

Social Computing Networks: A New Paradigm for
Engineering Self-Adaptive Pervasive Software Systems

Naeem Esfahani

Department of Computer Science
George Mason University

nesfaha2@gmu.edu

Sam Malek

Department of Computer Science
George Mason University

smalek@gmu.edu

1. INTRODUCTION
Software systems are increasingly permeating a variety of
domains including medical, industrial automation, and emergency
response. The advances in portable and embedded computing
devices and the recent advances in wireless network connectivity
have paved the way for the proliferation of smart spaces in such
domains. At the same time, the emergence of service-oriented
technology (e.g., web services [10]) and interoperability standards
(e.g., WSDL [11], UDDI [5]) has made it possible to develop
pervasive software systems intended for execution in smart spaces
that were not even conceivable a few years back.

As the boundary between cyber and physical systems blurs,
domain experts and end-users increasingly rely on such systems
for their day to day activities. The software deployed in such
settings needs to deal with the reality that pervasive environments
are innately dynamic and unpredictable. Moreover, the users’
requirements for such software systems are often not completely
known at design-time, and even if they are, they may change at
runtime. These characteristics have forced the engineers of such
systems to deal with two emerging and increasingly important
requirements: (1) rapid composition of software systems at
runtime based on the user’s changing needs, and (2) autonomous
adaptation of the software system at runtime to satisfy the
system’s functional and quality of service (QoS) requirements.

Unfortunately, engineers have faced major obstacles with
automatic composition and adaptation of software systems using
pervasive computing resources. A resource abstractly refers to the
contemporary computing entities, software or hardware, such as
portable devices, sensors, software services, smart homes, and etc.
These obstacles are rooted in the observation that automatic
composition of pervasive software hinges on the availability of a
semantic knowledge among the resources, e.g., the ability to
understand the relationship between the different elements of a
system, infer the intricate behavior of users, know which
components and users can be trusted, where to look for particular
resources, when to initiate change in the system, and so on.

In parallel with the advancements in smart spaces and pervasive
software systems, and largely unaffected by them, we have
witnessed the growing popularity of online social networks (we
will refer them as simply social networks henceforth). Social

networks provide a common interaction infrastructure (e.g.,
instant messaging, creation of user profiles, linking of profiles)
that are used to grow online communities of people with shared
interests and activities. It is commonly known that social networks
embody a large body of knowledge that may be used for a variety
of purposes, such as targeted marketing of products, and
identification of suspicious and criminal activities.

An underlying insight guiding our research is that by harnessing
the knowledge embedded in social networks, one could
significantly improve the manner in which pervasive software
systems are developed and deployed. In this paper, we introduce a
new computing paradigm, entitled Social Computing Networks
(SCN), which uses the intelligence (semantic knowledge)
embedded in social networks along with the recent advances in
end-user software engineering, automatic software composition,
and application interoperability standards to radically change the
manner in which pervasive software systems are constructed.

The proposed paradigm is realized via an integrated framework
consisting of (1) an extended social network structure that enables
sharing, discovery, and utilization of pervasive resources within a
trusted group of individuals, (2) an intuitive visual language that
can be used for expressing a pervasive system’s requirements in
terms of resources available within a user’s social network, (3) an
infrastructure for socially-aware discovery of suitable resources
and composition of software systems, and (4) runtime monitoring
and adaptation of the software in response to observed changes in
the context. The remainder of this paper provides an overview of
the general paradigm and our ongoing efforts in realizing it.

2. MOTIVATING SCENARIO
We rely on a simple medical emergency scenario to illustrate the
various concepts in our research. Consider that one method of
decreasing medical costs is to release patients from the hospital as
soon as possible. However, some patients need further supervision
after they are released. For instance, heart rate of a patient with a
history of cardiac arrest needs to be monitored, and depending on
the nature of emergency appropriate remediating actions need to
take place. Unfortunately, state of the art technologies currently
employed in dealing with such situations are unwieldy, ad-hoc,
and manual. For example, a heart rate monitor device may be used
to alarm an emergency, but informing the appropriate relatives,
engaging the appropriate doctor, and potentially resolving the
situation is largely performed manually.

Figure 1 depicts a concrete scenario, where Agnes has just been
moved to home after a surgery under supervision of Dr. Ernest.
Her children, Annette and Oliver, are living nearby and usually
look after her when she is sick. In such setting, Agnes may want
to report her heart readings to the doctor. She may also want to
send an alert both to her doctor and one of her children when a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

dramatic change is detected in her heart rate (e.g., above 120
bpm). A fully automated solution to this scenario could involve
Agnes’s heart monitor as the sensor, both her children’s and Dr.
Ernest’s alert system for the notification, and finally the servers at
Dr. Ernest’s hospital for recording the heart readings.

The key underlying insight is that while the hardware and network
capabilities required to fully automate such a simple pervasive
system already exist, it is the software engineering issues, in
particular those of trust and privacy, that make the realization of
such systems difficult. This is precisely the focus of our research.

3. SOCIAL COMPUTING NETWORKS
Social Computing Networks (SCN) is a new paradigm for
automatically composing pervasive software systems that draws
heavily on the knowledge provisioned by social networks. Unlike
traditional software composition methods, SCN targets end-users
as well as software engineers. Figure 2 provides an overview of
the SCN framework. In the following subsections, we describe the
various components of SCN in detail.

3.1 Extended Social Networks
We propose a reconceptualization of social networks, where the
notion of an individual is expanded to include that person’s smart
surroundings, which we call turf. An individual’s turf consists of a
variety of cyber-physical resources, such as smart mobile
platforms (e.g., cell phone, PDA), sensors and actuators in a smart
building (e.g., smoke detector, fire sprinkler), software services
(e.g., a digital calendar), and wearable devices (e.g., heart
monitor). We refer to this broader notion of social networks as
extended social networks (ESN).

Individuals in ESN are not only affiliated with one another, but
also with resources provisioned by their respective turfs, which
we call turf network. An individual’s turf network consists of
resources available in one’s turf, and potentially some of the
resources available in the affiliates’ turf, and recursively their
neighbor’s turf. A user explicitly specifies (1) which resources
from her turf are made available to her direct affiliates, and (2) the
scope of sharing for each resource, i.e., whether it could be
provisioned to indirectly connected affiliates. Note that access to a
resource may also be granted to a group, which similar to
traditional social networks is a classification of one’s affiliates
(e.g., children, parents, family friends, coworkers at a company,
and medical clinic staff). As further elaborated on below, turf
networks lay the foundation for ensuring and enforcing trust and
privacy in the framework.

Figure 1 shows an ESN that corresponds to the example of

Section 2. Each circle defines a user’s turf. Users may

incorporate various pervasive resources (e.g., smart devices,
software services) into their turf. For example, Agnes has already
registered three devices with her turf: camera, heart monitor, and
digital thermometer. The items that are not faded in the turfs
correspond to resources that Agnes may access, and constitute her
turf network. Annette has decided that her parent can access her
cell phone, but not her TV. Similarly, Oliver has given his parents
access to his Skype, but not to his PDA and TV. Dr. Ernest has
granted her patients permissions to interact with a logging service
running in his office server and cell-phone, but not his calendar.
Finally, Drs. Queen and Ernest, who are colleagues at the same
clinic, have granted permission to one another’s cell phones under
emergency scenarios.

There are two underlying assumptions in our research (1) both
logical and physical resources are selectively made available
within one’s turf network via a software interface, referred to as a
service; and (2) the resources are compliant to a corresponding
service type specification in a domain ontology. The ontology
consists of a set of terms, concepts, and definitions that allow one
to precisely specify the services and capabilities of entities within
a domain. For instance, it specifies how the services provided by a
pervasive resource can be accessed. Hardware devices and
software services are built to conform to these standards. In a
sense, the role of ontology in SCN is analogues to that of a device
driver in an operating system. The manufacturers of the devices
and services usually form these standards (e.g., [9]) and build the
functionality according to them.

We believe the aforementioned vision of social networks is not
only feasible, but already well underway. In fact, some existing
social network environments, such as Facebook and Google wave,
already provide integration support with various devices (e.g.,
Android cell phones) as well as various software services (e.g.,
Google calendar). In turn, they enable selective sharing of such
capabilities with individuals from one’s network.

3.2 Social Activity Schemas
As mentioned before, in the pervasive setting, the users’
requirements are often not completely known at design-time, and
even if they are, they may change at runtime. To that end, we have

Figure 1. An example of extended social networks:

relationships represent a subset of Agnes’s turf network.

Figure 2. The high-level structural view of Social Computing

Networks framework.

developed an intuitive modeling language, called Social Activity
Schemas (SAS). As shown in Figure 3, SAS is intended to be used
by ESN users to visually specify the system’s requirements in
terms of the resources in their turf network. For brevity we
describe only a small subset of SAS, which builds on a software
composition language developed in our recent work [3], and
enriches that with the constructs needed in the SCN paradigm.

Figure 3a shows a small subset of the language constructs. These
constructs are connected together using Flows to denote the
sequencing. Resource models a logical (e.g., software service) or
physical (e.g., a sensor potentially made available to the rest of the
system via a software wrapper) entity and consists of several Input
and Output ports. The name of a resource is composed of two
parts divided by “@”; the first part indicates the type of the
resource, while the second part designates a set of turfs from
which the provider of the resource can be selected. The resource

type is defined in a domain ontology. As detailed in Section 3.4,
resolving the concrete provider at runtime depends on the
relationships established in the ESN. Gateways manage the flow
of control within a scenario. Exclusive Gateway works as an “or”
switch, which selects a subset of outgoing flows based on a
condition. Parallel Gateway on the other hand is similar to an
“and” fork, which enables all the outgoing flows.

Figure 3b shows the requirements specified by Agnes for the

example of Section 2 using SAS. As depicted in Figure 3b, the use
case starts with the HeartMonitor belonging to Agnes. The
HeartMonitor sends the heartRate readings to an Exclusive

Gateway. The Exclusive Gateway detects if the heartRate value is
more than 120, which is considered dangerous. If so, using a
Parallel Gateway a message is sent to the Alert System of Dr.

Ernest and CellPhone of a Child. Otherwise, a message is sent to
Dr. Ernest’s MedicalRecorder, which records the readings for

future diagnosis. As will be detailed in the following sections,
usually it is sufficient to find only one instance of each resource
that satisfies the social relationship. For example, for
“CellPhone@Child” it is enough to find an active CellPhone
belonging to one of Agnes’s children (in this case Annette).

An individual may share an SAS with its affiliates by exposing its
Input and Output ports. For instance, Figure 3c shows Dr. Ernest’s
specification of AlertSystem, which as you may recall was used by
Agnes in Figure 3b. When an Alarm arrives, an appropriate
message is sent to his CellPhone; unless he is busy, in which case
the message is routed to the CellPhone of an available Colleague
working at the same hospital (e.g., Dr. Queen’s). Note that Me
refers to the person defining the SAS.

3.3 Monitoring
Every SAS model may have some preconditions that determine
when it should be executed. For example, only after HeartMonitor
is attached to Agnes, the scenario of Figure 3b should be initiated.
Therefore, as shown in Figure 2 after an SAS is defined, it is
registered with SCN monitoring services. Note that monitoring is
not limited to pre-deployment phase; since pervasive systems are
inherently dynamic and unpredictable, some changes may happen
in the environment causing the need for change in deployed SAS.
The composition and adaptation services are in turn triggered to
handle the detected changes.

3.4 Discovery
Recall that an end-user could specify a resource in two ways: (1)
fully specified, e.g., AlertSystem@DrErnest, and (2) group
specified, e.g., CellPhone@Child. Groups allow the resulting
system to be significantly more flexible, as further elaborated on
below. For deploying SAS models, a discovery mechanism is
needed that based on the relationships within the social network
resolves the resources types (placeholders) with the actual
providers (instances). Clearly, when a resource is fully specified,
the discovery is trivial. On the contrary, when a resource is group
specified, the discovery needs to take the dynamic nature of turf
networks into account. For instance, some of the resources within
one’s turf network may not be available. You may also recall that
the scope of an individual’s turf network may expand several
levels, i.e., beyond one’s immediate affiliates. Hence, the
discovery mechanism needs to take into account accessibility,
trust, and availability of the resources within one’s turf network.

For each resource, the search is performed in three steps. Consider
CellPhone@Child in Figure 3b: first, turfs satisfying the Child
relationship with Agnes (i.e., Annette and Oliver) are selected;
afterwards, the resources within those turfs are narrowed down to
those that comply with the CellPhone specification from the
domain ontology; finally, the complying resources to which

Agnes has access are selected (recall from Section 3.1 that access
control defines Agnes’s turf network). In this example the two
resources would be Annette’s cell-phone and Oliver’s Skype. The
discovery mechanism then selects one of them based on an end-
user configurable policy (e.g., randomly, priority, user discretion).

3.5 Composition and Adaptation
As depicted in Figure 2, once the preconditions for a given
schema are satisfied, the composition is initiated. The resources
for that schema are discovered, selected, and bound to one another
to compose the running software system. A software system
constructed in this manner may itself be exposed as a resource to
affiliates, and reused in composing more complex pervasive

Figure 3. Using SAS for specifying a particular use case:

a) language constructs, b) Agnes’s heart monitoring use case,

and c) Dr. Ernest’s specification of AlertSystem.

software systems (e.g., AlertSystem in Figure 3). Finally, the
resources in the composed software system are coordinated using
an SCN infrastructure engine that executes the SAS model.

As mentioned before in Section 3.3, some changes in the

environment may impact the system’s functional or QoS
properties. If such changes are detected, the adaptation services
work to alleviate the situation as follows:

• A precondition is no longer valid. For example, when Agnes
removes the heart monitor. In such cases, the executing SAS
model is stopped, resources are unbound, and the model is
registered for monitoring again.

• One of the resources discovered previously is no longer

available. In this case, another online discovery is performed to
find a substitute resource that adheres to social relationships
and resource types. For example, consider when Annette’s cell-
phone runs out of battery. In this case, Oliver’s Skype provides
a suitable alternative, since it satisfies the social relationship
(i.e., Child), service type specification (i.e., CellPhone), and
trust relationships (i.e, it is included in Agnes’s turf network).

4. FRAMEWORK PROTOTYPE
We are developing an initial prototype of the SCN framework on
top of existing standards and open social network frameworks,
which we believe aid its wide-scale adoption. Our prototype
complies with the web services standards. We are relying on
UDDI [5] for the implementation of the domain ontology, and
WSDL [11] for service description and discovery. We are also
targeting domains, such as emergency response, that already have
well established ontologies (e.g., [9]).

To realize the ESN component of our framework (recall Section

 3.1), we are building on top of the Google Wave technology [8].

Google Wave is an open-source social networking environment
that provides a number of advanced facilities. Google Wave
provides support for real-time event broadcasting, which we are
leveraging for exchange of messages among the pervasive
resources. Google Wave also provides robots and gadgets, which
provide a way of cutomizing its services.

Gadget allows for extending Wave’s application environment,
which we have used to support various SCN concepts. For
example, our visual SAS editor is built as a gadget, which enables
the users to construct a SAS model by dragging and dropping
resources available within their turf network. Robot is an
automated agent deployed on a Wave server to extend its
capabilities. Within ESN, each pervasive resource is realized as a
robot, which essentially acts as a software wrapper to enable
interaction with the resource. Each robot complies with the
specification of a resource type from the domain ontology.

5. RELATED WORK
Numerous frameworks and technologies for pervasive computing
have been proposed (e.g., [1,2,4,6]). However, with the exception
of [1,6], none of the existing solutions employ social networks.
Researchers in Socialnets [6] have tried to build a framework to
establish direct trust relationships between handheld devices
based on social relationships among the people. These
relationships allow disseminating information without the need to
maintain end-to-end connectivity between devices. On the other
hand, the goal of ASTRA project [1] is to come up with a
framework based on pervasive awareness to assist social
relationships. This framework facilitates spreading information
about people to help them maintain tight social connections. None

of these works, however, aim to provide the ability to dynamically
compose and adapt a software system. Similar to our activity
oriented language, uDesign [7] targets smart patient care spaces.
However, its focus has not been on incorporating social networks.

6. CONCLUDING REMARKS
We presented a new paradigm that relies on social networks as
well as automated software composition techniques to alleviate
some of the challenges of constructing pervasive software
systems. We are proposing a reconceptualization of social
networks that beyond simple human interaction, enable sharing,
discovery, and utilization of pervasive computing resources.
Pervasive services and smart devices in our approach mimic the
social relationships among the people, and not only enable
flexible and efficient discovery of resources, but also alleviate
trust and privacy concerns.

Avenues of future work involve fully implementing and
evaluating the approach in real-world settings. We are also
exploring a method of inferring trust between individuals when
they are not directly affiliated. Currently trust is established
explicitly based on the user’s existing relationships. However,
even if individuals are not directly connected, they may be able to
establish trust with one another, albeit at a lower threshold. In the
example of Figure 1, while Oliver and Dr. Ernest are not directly
related, their mutual relationship with Agnes allows both parties
to conclude a higher level of trust than they would with a stranger.

7. ACKNOWLEDGMENTS
This work is partially supported by grant CCF-0820060 from the
National Science Foundation.

8. REFERENCES
[1] ASTRA Project, http://www.astra-project.net/.

[2] Chetan, S., et al. 2005 Mobile Gaia: a middleware for ad-
hoc pervasive computing. Proc. of IEEE Consumer
Communications and Networking Conference, 2005.

[3] Esfahani, N., Malek, S., et al. 2009 A Modeling Language
for Activity-Oriented Composition of Service-Oriented
Software Systems. Model Driven Engineering Languages
and Systems, Denver, Colorado, USA: 2009, pp. 591-605.

[4] Garlan, D., et al. 2002 Project Aura: Toward Distraction-
Free Pervasive Computing. IEEE Pervasive Computing,
vol. 1, 2002, pp. 22-31.

[5] Papazoglou, M. 2007 Web Services: Principles and
Technology, Prentice Hall, 2007.

[6] Socialnets, http://www.social-nets.eu/.

[7] Sousa, J.P., et al. 2008 uDesign: End-User Design Applied
to Monitoring and Control Applications for Smart Spaces.
Working Conference on Software Architecture, 2008.

[8] Trapani, G. and Pash, A. 2010 The Complete Guide to
Google Wave. http://completewaveguide.com/.

[9] US GOV. US Government Web Services and XML Data
Sources. http://www.usgovxml.com/.

[10] W3C. Web Services. http://www.w3.org/2002/ws/.

[11] Weerawarana, S., et al. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall, 2005.

