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1. INTRODUCTION 
Software systems are increasingly permeating a variety of 
domains including medical, industrial automation, and emergency 
response. The advances in portable and embedded computing 
devices and the recent advances in wireless network connectivity 
have paved the way for the proliferation of smart spaces in such 
domains. At the same time, the emergence of service-oriented 
technology (e.g., web services [10]) and interoperability standards 
(e.g., WSDL [11], UDDI [5]) has made it possible to develop 
pervasive software systems intended for execution in smart spaces 
that were not even conceivable a few years back.  

As the boundary between cyber and physical systems blurs, 
domain experts and end-users increasingly rely on such systems 
for their day to day activities. The software deployed in such 
settings needs to deal with the reality that pervasive environments 
are innately dynamic and unpredictable. Moreover, the users’ 
requirements for such software systems are often not completely 
known at design-time, and even if they are, they may change at 
runtime. These characteristics have forced the engineers of such 
systems to deal with two emerging and increasingly important 
requirements: (1) rapid composition of software systems at 
runtime based on the user’s changing needs, and (2) autonomous 
adaptation of the software system at runtime to satisfy the 
system’s functional and quality of service (QoS) requirements.  

Unfortunately, engineers have faced major obstacles with 
automatic composition and adaptation of software systems using 
pervasive computing resources. A resource abstractly refers to the 
contemporary computing entities, software or hardware, such as 
portable devices, sensors, software services, smart homes, and etc. 
These obstacles are rooted in the observation that automatic 
composition of pervasive software hinges on the availability of a 
semantic knowledge among the resources, e.g., the ability to 
understand the relationship between the different elements of a 
system, infer the intricate behavior of users, know which 
components and users can be trusted, where to look for particular 
resources, when to initiate change in the system, and so on. 

In parallel with the advancements in smart spaces and pervasive 
software systems, and largely unaffected by them, we have 
witnessed the growing popularity of online social networks (we 
will refer them as simply social networks henceforth). Social 

networks provide a common interaction infrastructure (e.g., 
instant messaging, creation of user profiles, linking of profiles) 
that are used to grow online communities of people with shared 
interests and activities. It is commonly known that social networks 
embody a large body of knowledge that may be used for a variety 
of purposes, such as targeted marketing of products, and 
identification of suspicious and criminal activities.  

An underlying insight guiding our research is that by harnessing 
the knowledge embedded in social networks, one could 
significantly improve the manner in which pervasive software 
systems are developed and deployed. In this paper, we introduce a 
new computing paradigm, entitled Social Computing Networks 
(SCN), which uses the intelligence (semantic knowledge) 
embedded in social networks along with the recent advances in 
end-user software engineering, automatic software composition, 
and application interoperability standards to radically change the 
manner in which pervasive software systems are constructed.  

The proposed paradigm is realized via an integrated framework 
consisting of (1) an extended social network structure that enables 
sharing, discovery, and utilization of pervasive resources within a 
trusted group of individuals, (2) an intuitive visual language that 
can be used for expressing a pervasive system’s requirements in 
terms of resources available within a user’s social network, (3) an 
infrastructure for socially-aware discovery of suitable resources 
and composition of software systems, and (4) runtime monitoring 
and adaptation of the software in response to observed changes in 
the context. The remainder of this paper provides an overview of 
the general paradigm and our ongoing efforts in realizing it. 

2. MOTIVATING SCENARIO 
We rely on a simple medical emergency scenario to illustrate the 
various concepts in our research. Consider that one method of 
decreasing medical costs is to release patients from the hospital as 
soon as possible. However, some patients need further supervision 
after they are released. For instance, heart rate of a patient with a 
history of cardiac arrest needs to be monitored, and depending on 
the nature of emergency appropriate remediating actions need to 
take place. Unfortunately, state of the art technologies currently 
employed in dealing with such situations are unwieldy, ad-hoc, 
and manual. For example, a heart rate monitor device may be used 
to alarm an emergency, but informing the appropriate relatives, 
engaging the appropriate doctor, and potentially resolving the 
situation is largely performed manually.   

Figure 1 depicts a concrete scenario, where Agnes has just been 
moved to home after a surgery under supervision of Dr. Ernest. 
Her children, Annette and Oliver, are living nearby and usually 
look after her when she is sick. In such setting, Agnes may want 
to report her heart readings to the doctor. She may also want to 
send an alert both to her doctor and one of her children when a 
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dramatic change is detected in her heart rate (e.g., above 120 
bpm). A fully automated solution to this scenario could involve 
Agnes’s heart monitor as the sensor, both her children’s and Dr. 
Ernest’s alert system for the notification, and finally the servers at 
Dr. Ernest’s hospital for recording the heart readings.  

The key underlying insight is that while the hardware and network 
capabilities required to fully automate such a simple pervasive 
system already exist, it is the software engineering issues, in 
particular those of trust and privacy, that make the realization of 
such systems difficult.  This is precisely the focus of our research.  

3. SOCIAL COMPUTING NETWORKS 
Social Computing Networks (SCN) is a new paradigm for 
automatically composing pervasive software systems that draws 
heavily on the knowledge provisioned by social networks. Unlike 
traditional software composition methods, SCN targets end-users 
as well as software engineers.  Figure 2 provides an overview of 
the SCN framework. In the following subsections, we describe the 
various components of SCN in detail. 

3.1 Extended Social Networks 
We propose a reconceptualization of social networks, where the 
notion of an individual is expanded to include that person’s smart 
surroundings, which we call turf. An individual’s turf consists of a 
variety of cyber-physical resources, such as smart mobile 
platforms (e.g., cell phone, PDA), sensors and actuators in a smart 
building (e.g., smoke detector, fire sprinkler), software services 
(e.g., a digital calendar), and wearable devices (e.g., heart 
monitor). We refer to this broader notion of social networks as 
extended social networks (ESN). 

Individuals in ESN are not only affiliated with one another, but 
also with resources provisioned by their respective turfs, which 
we call turf network. An individual’s turf network consists of 
resources available in one’s turf, and potentially some of the 
resources available in the affiliates’ turf, and recursively their 
neighbor’s turf. A user explicitly specifies (1) which resources 
from her turf are made available to her direct affiliates, and (2) the 
scope of sharing for each resource, i.e., whether it could be 
provisioned to indirectly connected affiliates. Note that access to a 
resource may also be granted to a group, which similar to 
traditional social networks is a classification of one’s affiliates 
(e.g., children, parents, family friends, coworkers at a company, 
and medical clinic staff). As further elaborated on below, turf 
networks lay the foundation for ensuring and enforcing trust and 
privacy in the framework. 

Figure 1 shows an ESN that corresponds to the example of 

Section  2.  Each circle defines a user’s turf. Users may 

incorporate various pervasive resources (e.g., smart devices, 
software services) into their turf. For example, Agnes has already 
registered three devices with her turf: camera, heart monitor, and 
digital thermometer. The items that are not faded in the turfs 
correspond to resources that Agnes may access, and constitute her 
turf network. Annette has decided that her parent can access her 
cell phone, but not her TV. Similarly, Oliver has given his parents 
access to his Skype, but not to his PDA and TV. Dr. Ernest has 
granted her patients permissions to interact with a logging service 
running in his office server and cell-phone, but not his calendar. 
Finally, Drs. Queen and Ernest, who are colleagues at the same 
clinic, have granted permission to one another’s cell phones under 
emergency scenarios.  

There are two underlying assumptions in our research (1) both 
logical and physical resources are selectively made available 
within one’s turf network via a software interface, referred to as a 
service; and (2) the resources are compliant to a corresponding 
service type specification in a domain ontology. The ontology 
consists of a set of terms, concepts, and definitions that allow one 
to precisely specify the services and capabilities of entities within 
a domain. For instance, it specifies how the services provided by a 
pervasive resource can be accessed. Hardware devices and 
software services are built to conform to these standards. In a 
sense, the role of ontology in SCN is analogues to that of a device 
driver in an operating system. The manufacturers of the devices 
and services usually form these standards (e.g., [9]) and build the 
functionality according to them.  

We believe the aforementioned vision of social networks is not 
only feasible, but already well underway. In fact, some existing 
social network environments, such as Facebook and Google wave, 
already provide integration support with various devices (e.g., 
Android cell phones) as well as various software services (e.g., 
Google calendar). In turn, they enable selective sharing of such 
capabilities with individuals from one’s network. 

3.2 Social Activity Schemas 
As mentioned before, in the pervasive setting, the users’ 
requirements are often not completely known at design-time, and 
even if they are, they may change at runtime. To that end, we have 

 

Figure 1. An example of extended social networks: 

relationships represent a subset of Agnes’s turf network. 

 

Figure 2. The high-level structural view of Social Computing 

Networks framework. 



 

 

developed an intuitive modeling language, called Social Activity 
Schemas (SAS). As shown in Figure 3, SAS is intended to be used 
by ESN users to visually specify the system’s requirements in 
terms of the resources in their turf network. For brevity we 
describe only a small subset of SAS, which builds on a software 
composition language developed in our recent work [3], and 
enriches that with the constructs needed in the SCN paradigm.   

Figure 3a shows a small subset of the language constructs. These 
constructs are connected together using Flows to denote the 
sequencing. Resource models a logical (e.g., software service) or 
physical (e.g., a sensor potentially made available to the rest of the 
system via a software wrapper) entity and consists of several Input 
and Output ports. The name of a resource is composed of two 
parts divided by “@”; the first part indicates the type of the 
resource, while the second part designates a set of turfs from 
which the provider of the resource can be selected. The resource 

type is defined in a domain ontology. As detailed in Section  3.4, 
resolving the concrete provider at runtime depends on the 
relationships established in the ESN. Gateways manage the flow 
of control within a scenario. Exclusive Gateway works as an “or” 
switch, which selects a subset of outgoing flows based on a 
condition. Parallel Gateway on the other hand is similar to an 
“and” fork, which enables all the outgoing flows. 

Figure 3b shows the requirements specified by Agnes for the 

example of Section  2 using SAS. As depicted in Figure 3b, the use 
case starts with the HeartMonitor belonging to Agnes. The 
HeartMonitor sends the heartRate readings to an Exclusive 

Gateway. The Exclusive Gateway detects if the heartRate value is 
more than 120, which is considered dangerous. If so, using a 
Parallel Gateway a message is sent to the Alert System of Dr. 

Ernest and CellPhone of a Child. Otherwise, a message is sent to 
Dr. Ernest’s MedicalRecorder, which records the readings for 

future diagnosis. As will be detailed in the following sections, 
usually it is sufficient to find only one instance of each resource 
that satisfies the social relationship. For example, for 
“CellPhone@Child” it is enough to find an active CellPhone 
belonging to one of Agnes’s children (in this case Annette). 

An individual may share an SAS with its affiliates by exposing its 
Input and Output ports. For instance, Figure 3c shows Dr. Ernest’s 
specification of AlertSystem, which as you may recall was used by 
Agnes in Figure 3b. When an Alarm arrives, an appropriate 
message is sent to his CellPhone; unless he is busy, in which case 
the message is routed to the CellPhone of an available Colleague 
working at the same hospital (e.g., Dr. Queen’s). Note that Me 
refers to the person defining the SAS. 

3.3 Monitoring 
Every SAS model may have some preconditions that determine 
when it should be executed. For example, only after HeartMonitor 
is attached to Agnes, the scenario of Figure 3b should be initiated. 
Therefore, as shown in Figure 2 after an SAS is defined, it is 
registered with SCN monitoring services. Note that monitoring is 
not limited to pre-deployment phase; since pervasive systems are 
inherently dynamic and unpredictable, some changes may happen 
in the environment causing the need for change in deployed SAS. 
The composition and adaptation services are in turn triggered to 
handle the detected changes.  

3.4 Discovery 
Recall that an end-user could specify a resource in two ways: (1) 
fully specified, e.g., AlertSystem@DrErnest, and (2) group 
specified, e.g., CellPhone@Child. Groups allow the resulting 
system to be significantly more flexible, as further elaborated on 
below. For deploying SAS models, a discovery mechanism is 
needed that based on the relationships within the social network 
resolves the resources types (placeholders) with the actual 
providers (instances). Clearly, when a resource is fully specified, 
the discovery is trivial. On the contrary, when a resource is group 
specified, the discovery needs to take the dynamic nature of turf 
networks into account. For instance, some of the resources within 
one’s turf network may not be available. You may also recall that 
the scope of an individual’s turf network may expand several 
levels, i.e., beyond one’s immediate affiliates. Hence, the 
discovery mechanism needs to take into account accessibility, 
trust, and availability of the resources within one’s turf network.  

For each resource, the search is performed in three steps. Consider 
CellPhone@Child in Figure 3b: first, turfs satisfying the Child 
relationship with Agnes (i.e., Annette and Oliver) are selected; 
afterwards, the resources within those turfs are narrowed down to 
those that comply with the CellPhone specification from the 
domain ontology; finally, the complying resources to which 

Agnes has access are selected (recall from Section  3.1 that access 
control defines Agnes’s turf network). In this example the two 
resources would be Annette’s cell-phone and Oliver’s Skype. The 
discovery mechanism then selects one of them based on an end-
user configurable policy (e.g., randomly, priority, user discretion). 

3.5 Composition and Adaptation 
As depicted in Figure 2, once the preconditions for a given 
schema are satisfied, the composition is initiated. The resources 
for that schema are discovered, selected, and bound to one another 
to compose the running software system. A software system 
constructed in this manner may itself be exposed as a resource to 
affiliates, and reused in composing more complex pervasive 

 

Figure 3. Using SAS for specifying a particular use case:            

a) language constructs, b) Agnes’s heart monitoring use case, 

and c) Dr. Ernest’s specification of AlertSystem. 



 

 

software systems (e.g., AlertSystem in Figure 3). Finally, the 
resources in the composed software system are coordinated using 
an SCN infrastructure engine that executes the SAS model. 

As mentioned before in Section  3.3, some changes in the 

environment may impact the system’s functional or QoS 
properties. If such changes are detected, the adaptation services 
work to alleviate the situation as follows: 

• A precondition is no longer valid. For example, when Agnes 
removes the heart monitor. In such cases, the executing SAS 
model is stopped, resources are unbound, and the model is 
registered for monitoring again.  

• One of the resources discovered previously is no longer 

available. In this case, another online discovery is performed to 
find a substitute resource that adheres to social relationships 
and resource types. For example, consider when Annette’s cell-
phone runs out of battery. In this case, Oliver’s Skype provides 
a suitable alternative, since it satisfies the social relationship 
(i.e., Child), service type specification (i.e., CellPhone), and 
trust relationships (i.e, it is included in Agnes’s turf network). 

4. FRAMEWORK PROTOTYPE 
We are developing an initial prototype of the SCN framework on 
top of existing standards and open social network frameworks, 
which we believe aid its wide-scale adoption. Our prototype 
complies with the web services standards. We are relying on 
UDDI [5] for the implementation of the domain ontology, and 
WSDL [11] for service description and discovery. We are also 
targeting domains, such as emergency response, that already have 
well established ontologies (e.g., [9]). 

To realize the ESN component of our framework (recall Section 

 3.1), we are building on top of the Google Wave  technology [8]. 

Google Wave is an open-source social networking environment 
that provides a number of advanced facilities. Google Wave 
provides support for real-time event broadcasting, which we are 
leveraging for exchange of messages among the pervasive 
resources. Google Wave also provides robots and gadgets, which 
provide a way of cutomizing its services.  

Gadget allows for extending Wave’s application environment, 
which we have used to support various SCN concepts. For 
example, our visual SAS editor is built as a gadget, which enables 
the users to construct a SAS model by dragging and dropping 
resources available within their turf network. Robot is an 
automated agent deployed on a Wave server to extend its 
capabilities. Within ESN, each pervasive resource is realized as a 
robot, which essentially acts as a software wrapper to enable 
interaction with the resource. Each robot complies with the 
specification of a resource type from the domain ontology.  

5. RELATED WORK 
Numerous frameworks and technologies for pervasive computing 
have been proposed (e.g., [1,2,4,6]).  However, with the exception 
of [1,6], none of the existing solutions employ social networks. 
Researchers in Socialnets [6] have tried to build a framework to 
establish direct trust relationships between handheld devices 
based on social relationships among the people. These 
relationships allow disseminating information without the need to 
maintain end-to-end connectivity between devices. On the other 
hand, the goal of ASTRA project [1] is to come up with a 
framework based on pervasive awareness to assist social 
relationships. This framework facilitates spreading information 
about people to help them maintain tight social connections. None 

of these works, however, aim to provide the ability to dynamically 
compose and adapt a software system. Similar to our activity 
oriented language, uDesign [7] targets smart patient care spaces. 
However, its focus has not been on incorporating social networks.   

6. CONCLUDING REMARKS 
We presented a new paradigm that relies on social networks as 
well as automated software composition techniques to alleviate 
some of the challenges of constructing pervasive software 
systems. We are proposing a reconceptualization of social 
networks that beyond simple human interaction, enable sharing, 
discovery, and utilization of pervasive computing resources. 
Pervasive services and smart devices in our approach mimic the 
social relationships among the people, and not only enable 
flexible and efficient discovery of resources, but also alleviate 
trust and privacy concerns.  

Avenues of future work involve fully implementing and 
evaluating the approach in real-world settings. We are also 
exploring a method of inferring trust between individuals when 
they are not directly affiliated. Currently trust is established 
explicitly based on the user’s existing relationships. However, 
even if individuals are not directly connected, they may be able to 
establish trust with one another, albeit at a lower threshold. In the 
example of Figure 1, while Oliver and Dr. Ernest are not directly 
related, their mutual relationship with Agnes allows both parties 
to conclude a higher level of trust than they would with a stranger.      
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