population is dominated by diffusion from the
injection energy. The steady-state solution contains a contin-
uous, monochromatic particle injection, and the transport
equation allows the electron population to evolve over time,
where the steady-state is an equilibrium snapshot. The second
term (RHS-2) electrons are those that did not have time to get
sufficiently caught up in the acceleration processes to lose the
signature of their initial injection.
For g g< < b1dip tot, RHS-1 of Equation (42) tends to

dominate. In this domain, acceleration and diffusion processes
are in perfect balance with one another, and there is no net
transport. However, it is possible for the “acceleration” portion
to be negative due to adiabatic expansion, hence electrons are
“accelerated” to lower energies. When acceleration a is
stronger (more positive), gdip is pushed to higher energies, as
the electrons form an increasingly bimodal distribution (see
Figure 8).

Figure 7. ED for changing a values, where the dotted lines are the separate
terms in Equation (42). The dotted curves for RHS-1 are those which dominate
the ED at higher energies, while the dotted curves for RHS-2 are shown in the
same color scheme. The dotted curves for RHS-2 are only shown if they have a
region of dominance (at lower energies) in the overall ED; otherwise they were
suppressed for clarity because they crowded the existing RHS-2 curves.

Figure 8. ED for a=−1, where we let g = 10inj in order to observe the
injection energy cusp. The underlying black line is the full analytic ED shown
in Equation (11) of Section 2 (Paper I). The magenta dotted line is the solution
from Equation (42) for g g inj, while the cyan line is the solution in
Equation (44) for g g inj.
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Appendix B
Acceleration Term Dependences in the Simplified Solution

The electron number distribution is defined according to the
distribution function (Paper I)

( ) ( ) ( )p g g=N m c f4 46e
3 2

for the steady-state case. Consider the domain of the simplified
ED, where g g g> >dip inj (Equation (42))

( )gµ +N . 47a 2

It follows that the distribution function follows the proportion-
ality

( ) ( )g g gµ =f f A, or , 48a a
*

where A* is a place-holding constant. The particle flux due to
stochastic diffusion (a second-order process; Equation (59) of
Paper I)

˙ ( )g= - +N aD A , 49a
sto 0

3
*

and the particle flux due to first-order Fermi acceleration
(including adiabatic expansion)

˙ ( )g g= =+ + +
+N A f A A 50a

ad sh ad sh
3

ad sh
3

*

can be combined into the particle flux due to the sum of first-
and second-order Fermi acceleration

˙ ˙ ˙
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+

+

+
+
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a

a
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3
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3
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*

since º+A aDad sh 0, demonstrating that these processes
perfectly balance in all cases for RHS-1 of Equation (42).

There are blazar data analyses where the first-order Fermi
coefficient is a<−2, and it is possible to see the second term
in Equation (42) become dominant in the lower energy domain
(but still above the injection energy). In this scenario, the
change occurs where the two terms become equivalent
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which can be solved for the Lorentz factor where the two terms
cross,
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For g g g< <inj dip, if the second term dominates, then
the electron population is dominated by diffusion from the
injection energy. The continuous particle injection to the
transport equation allows the electron population to evolve over
time, where the steady-state is an equilibrium snapshot. The
second term represents electrons that did not have time to get
sufficiently caught up in the first-order Fermi acceleration
processes to lose the signature of their initial injection.

The ED where RHS-2 of Equation (42) dominates is
described by the proportion

( ) ( )g
g

µN
1

, 54

meaning that the distribution function is given by (Paper I)

( ) ( ) ( )g
g

g
g

µ =f
N

f
A

or . 55
2 3

*

The particle flux due to second-order Fermi diffusion is given
by (Equation (59) of Paper I)

˙ ( )g
g

= -
¶
¶

=N D
f

D A3 , 56sto 0
4

0 *

and the particle flux due to first-order Fermi acceleration
(including adiabatic expansion) is

˙ ( )g= =+ + +N A f A A . 57ad sh ad sh
3

ad sh *
The rates of first- and second-order Fermi acceleration can be
combined into the total rate

˙ ˙ ˙ ( ) ( )= + = ++N N N A D a3 , 58sum sto ad sh 0*
where the first-order Fermi acceleration and second-order
Fermi diffusion processes are not perfectly balanced for all
parameters, but can balance where a=−3. As it happens, this
is similar to first-order Fermi acceleration/adiabatic expansion
parameters we find when comparing to data. Specifically,
a∼−3.8±0.3 (Paper II), indicating that both parameters are
necessary.
For /g g< < b1dip , the first term tends to dominate. In this

regime, first-order Fermi (with adiabatic expansion) and
second-order Fermi acceleration processes are in perfect
balance with one another, and there is no net transport.
However, it is possible for the first-order “acceleration” portion
to be negative due to adiabatic expansion, hence electrons are
“accelerated” to lower energies. When first-order Fermi
acceleration +Aad sh is stronger (more positive), gdip is pushed
to higher energies, as the electrons form an increasingly
bimodal distribution.
It is important to note that while one term may be negligible

for specific parameter ranges where another is clearly
dominant, no term alone represents a complete, independent
solution to the electron transport equation. Therefore, inter-
pretations of the ED must be mindful that the solution terms are
not completely separable to maintain a self-consistent picture in
the original sense of the transport equation. Recall that we have
made a number of assumptions about the ranges of several
parameters in order to provide these simplified expressions and
their corresponding interpretations. We anticipate that the
simplified function forms will be useful, but we encourage
some caution in their application.
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