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Abstract 

 As the complexity associated with software 
development has increased, software engineers have 
sought novel ways to represent, reason about, and 
compose large-scale software systems. However, the 
majority of these approaches are geared to technically 
well versed engineers, making them unwieldy for use in 
a growing class of real-world pervasive computing 
systems. In this paper, we propose a new approach 
intended to address the current shortcomings in 
service-oriented software systems. Given the functional 
and QoS requirements specified by a domain expert in 
an activity oriented modeling language, an 
architecture satisfying the requirements is generated. 
We describe our approach in the context of a 
framework, entitled Self-Architecting Software SYstems 
(SASSY), which shapes our ongoing research and aims 
to automate the composition, analysis, adaptation, and 
evolution of service-oriented software systems.    

1. Introduction 
Service-Oriented software systems are associated 

with a number of advantages, including the ability to 
abstract away the heterogeneity of the communication 
and computational substrate, the decoupling of service 
providers from consumers, and the flexibility of 
dynamically discovering and binding to services.  As a 
result, service-oriented systems are fast becoming 
pervasive in a variety of computing domains. Service-
Oriented Architecture (SOA) [13][14] is seen as the 
solution to many of the problems facing modern day 
enterprise and e-commerce software systems, which 
continue to grow in size and complexity. Similarly, the 
proliferation of portable and embedded computing 
devices and the recent advances in wireless network 
connectivity have made the SOA paradigm a viable 
option for an emerging class of pervasive systems. 

On top of the traditional complexity associated 
with the construction of any large scale software 
system, software developers are forced to cope with 
additional sources of complexity introduced by the 
growing class of mobile and pervasive systems, which 
are innately dynamic and unpredictable. Moreover, 
these systems are often long-lived, and are expected to 

adapt not only to the fluctuating execution conditions 
(e.g., network throughput, available battery power), but 
also to changes in their operational requirements (e.g., 
functional features).  

As the complexity associated with software 
development has increased, software engineers have 
sought novel ways to represent, reason about, and 
synthesize large-scale software systems. However, 
many of these approaches have relied heavily on 
human reasoning and manual intervention, making 
them unwieldy for use in highly dynamic and 
unpredictable pervasive settings. Moreover, the 
majority of existing approaches have primarily targeted 
technically savvy software engineers, as opposed to 
domain users, thereby making them difficult to use in 
many real-world industrial settings.   

In this paper, we present a novel approach targeted 
at the challenges of automatically composing an SOA 
software system in dynamic, unpredictable, and 
pervasive SOA software systems. We rely on the 
domain expert’s functional and Quality of Service 
(QoS) requirements expressed in an activity-oriented 
language to automatically generate an “optimal” 
architecture. Architecture generation consists of (1) 
selection of the appropriate service providers that 
satisfy the user’s activities, and (2) application of 
suitable architectural patterns to compose the services 
into a cohesive software system. The approach ensures 
that the generated architecture satisfies the key quality 
attributes (e.g., latency, security) specified by the user. 
The work presented in this paper is part of a 
framework, entitled Self-Architecting Software 
SYstems (SASSY), which shapes our ongoing research 
effort and aims to automate the composition, analysis, 
adaptation, and evolution of SOA software systems.  

The remainder of the paper is organized as 
follows. Section 2 introduces a motivating example 
used throughout this paper for exposition purposes.  
Section 3 provides an overview of the SASSY 
framework. The rest of the paper focuses on a 
particular aspect of the SASSY framework dealing 
with the process of generating a viable architecture. To 
that end, Section 4 describes the architecture 
generation methodology, Section 5 describes the 
activity-oriented language used to model the system’s 



requirements, Section 6 discusses the architectural 
modeling language, and finally Section 7 presents the 
architecture generation process.  The paper concludes 
with an outline of our future work. 

2. Motivating Example 
As a motivating example, consider the following 

application scenario taken from the emergency 
response domain. Smart buildings equipped with 
various sensors, such as smoke detectors, seismic 
probes, and cameras, provide monitoring data for 
emergency phenomena, such as fire, structural damage, 
and burglary.  Other sensors, such as fire sprinklers, 
electronic locks, and exit lights, provide means of 
responding to an emergency situation. The services 
provided by these sensors is made available publicly 
(to authorized consumers) via service discovery 
directories (e.g., UDDI). Information fusion services 
provisioned by various emergency response agencies 
(hospitals, police headquarters, firefighting stations) 
aggregate and process the data received from the 
sensors, determine the occurrence of emergency 
situations, and publish the results onto a wide-area 
event notification system (e.g., Siena). A management 
service listens to emergency events and deals with 
classification and determination of the appropriate 
course of action, as well as with supporting the field 
work of emergency response teams. 

The above scenario is an example of pervasive 
software systems that are increasingly deployed in a 
variety of domains, including emergency response. 
Such systems consist of a heterogeneous set of smart 
spaces (e.g., buildings equipped with sensors, 
autonomous vehicles) that through the commonly 
adopted SOA standards (i.e., Web Services enabling 
standards [14][18], such as SOAP, WSDL, and UDDI) 
can find each other’s provided services and integrate to 
form a cohesive software system.  Unlike 
traditional systems, they are expected to be 
utilized in a variety of scenarios (e.g., different 
emergency situations), many of which may not be 
known a priori. In other words, the system’s 
actual functional and QoS requirements become 
known at run-time. These systems require 
significantly more flexible and dynamic software 
composition techniques than those that are 
currently at our disposal. In the next section, we 
describe a framework that aims to alleviate these 
challenges. 

3. Overview of SASSY  
Figure 1 illustrates the SASSY framework at 

a high level. A domain expert, as opposed to a 
software engineer, expresses the system’s 
requirements in the form of an activity diagram, 

called Service Activity Schemas (SAS). A SAS is a 
graph whose nodes correspond to activities that a user 
needs to accomplish. An activity describes a task that 
needs to be performed. Therefore, it is a technology 
independent concept that represents a transformation of 
inputs, potentially artifacts from another activity, into 
outputs. An activity may be long-lived, where the 
activity generates an indefinite number of outputs 
before termination, or short-lived, where the activity 
terminates after generating an output. For example, in 
an emergency response system that supports victims of 
a hurricane, activities may correspond to “contact the 
state national guard”, “declare state of emergency”, 
“contact the fire department”, “contact the police 
department”, “order food supplies”, “order 
medication”, “order tents”, etc. The terms used to name 
activities come from a domain ontology.  The domain 
ontology provides the means for unambiguously 
distinguishing different concepts and elements, which 
as outlined further below facilitate the discovery of 
services and resources in support of activities. The 
domain ontology is created and maintained by a 
consortium of domain experts, who specify the various 
domain activities and concepts, including the 
properties of respective services that realize them. 

Given the requirements defined in the SAS, a base 
System Service Architecture (SSA) is automatically 
generated.  A SSA is essentially a system’s software 
architecture, with the exception that the component 
types are service types. A service type is the 
specification (e.g., name of operations, type of 
parameters) of a service.  A service type is defined in 
the ontology. The service interface is defined in terms 
of the operations it provides, where each operation 
corresponds to one or more activities in the SAS. A 
service type is realized by a service instance, which is 
made publicly available for use by a service provider. 
Given the SAS, the corresponding service types are 

 
Figure 1. High-level view of SASSY framework. 



found in the ontology, and a base SSA is composed. 
QoS goals are specified in an SAS through Service 
Sequence Scenarios (SSS), as detailed in Section 5.  

The next step entails discovering a set of candidate 
service providers that can support the execution of the 
service types described in the SAS. There may be more 
than one service provider for each service type, each 
exhibiting a different QoS level at potentially different 
cost. The framework performs a service selection that 
maximizes a utility function provided by the domain-
expert. A utility function reflects the usefulness of the 
software system based on the value of its quality 
attributes (e.g., response time, throughput, availability, 
security).  If all QoS goals specified in the SSSs are 
met, the base architecture is effected by binding the 
associated services, generating the coordinator’s logic, 
and executing the system on top of the SASSY run-
time support system, which includes the following 
common services: monitoring of QoS metrics, 
consumer report, service rating, change management, 
goal management, repository services, service 
discovery, QoS brokering services [20], and others.   

If however, the QoS goals are not met, SASSY 
determines the critical SSSs that violate the QoS goals.  
Then, it uses a library of architectural patterns [6] to 
generate alternative architectures that may ameliorate 
the QoS issues (e.g., replication for availability, 
encrypted channels for security).  See Section 7 for 
specific examples.  New service discovery has to be 
performed for each of the candidate architectures 
followed by optimal service allocation and QoS 
verification in an iterative process.  

The SASSY approach is used for evolution and 
runtime adaptation of the software systems as well. We 
are extending our previous work [19] to support 
runtime adaptation. In the case of software evolution, 
the new system requirements (i.e., new SAS) are 
compared with the current requirements, and an 
architecture that satisfies the new requirements is 
generated (see Section 7).  In the case of runtime 
adaptation, when the services fail to meet their QoS 
contracts, the QoS monitoring services trigger 
exploration of alternative architectures, and 
subsequently the revised architecture is reconfigured 
via the SASSY infrastructure support. As the backward 
arrow in Figure 1 indicates, monitors within the 
SASSY run-time support system may trigger 
adaptation, which may result in the generation of a new 
architecture and new service discovery. 

In the remainder of this paper, we focus on two 
aspects of the SASSY framework: (1) modeling the 
system’s requirements via a user-friendly, relatively 
informal, activity-oriented language, and then (2) 
automatically transforming the requirements to 
concrete architectural artifacts. 

4. Architecture Generation Methodology 
Our approach is grounded in the Model Driven 

Architecture (MDA) methodology [7]. MDA 
distinguishes between business and software models. 
To that end, MDA advocates the construction of a 
Computation Independent Model (CIM), which 
represents an organization’s business requirements. 
The CIM is then leveraged to arrive at a Platform 
Independent Model (PIM) of a software system that 
satisfies the business requirements. The PIM provides 
an appropriate-level of granularity (i.e., architectural-
level) for assessing a software system’s ability to 
satisfy its key functional and QoS requirements. The 
PIM is then translated into a Platform-Specific Model 
(PSM) that is more detailed and closely aligned with 
the implementation technology.  

Researchers have shown that, in the general case, 
automatic derivation of software architectural models 
(PIM) from business models (CIM) to be infeasible 
[7]. To make the problem manageable, we have (1) 
constrained our research to SOA software systems, 
which allow us to make several simplifying 
assumptions, and (2) limited the expressiveness scope 
of the requirements language (SAS) to a predetermined 
set of concepts available in the ontology.   

 Figure 2 depicts our methodology. An MDA 
environment, such as the Generic Modeling 
Environment [5], is utilized to develop visual Domain 
Specific Modeling Languages. This process is depicted 
in Figure 2: a meta-model codifying the semantics of 
the SAS language is developed and passed to the Meta-
Model Interpreter, which in turn customizes the MDA 
environment accordingly and provides visual support 
for constructing models in the SAS language.  Support 
for the SSA language is provided similarly.   

The domain user specifies the requirements of the 
system using the SAS language. The Model Generator 
leverages the constructed SAS model, the domain 

 
Figure 2. Architecture generation and analysis 
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ontology relating activities to service types, and the 
specification of the SSA modeling language to produce 
an architectural model of the system that satisfies the 
requirements. The architectural models are then 
utilized by the Model Analyzer engines, which may 
perform either further analysis (e.g., service provider 
selection) or software composition (e.g., applying 
architectural patterns). In the remainder of this paper, 
we take a closer look at the application of this 
methodology in the context of our research. 

5. Service Activity Modeling 
This section describes the rationale and elements 

of the activity-oriented modeling language we propose 
for defining SAS and SSS.  The two most important 
requirements of this language are that: (a) it should be 
usable by domain experts with little training in 
software technologies, and (b) it should fit easily to the 
class of real-world problems illustrated in Section 2. 

Specifically, it should easily support distribution 
and concurrency (joins, forks, etc.), specification of 
QoS objectives (see SSS below), awareness of 
geographic location, activities with different durations 
(ongoing versus short duration), and different styles of 
interaction (synchronous, asynchronous, streaming, 
etc.).  Furthermore, it should manage the scalability of 
specifications via hierarchical decomposition of 
activities (i.e., sub-activities). 

A comprehensive survey of existing languages led 
us to the Business Process Modeling Notation (BPMN) 
[1], which has recently been designated as an OMG 
standard. Unlike many others, e.g., UML activity 
diagrams [9], BPMN is intended to be used by domain 
experts, as opposed to software engineers. 
Additionally, previous research has shown that 
appropriately constrained BPMN models can be 
mapped to the executable Business Process Execution 
Language (BPEL) [15][17], which increases our 
confidence that a language based on BPMN can be 
automatically translated to executable 
software.  

Nevertheless, the current specification of 
BPMN has three significant shortcomings 
with respect to the goals of our research.  
First, in its general form, it is overly flexible 
and open-ended to support fully automatic 
generation of software architecture.  Second, 
it does not support modeling of QoS 
objectives. Finally, it does not support 
awareness of geographic location for scalable 
and context-aware discovery of services. 
While the first limitation prompted us to 
define a subset of BPMN with precise 
semantics, the other two prompted us to 
extend the language in those directions. 

5.1. Service Activity Schemas 
The SAS modeling language is specified by the 

meta-model depicted in Figure 3. As mentioned in 
Section 4, the meta-model is used to provide support 
for the language in the Generic Modeling Environment 
[5]. For brevity, we do not describe the details of the 
meta-model; instead, we provide a description of the 
language in this section. However, we would like to 
point out the importance of the meta-models in our 
approach. Meta-models provide precise semantic 
underpinnings for the languages used in our research, 
addressing a shortcoming of many existing languages 
(e.g., BPMN). This in turn enables systematic 
transformation of our models.  

From BPMN, SAS retains the following elements: 
(1) Events, depicted as circles, for sending and 
receiving messages between possibly distributed 
logical or physical entities; (2) Gateways, depicted as 
diamonds, for controlling the flow of execution within 
an SAS; and (3) a generic notion of activity, or task, 
represented as a round-corner rectangle.  Like BPMN, 
activities may be annotated as looping, based on a 
condition, and multiple, contingent on an expression to 
determine the number of instances. 

Unlike the BPMN, SAS explicitly distinguishes 
local activities from those that are performed 
externally.  An external entity, also referred to as 
service usage, is represented as a round-corner 
rectangle annotated with a server icon. An entity could 
be either logical (i.e., a conceptual element in the 
domain) or physical (e.g., a sensor). Each activity 
carried out by an external entity is represented as a port 
(a small envelop in the round-corner rectangle).  

Also unlike BPMN, SAS does not use the notation 
of swim lanes to represent the concerns of separate 
activities (see Figure 4a).  Each SAS is depicted from 
the local point of view of the component responsible 
for the activity (i.e., coordinator), and the interactions 
with external entities are shown as exchanges of 

 
Figure 3. Subset of the SAS meta-model in GME. 



events.  In other words, one could map the SAS 
notation to BPMN’s swim lanes by dragging each 
service usage into a separate swim lane, decomposing 
it into its underlying activities, and keeping local 
activities and gateways in a central lane, which 
contains the logic for coordinating the invocation of 
external activities. We have pushed the intermediate 
message events to the boundary of the external entities 
residing in their pools; in this way we have removed 
the need for extra communication type (i.e. Message 
Flow) and made the language even simpler. 

The reason we chose to drop the swim lane 
notation is the key role played by service discovery in 
the class of systems targeted by our research.  Swim 
lanes suggest a stable, predefined mapping of functions 
to components.  In contrast, in SAS, which component 
actually provides a service is contingent on service 
discovery, and immaterial to the specification of the 
service usage within the activity.  

To better illustrate these ideas, Figure 4a shows a 
simple example of a scenario that monitors fire 
emergencies in a smart building.  The scenario uses the 
services of external smoke detectors, sprinklers, 
building occupancy estimation, and a fire station.   

Similarly to BPMN, the arrival and emission of 
such messages is represented as events: a dark 
envelope (not shown in the figure) denotes the event of 
sending a message, and a clear envelope, the event of 
receiving one. In the example, the monitoring activity 
is started upon receipt of a start message, after which 
the relevant SmokeDetector and Timer are started.  
Timer is a local sub-activity which generates periodic 
ticks requesting OccupancyAwareness to provide an 
estimation on the number of the occupants in the 
monitored building. 

If a SmokeDetector ever senses smoke, it sends a 
message describing the level of smoke and Carbon 
Monoxide (CO), as well as the specific location.  The 
gateway marked with a circle, an inclusive 
(Conditional-Or) gateway in BPMN, proceeds to 
activate SprinklerControl, if the concentration of CO is 
above 600ppm.  In any case, it further proceeds to 
activate the gateway marked with a cross, a Parallel 
(And-Join) gateway  in BPMN, which makes sure an 
occupancy estimate has been received before sending a 
fire call message to the FireStation. 

5.2. Service Sequence Scenarios 
The second shortcoming of BPMN, dealing with 

the specification of QoS objectives, is addressed by 
Service Sequence Scenarios (SSS).  These are well-
formed sub-graphs of SAS, and correspond to a 
sequence of interest to the user, to which QoS 
objectives are associated.  An SSS is well-formed if it 
satisfies the syntactic constraints of an SAS: a 
condition easily checked by the modeling tool. 

Currently, SSS are accessible via dashed 
rectangles at the upper left corner of an SAS (see 
Figure 4a). Figure 4b shows what happens when the 
Availability SSS is selected: the corresponding sub-
graph is highlighted, while the rest of the SAS is 
grayed out. Specific QoS objectives associated with 
this scenario, e.g., an availability of 99%, are captured 
in a property sheet associated with the SSS (not shown 
for the sake of space).  Furthermore, to facilitate the 
job of domain experts, the tool relies on ontology to 
support specifying domain-specific objectives either at 
a high-level of abstraction, e.g. high-resolution images, 
or at a technical level, e.g., 1024x1024 pixel. 

The QoS objectives associated with an SSS are 
   (a)       (b) 

 

 
 Figure 4. (a) A simple SAS for a Fire Emergency Response Scenario, (b) A selected availability SSS. 



used in the generation of the 
architecture and analysis, as 
discussed in the next section.  
These annotations are expressed in 
a language that is inspired by 
WSLA [16]. 

5.3. Scaling Discovery 
The third limitation of BPMN, 

dealing with location-aware 
service discovery, is addressed by 
associating location constraints to 
service usages. Referring to the 
example in Figure 4, after a smoke 
sensed message is received, the 
monitoring activity should 
discover the fire sprinklers that are 
close to the affected area in the 
building, using the location 
information received from the 
smoke detector, and send the activate message only to 
those. Geographic constraints on service discovery can 
be used to pin-point services across wide geographic 
distances. For example, given a specific emergency, a 
federal agency located in Washington DC might need 
to discover and inquire the state of all the emergency 
response vehicles currently at a particular district in 
New Orleans. 

We are currently experimenting with a hierarchical 
representation of location, with support for aliasing, 
similar to the notation used for URLs in the internet.  
For example, //fairfax.va.us/22030/4400-university-drv 
represents the same location as //gmu.edu. 

6. System Service Architecture 
Architectural Description Languages (ADLs) [10] 

have been shown to be effective in modeling the 
crucial characteristics of a software system that 
determine its ultimate capabilities, properties, and 
qualities. However, a traditional shortcoming of ADLs 
is that each is specialized to a particular type of 
concern (e.g., structural vs. behavioral, dynamic vs. 
static, computation vs. interaction). In SASSY, we 
needed a comprehensive architectural modeling 
approach to model the different aspects of the System 
Service Architecture (SSA). To this end, we have 
extended our previous work [4] that allows for the 
construction of a software system’s architectural 
concerns from different points of view using multiple 
ADLs. In this approach, each ADL is supported via a 
meta-model (see Section 4). More importantly, the 
ADLs are linked together at the meta-model level, 
allowing for the development of composite ADLs. The 
approach provides innate consistency among the 

multiple views of the same system, even if they are 
developed using different ADLs.  

Our SSA models are based on two well-known 
ADLs that have been adapted for the purposes of 
modeling SOA systems. We have utilized a widely 
used and extensible ADL, eXtensible Architectural 
Description Language (xADL) [3] to represent the 
structural properties of a system’s software 
architecture. xADL provides the traditional 
component-and-connector view of a software systems 
architecture [3]. In SASSY, we model services as 
components. Figure 5 shows an example of a xADL 
model that is further discussed in the next section. 

To represent the behavioral aspects of an SOA 
system (i.e., the coordinator’s logic) we have used 
Finite State Processes (FSP) [8]. FSP is a type of state 
machine language intended to capture a software 
system’s high-level behavioral and interaction 
properties. Figure 6 shows an example of a FSP model 
in SSA, which is also discussed in more detail in the 
next section. A more detailed description of support for 
xADL and FSP, including the corresponding meta-
models, which form the basis of SSA, is provided in 
[4]. Next, we describe our approach in the generation 
of SSA models from SAS models.  

7. Architecture Generation 
As described in Section 3 and depicted in Figure 1, 

the process of generating the architecture consists of 
(1) generating a base architecture, (2) solving the QoS 
objectives via service provider selection, and finally 
(3) if QoS objectives are not satisfied, find an 
alternative architectural solution. The first step is easily 
achieved using an appropriate domain ontology 
referring activities to service types. The second step is 

Figure 5. Structural view of SSA for the example of Figure 4. 



a complex problem which is the subject of our ongoing 
research, and early results are provided in [11]. In this 
section, we are going to focus on the third step.  

When existing service providers capable of 
satisfying the QoS objectives of the base architecture 
cannot be found, SASSY applies a variety of software 
architectural patterns [6] to find an architectural 
solution to the problem. To demonstrate this capability, 
we revisit the example of Figure 4. In this example the 
user has specified an availability requirement of 99% 
for the two services involved in the availability SSS. 
Moreover, the user has specified a security 
requirement of “High” for any communication with the 
FireStation service (i.e., the user has requested 
encrypted communication with the FireStation). Note 
that the security SSS is not selected in Figure 4b; 
therefore its details are not highlighted.  

Let us assume that an OccupancyAwareness 
provider that is 99% available and a FireStation 
provider that support encrypted communication are not 
found. However, the SASSY infrastructure has found 
two potential OccupancyAwareness providers that are 
90% available. Similarly, a generic Cipher component 
with the ability to encrypt and decrypt messages is 
found. We describe the process of generating an 
alternative architectural model that satisfies the QoS 
requirements of this example next.  

7.1. Generating the Structural View 
Figure 5 shows the structural view of the SSA that 

is generated. The FERSCoordinator component 
organizes the interaction among the services. Its logic 
is generated from the SAS example of Figure 4 and 
detailed in the next section. SmokeDetector and 
SprinklerControl components correspond to the two 
service providers that satisfy the QoS requirements. 

 Since an OccupancyAwareness provider capable 
of satisfying the availability requirement is not found, 
SASSY applies the replication pattern through the use 
of a specialized FaultTolerant connector [12]. A 
FaultTolerant connector broadcasts the service 
requests to several service providers, but only the 
response from the primary provider is sent back to the 
client. If the primary provider becomes unavailable, the 
FaultTolerant connector detects it, and promotes one 
of the secondary providers to the role of the primary. 
As shown in Figure 5, by utilizing the replication 
pattern, SASSY satisfies the user’s stringent QoS 
requirement of 99% availability, via the two 
OccupancyAwareness services, each of which is 
available 90% of time. 

Similarly, SASSY satisfies the security 
requirement associated with the FireStation by 
applying the mediator pattern. The FERSCoordinator 
component relies on a SecureChannel connector that 

encrypts messages using the Cipher service. The 
resulting architecture is depicted in Figure 5. The 
above patterns can be more generally utilized for other 
purposes. For example, the mediator pattern can also 
be used in conjunction with a compression service to 
satisfy the throughput and latency requirement.  

The SSA in Figure 5 can be extended to support a 
highly distributed software architecture consisting of 
multiple buildings, each of which containing several 
instances of SmokeDetector and SprinklerControl, one 
instance of the FERSCoordinator and FaultTolerant 
connector, and two instances of OccupancyAwareness. 
In addition, the architecture may consist of several 
instances of FireStation, where each FERSCoordinator 
would discover the FireStation instance geographically 
closest to it using the approach described in Section 3. 
Finally, the coordinator itself could be both logically 
and physically distributed. For the sake of simplicity, 
our example does not show such a scenario. A more 
complex system would involve multiple SAS models, 
each of which may result in one or more, potentially 
distributed, set of coordinator components.   

7.2. Generating the Behavioral View 
In the previous section, we described the structural 

view of the generated SSA. Figure 6 shows a subset of 
the coordinator’s logic in FSP that is generated from 
the SAS example of Figure 4. As detailed in [4] we 
have slightly modified the traditional FSP for the 
purposes of simulation (not discussed in this paper).  

FSP allows for the hierarchical composition of 
state machines. The portion of the coordinator behavior 
depicted shows the highest level, dealing with the 
receipt of messages. The initial entry point to the 
coordinator is a wait task, which represents the initial 

Figure 6. Coordinator’s behavior in handling 
the inputs for the example of Figure 4. 



storage of the messages before they are handled by a 
processing thread.  

Afterwards, one of the potential paths is selected 
based on the type of the input received. The inputs in 
the FSP model are generated based on the events in the 
SAS model of Figure 4. A coordinator needs to be able 
to handle the Event messages marked with a white 
envelope, which denote messages received by the 
coordinator in SAS. Some of the inputs (estimated and 
smoke sensed) carry data that are stored in local 
variables (occupancy and smoke). This data 
corresponds to the Event attributes (e.g., the Carbon 
Monoxide value of the smoke sensed event) specified 
in the SAS model and used by the SAS Gateways for 
decision making. Based on the selected path, the 
coordinator is put into the corresponding state to 
handle the received input. The details of the other 
states not shown in this figure are generated similarly. 

Finally, the generated architectures may have to 
evolve as a result of changes in the requirements. For 
instance, an additional entity, such as an ambulance, 
may need to be added to the example of Figure 4 . The 
user specifies the new requirements by revising the 
existing SAS models. Afterwards, the SASSY 
framework adapts the existing software architecture by 
modifying the structural view and generating the 
behavioral view for the new coordinator.  This could 
result in changes to the set of service providers and to 
previous architectural decisions. 

8. Conclusion 
The SOA paradigm is increasingly employed in 

the construction of a growing class of pervasive real-
world software systems. This paper presented a novel 
approach intended to streamline the composition of 
SOA software system in such settings. Our approach 
deviates from related approaches (e.g. Jopera [21]) 
through its explicit reliance on the system’s software 
architecture. Given the functional and Quality of 
Service (QoS) requirements expressed in an activity-
oriented language, an “optimal” architecture is 
generated. The architecture indicates specifically the 
service providers as well as the interaction patterns that 
should be utilized to satisfy the requirements.  

This work is part of an ongoing research effort on 
Self-Architecting Software Systems (SASSY), a 
framework intended to automate the composition, 
analysis, adaptation, and evolution of real-world SOA 
software systems. Specific ongoing work include, 
automatic architecture generation, building a QoS 
related pattern repository, empirical evaluation of the 
approach, development of runtime architecture 
adaptation capability, and the generation of BPEL code 
for distributed coordination of activities. 
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