
Real-Time Analysis Process Patterns
Naeem Esfahani

1
, Seyed-Hassan Mirian-Hosseinabadi

2
, Kamyar Rafati

3

1
 Computer Engineering Department, Sharif University of Technology,

Tehran, Iran

esfahani@ce.sharif.edu

2
 Computer Engineering Department, Sharif University of Technology,

Tehran, Iran

hmirian@sina.sharif.edu

3
 Computer Engineering Department, Sharif University of Technology,

Tehran, Iran

rafati@ce.sharif.edu

Abstract

The influence of Object Oriented Modeling is observable in various areas of software engineering. Embedded

and Real-time system domains are not exceptions; several object oriented methodologies have been proposed in

these domains. These methodologies have many concepts in common, but the diversity in presentation has

concealed their similarities. In this paper, these commonalities in requirement modeling and analysis are

captured as process patterns. We also present a generic workflow which covers the requirement modeling and

analysis phases in real-time methodologies. For this purpose, several real-time methodologies such as Octopus,

STARSS, DESS, Comet and RT-UML have been studied and analyzed focusing on requirement modeling and

analysis. As a result, their common parts are extracted as three process patterns. At the end, the occurrence of

these patterns in each methodology has been elaborated. It is concluded that the effect of real-time

considerations in these phases is restricted to modeling, problem domain partitioning and emphasis on state-

driven analysis.

Keywords

Real-time system, Analysis, Requirement Modeling, Process Pattern, Embedded system

1. Introduction

Scheduling, robustness and safety are the main properties

of real-time systems. Not paying enough attention to any

of these parameters may turn to a disaster. These systems

often remain operational for a long period of time and

may not be restarted frequently like desktop applications

[1].

Usually real-time software is deployed as the heart of

a larger system. Users do not deal with the embedded

system like a desktop system; e.g. these systems have no

keyboard and monitor. They are usually considered as

electromechanical systems which provide a set of

services for the user. The real-time software monitors and

controls the hardware using sensors to acquire

information about the system and actuators to perform

actions in the outside world.

There are further more problems in real-time software

development; e.g. we cannot simulate the whole system

execution because hardware facilities such as timers and

A/Ds are so fast to be emulated over a desktop computer

during development. These dependencies between the

development process and target platform take a lot of

effort and time. The development team must test and

verify the software over the final system.

Software development environments provide little

facilities for real-time software development. This makes

it obvious that these systems become more bug-prone. So

a more thoughtful methodology is essential for managing

the production of these systems.

One of the first and most important works performed

in late 70’s by introduction of MASCOT notation [2].

Later on a design method with a similar name was

proposed [3]. Structured analysis and design in real-time

development was introduced by RTSAD [4], Ward-

Mellor [5] and DARTS [6]. Author of DARTS

introduced another methodology named CODARTS [7];

this new methodology integrated proposed concepts from

well known methodologies [8], [9,] [10].

Octopus methodology [11], [12] –an object oriented

methodology– is based on Jakobson’s use case and

Rumbaugh’s static modeling. It used UML-liked

notations. Room methodology [13] is a real-time software

design method that depends on a tool named ObjectTime.

After a while, Douglass described how to use UML in

real-time software production in his books. In his first

book [14], he illustrated how to use UML in modeling

real-time systems and in the second one [15], he surveyed

the real-time concepts. One of the recent real-time

methodologies was COMET [16]. Introduced in 2000, it

mainly focused on analysis and design phases. In another

research [17], the analysis phase of some real-time

methodologies has been studied.

DESS methodology [18] is another methodology for

real-time system development. It uses object oriented in

conjunction with component oriented modeling power.

This methodology has inherited its concepts from RUP

and V-Model. In 2006, STARSS [19] was introduced

which is a methodology for fault tolerant real-time

system development. It has a special emphasis on

validation and verification.

So far, real time embedded methodologies have been

reviewed. Ambler, in his two books, [20] and [21], has

introduced process patterns. These patterns deal with

more general concepts in software development, but less

attention is paid to software development lifecycle. The

main goal of process patterns is to review the overall

lifecycle. In [22] and [23], some notations have been

introduced for expressing process patterns.

Embedded real-time methodologies are not well-

addressed in the context of process patterns. Trying to

extract patterns from embedded real time methodologies,

we observed that differences between these

methodologies and general purpose software

development methodologies are mostly in the analysis

and design phases. The other parts of the development

lifecycle are common between real-time and non real-

time methodologies.

In this paper, we are going to present the results of

our studies about embedded real-time methodologies. We

captured the common concepts of these methodologies as

a set of process patterns. In the next section, some well

known real-time methodologies are reviewed. In the third

section, the proposed process patterns are presented. We

present the generic requirement modeling and analysis

work flow in the fourth section. Finally, the paper is

concluded in the fifth section.

2. Real-Time OO Methodologies

2.1. Octopus

This methodology was first proposed by Nokia

Corporation in 1995. It was intended to bridge the gap

between Real-Time systems and Object Oriented

Technology.

Octopus contains two sequential phase (i) requirement

specification and (ii) system architecture. In these phases,

system is divided into subsystems and alternative

solutions are specified. After these, parallel development

of subsystems begins. Parallel development consists of

analysis, design and implementation.

Software requirements are captured in requirement

specification phase. Exact problem definition is prepared.

Context diagram is used to show the structure of the

problem environment. Functional and dynamic behavior

of the system is specified by using use case diagram and

use case sheets. Use case diagrams indicate system

services and their relations which act as index for use

case sheets.

In system architecture phase, system is partitioned as

concurrent distributed subsystems which are more

manageable. Partitioning is mainly based on work

domain. A responsibility sheet is associated with each

subsystem that states its duties. This causes a direct link

between use cases and the subsystems; thus requirement

traceability will be achieved. Functional model is a set of

responsibility sheets. Dynamic model is formed from use

case assignment diagram. In this phase subsystems are

considered as black boxes.

Analysis is done for each subsystem; structure model

(class diagram and class description table) is prepared. In

analysis, class diagram has a pivoting role because it

contains common concepts of functional and dynamic

model. Functional model is a set of operation sheets. An

operation sheet demonstrates operations of a subsystem in

a structured manner using class diagram terms. Dynamic

model contains event list, event group diagram, event

sheets, state diagram, priority table and possibly

composite event list.

Both the functional and dynamic models treat the

subsystem as a black box and make references to the

classes in the structural model.

2.2. DESS

This methodology was proposed as a tool for using object

oriented and component oriented programming in Real-

Time Embedded systems. This method contains three

concurrent v-shaped workflows: (i) Realization, (ii)

Validation-and-Verification and (iii) Requirement

Engineering

Main system design and implementation tasks are

done in Realization workflow. In this workflow, system

and software requirements are captured. Then the

software is analyzed and designed. When implementation

is completed, software and system integration processes

start and finally the system is deployed in the user

environment.

Identification of bugs and weaknesses is done in

validation and verification workflow. This workflow

contains tasks such as testing, review, model checking,

simulation, formal proof of correctness and symbolic

execution. This workflow acts concurrent with

Realization workflow and validates it.

The last V shaped workflow belongs to requirement

engineering. Its main purpose is making an agreement

with costumers. This workflow consists of planning,

requirement engineering and management in traceability,

change and report.

2.3. STARSS

This methodology was introduced for Real-Time control

oriented in 2006. It has a bottom up approach to system

analysis and design. It starts analyzing and designing the

outer parts of the system (Sensors and Actuators) and

continues to the inner parts till the central controller. This

approach causes an onion like layering such that inner

layers control the outer layers. Each layer will be

produced at least in one iteration.

Before starting with layers, preparation phase is done;

in this phase, system entities and their relations are

identified. System communication devices are also

identified in this phase.

After preparation, construction of specification and

communication of layers starts. For each layer, entity sets

and compositional structures are constructed, plugs of

each controller are grouped, behavior of controller are

modeled, event list and object dependencies are

identified, any kind of dependency between components

and object is captured. Finally state diagrams are

reviewed and specifications are defined.

2.4. Comet

Comet was introduced by Gomaa in 2000 [16]. In this

methodology he tried to add object oriented flavor to his

previous methodologies [6].

In comet requirement modeling is done in

requirement elicitation stage. The functional requirements

of the system are described using actors and use cases. In

use case description, sequence of actor(s) interaction with

the system is revealed. In Embedded-Real time systems

actors include input-output devices and timers.

In the analysis model we suppose to become familiar

with the system. This stage consists of two steps; in the

first step we build static model of the system and

structure of objects. Building a dynamic view of the

system is the subject of the second step.

By static modeling the classes (Attributes and

Operations) and their structural relations are modeled

using class diagram. The first emerging classes are the

physical and entity classes. The class diagram is used as a

context diagram to help understanding the interface of the

system to environment.

In dynamic modeling, the dynamic model is

completed; and the related objects are clarified. The

dynamic analysis is two-fold; inter-object behavior is

modeled using collaboration diagram and intra-object

behavior, which is a state-driven behavior of the object, is

modeled using the state transition diagram. Incoming and

outgoing messages of state-driven objects in the

collaboration diagram match the input and output events

in the state transition diagram. This close relation

between two models makes the task of their construction

iterative in nature.

2.5. RT-UML

This methodology was introduced in 1999 by Douglas. In

requirement modeling, the external classes and their

relationship with the system are realized using the context

diagram. In this diagram, the message passing between

system and its environment is modeled.

After identifying the environment and the outside

world, structure definition will be started. First, essential

objects and classes and their relationship and hierarchies

should be discovered. The starting point for this task is

the context diagram which was resulted in the previous

phase. The resulting model will be enriched in dynamic

modeling.

There is an iterative cycle for finding classes. The first

half (Identify Objects, Identify Object Associations,

Group Objects into Classes, Identify and Classify Class

Relationships) of it is carried out in the structure

definition phase and the other half is done in the behavior

definition phase.

The object behavior, relations and attributes

completes knowledge about object responsibility; these

responsibilities will be embedded in the operations. The

second part of the cycle (Group Classes into Domains,

Validate Classes and Objects) can be performed knowing

object-class responsibilities we can perform.

If the system has state-based behavior, it means that

the system has memory of previous services and how

they affect the next services, and then it must be modeled

using state diagram.

3. Process Patterns

Comparing existing methodologies and creating a special

purpose methodology requires an overall knowledge.

Abstracting existing methodologies helps in gathering

required information for achieving this goal. Abstraction

also highlights the most important stages in the

development process.

Extracting recurring patterns in methodologies

(process patterns) is the key tool in methodology

abstraction. These patterns show common features of

methodologies. They also show essential activities which

should be performed in every methodology, regardless of

the specific heuristics and approaches. Furthermore,

when we are composing a new methodology or

configuring an existing one, these patterns help us to

select appropriate elements and consider process

alternatives.

In this section, we introduce three process patterns for

requirement modeling and analysis of real-time systems.

For each pattern, the following information has been

gathered:

• Base Methodologies: The methodologies from

which this pattern is extracted.

• Purpose: The outline of the concept which is

realized by this pattern.

• Pattern Phase: The phase or stage in the

development process that this pattern contributes to.

• Inputs and Outputs: The input and output artifacts

of the pattern.

• Term Definitions: The glossary of ambiguous terms.

3.1. Requirement Elicitation

This pattern (Fig 1, Table 1) identifies software

requirements. It captures software functional model using

use case diagram and use case descriptions. For complex

use cases, Alternative flows are introduced. Main flow

and alternative ones form events scenarios in the system.

The system is considered as a black box.

Table 1. Requirement elicitation process pattern summary

Base DESS, Octopus, RT-UML, COMET

Purpose Elicit and model software requirements

Phase Initiation

Inputs

Internal

System requirements

System design

HW/SW allocation

External Standards

Organization policies

Customer inputs

Outputs Software Requirement model

Terms

Use case

Event sequence that starts from an

actor (shows actor’s interaction with

system). It is possible to have multiple

actors engaged in a use case who fire

various events in different times.

Figure. 1. Requirement elicitation process pattern diagram

3.2. Static Modeling

In an iterative fashion the scenarios of the use cases are

reviewed and enriched. Required objects and

relationships for use case realization are captured. Similar

object are grouped into the classes and class relationships

are extracted. According to their usage domain, the

classes are categorized (Fig 2, Table 2). In this process

following activities are carried out:

• Identify objects and their relationships: object(s)

that are required for use case realization is identified.

Their relationships mainly are based on message

passing.

• Identify classes and their relationships: similar

objects are recognized and their analogous attributes

and operation are classified using classes.

Corresponding object relationships are captured as

class relationships.

• Class categorization: according to their

functionality, classes are grouped.

Table 2. Static modeling process pattern summary

Base STARSS, Octopus, RT-UML, COMET

Purpose Prepare structural model required for use case

realization

Phase Construction

Inputs

Internal Software requirement model

External Standards

Organization policies

Problem domain Information

Outputs Structural model

Terms

Structural

Model

The set of classes, objects, their

attributes, operations and relationships.

Figure. 2. Static modeling process pattern diagram

3.3. Dynamic Modeling

Focusing on the main scenarios, object communications

are captured; the event sequences and state transitions (in

different levels) are identified. These sequences and

transitions are enriched using alternative flows. It is

possible to add new objects and classes to capture all

behaviors (Fig 3, Table 3). This pattern has two activities:

• Identify event sequences: communications among

object which are captured in static modeling, event

sequences and message passing among them are

modeled.

• Identify state transitions: as a response to the

events in the system, there might be some state

changes in different levels. These transitions are

modeled concurrently with event sequences.

Table 3. Static modeling process pattern summary

Base STARSS, Octopus, RT-UML, COMET

Purpose Prepare behavioral model that describe

communications among structural elements and

operation sequences in order to realize use cases.

Phase Construction

Inputs

Internal Software requirement model

Structural model

External Standards

Organization policies

Outputs Behavioral model

Terms

Behaviora

l Model

Expresses intra- and inter-object

behaviors required for use case

realization.

Scenario Describes a sequence of events, state

transitions and operations.

Standards

Software
Requirements Model

Behavioral Model

Identify
Event

Sequences

Organization Policies

Structural Model ...

Identify
State

Transitions

Figure. 3. Dynamic modeling process pattern diagram

3.4. Process patterns in the methodologies

In Appendix A, we have shown how the proposed

process patterns related to the studied methodologies.

How these abstract patterns live in the concrete

methodologies is understood.

4. Generic Workflow

To complete our patterns, the order and relationship

among them should be illustrated. This arrangement

could be accomplished by a closer look at the inputs and

outputs of the patterns.

In this section, we present a generic workflow for

requirement and problem domain modeling. This generic

workflow is extracted from the studied methodologies

and the indicated order is the same in all of them. Also

other arrangements are possible [17].

As depicted in Figure 4, requirements are modeled in

the requirement modeling phase. Next, the models are

analyzed; first the static model of the domain is built and

the result is further completed by adding behavior in

dynamic modeling. Static and dynamic modeling are

performed iteratively; The result is improved gradually.

Figure. 4. Generic workflow

5. Conclusion

The focus of this paper is on requirement modeling and

analysis of embedded real time systems. The existing real

time embedded methodologies have employed diverse

mechanisms for this purpose, but they have followed

analogous policies. We gathered and presented their

similarities as three process patterns.

In requirement elicitation, user expectations of the

system are captured as comprehensible models. By

performing static modeling, the structure of the system is

captured as a set of collaborating classes. The model

presented in static modeling is enriched by insertion of

behavior when performing dynamic modeling.

The general purpose object oriented methodologies

have concepts in common with real-time methodologies

studied, but significant differences exist in their point of

view to the problem domain; e.g. modeling non

functional requirements, especially time, is more crucial.

Interactive nature of real-time systems leads us to a

special kind of system decomposition: system is viewed

as several enveloping layers. In these systems, controller

plays a critical role; so, state driven analysis becomes

important for supporting history dependent decision

making.

Currently we are continuing our research to elaborate

the next phases, particularly the design phase.

Preliminary results show that real-time nature of these

methodologies is even more significant in design and

implementation. As a future work, we are going to

introduce a generic lifecycle for real-time object oriented

methodologies.

Appendix A. Process pattern occurrence

matrix

Table 4 summarizes the presented information in the

second section to show how the presented methodologies

are covered by introduced process patterns.

Acknowledgment

The authors gratefully acknowledge Dr. R. Ramsin from

Sharif University of Technology for his suggestions and

Mr. A. Moghimi from University of Tehran for verifying

some parts of the paper.

References
[1] Kopetz, H. Limmerick, Software engineering for real-

time: a roadmap. Ireland : IEEE, 2000. IEEE Software

Engineering Conference. pp. 201-211.

[2] Simpson, H. and Jackson, K. Process Synchronization in

MASCOT. 1979, The Computer Journal 17 no. 4.

[3] Simpson, H. The MASCOT Method. Addison-Wesley,

1986, IEE/BCS Software Engineering Journal 1, no. 3,

pp. 103-120.

[4] Hately, D. and Pirbhai, I. Strategies for Real Time System

Specification. New York : Dorset House, 1988.

[5] Ward, P. and Mellor, S. Structured Development for

Real-Time Systems Vols 1, 2 and 3. New York : Yourdan

Press, 1985.

[6] Gomaa, H. 1984, A software Design Method for Real-

time Systems. Communications, pp. 938-949.

[7] Gomaa, H. Software Design Method for Concurrent and

Real-time Systems. s.l. : Addison-Wesley, 1993.

[8] Jackson, M. System Development. Englewood Cliffs,

N.J. : Prentice Hall, 1983.

[9] Parnas, D., Clements, P. and Weiss, D. The Modular

Structure of Complex Systems. Orlando, Fla., 1984. 7th

IEEE International Conference on Software Engineering.

[10] Booch, G. Object Oriented Design with Applications. s.l.

: Addison Wesley, 1991.

[11] Awad, M., Kuusela, J. and Ziegler, J. Object-oriented

Technology for Real-time Systems: A Practical Approach

Using OMT and Fusion. Englewood Cliffs, NJ : Prentice

Hall, 1996.

[12] L., Ziegler, Awad, M. and Kuusela, J. Applying object-

oriented technology in real-time systems with the

OCTOPUS method. IEEE, 1995. First IEEE International

Conference on Engineering of Complex Computer

Systems (ICECCS'95). p. 306.

[13] Selic, B., Gullekson, G. and Ward, P. Real-Time Object-

Oriented Modeling. New York : Wiley, 1994.

[14] Douglass, B. P. Real-time UML 2nd ed. s.l. : Addison-

Wesley, 1999b.

[15] Douglass, B. P. Doing Hard Time: UML, Objects,

Frameworks, and Patterns in Real-time Software

Development. s.l. : Addison-Wesley, 1999a.

[16] Gomaa, H. Designing Concurrent, Distributed, and Real-

time Applications with UML. New York : Addison-

Wesley, 2000.

[17] Kimour, Mohamed T. and Meslati, Djamel. Deriving

objects from use cases in real-time embedded systems.

2005, Information & Software Technology 47(8), pp.

533-541.

[18] Baelen, Stefan Van, Gorinsek, Joris and Wills, Andrew.

The DESS Methodology. Version 01 - Public,

Deliverable D.1, 2001.

[19] Kan, Pauline. The STARSS Methodology, Department of

Computer Science, King’s College London, Technical

Report TR-06-03, 2006.

[20] Ambler, S. W. Process Patterns: Building Large-Scale

Systems Using Object Technology: Cambridge

University Press, 1998.

[21] Ambler, S. W. More Process Patterns: Delivering Large-

Scale Systems Using Object Technology. Cambridge

University Press, 1999.

[22] Gnatz, M., Marschall, F., Popp, G., Rausch, A., and

Schwerin, W. 2001. Towards a Living Software

Development Process Based on Process Patterns. 8th

European Workshop on Software Process Technology

(June 19 - 21, 2001).

[23] Störrle, H. 2001. Describing Process Patterns with UML.

8th European Workshop on Software Process Technology

(June 19 - 21, 2001).

Table 4. The process pattern occurrence in the studied methodologies

Method Requirement Modeling Static Modeling Dynamic Modeling

Octopus In the requirement specification

phase, after problem definition, use

case diagrams and use case sheets are
produced. More complicated use

cases will have transaction scenarios.

In the iterations of the subsystem

analysis phase, the class diagram and

class specifications are extracted.

After identification of the events, the

communication scenarios are determined. The

sequence of the events and their results are
clarified. For state-driven objects, states are

recognized and state diagram is drawn.

DESS The first step in the realization
process is user requirement

management. Requirements are stated

as business use cases.

Has not defined in this method but it has
indicated the structure diagram as output

of analysis phase. So it should be

prepared somehow.

Again has not been mentioned in this process but
the dynamic model is input of the design phase so

it must be produced.

STARSS Pay no attention to this step. It

assumes the tasks start with analysis,

where we have requirements.

At the beginning of the iterations for

generating one level, static model is

built. The objects of that level are
identified; they will be classified as

classes. The relationships are also

modeled.

At each level, behavioral model is constructed

using state transition diagram. Non state driven

behavior is modeled by extracting events and their
dependencies. In this way all the valid sequences

will be identified.

RT-UML The system context diagram is

created. The messages and events

between the system and environment
are characterized. The use case

diagram is produced. The scenario for

each use case is extracted.

After understanding the outside world

and system’s relationship with the

world, we step in the system and
identify objects, classes and their

relationships. We also use scenarios and

use cases in objects identification
process.

Using scenarios, the intra object relations are

modeled. Object has a state diagram which

determines their behavior. The way objects
interact determines what portion of the state

diagram will be used in each scenario.

COMET The system is modeled as a black

box. Relationships among the system
and the actors are stated in a narrative

way. The relationships are defined in

use case diagrams.

The physical and the entity classes are

more important. After identifying
classes we classify them in the groups

and subsystems.

The inter- and intra-object behavior is modeled

iteratively. Objects’ internals are modeled using
state diagrams (if object has state driven

behavior). Inter-objects behavior is modeled using

collaboration diagrams. These two diagrams must
be compatible.

