
 1

Department of Computer Science
George Mason University

Technical Report Series

4400 University Drive MS#4A5

Fairfax, VA 22030-4444 USA

http://cs.gmu.edu/

703-993-1530

Taming Uncertainty in Self-Adaptation through

Possibilistic Analysis

Naeem Esfahani

nesfaha2@gmu.edu
Ehsan Kouroshfar

ekourosh@gmu.edu
Sam Malek

smalek@gmu.edu

Technical Report GMU-CS-TR-2010-10

Abstract

Self-adaptation endows a software system with the

ability to satisfy certain objectives by automatically

modifying its behavior. While many promising

approaches for the construction of self-adaptive

software systems have been developed, the majority of

them ignore the uncertainty underlying the adaptation

decisions. This has been one of the key inhibitors to

wide-spread adoption of self-adaption techniques in

risk-averse real-world settings. In this paper, we

describe an approach, called POssIbilistic SElf-

aDaptation (POISED), for tackling the challenge

posed by uncertainty in making adaptation decisions.

POISED builds on possibility theory to assess the

positive and negative consequences of uncertainty. It

makes adaptation decisions that result in the best range

of potential behavior. We demonstrate POISED’s

application to the problem of improving a software

system’s quality attributes via runtime reconfiguration

of its customizable software components. We have

extensively evaluated POISED using a prototype of a

robotic software system.

Keywords

Uncertainty, Self-Adaptation, Software Architecture

1. Introduction

Self-adaptation has been shown effective in dealing

with the changing dynamics of many application

domains, such as mobile and pervasive systems. In

response to changes, a self-adaptive software system

modifies itself to maintain certain objectives [1,12].

While the benefits of such systems are plenty, their

development has shown to be significantly more

challenging than traditional software systems [1]. One

key culprit is that self-adaptation is subject to

uncertainty [1].

We distinguish between the external and internal

uncertainty. External uncertainty arises from the

environment or domain in which the software is

deployed. For example, the external uncertainty for a

software system deployed in an unmanned vehicle

may include the likelihood of certain weather

conditions occurring. Software self-adaptation is one

approach in dealing with the effects of external

uncertainty, e.g., in a snow storm the vehicle’s

navigator component may be replaced with a more

conservative navigator to avoid a collision. On the

other hand, internal uncertainty is rooted in the

difficulty of determining the impact of adaptation on

the system’s quality objectives, e.g., determining the

impact of replacing a software component on the

system’s responsiveness, battery usage, etc. While

both sources of uncertainty are of great concern, in

this paper we focus our attention on the challenges

posed by internal uncertainty.

Uncertainty can be observed in every facet of

adaptation, albeit at varying degrees. It follows from

the fact that the system’s user, adaptation logic, and

business logic are loosely coupled, introducing

numerous sources of uncertainty [3]. Consider that

users often find it difficult to accurately express their

quality preferences using complex utility functions,

sensors employed for monitoring often have

 2

uncontrollable noise, analytical models used for

assessing the system’s quality attributes by definition

make simplifying assumptions that may not hold at

runtime, and so on. All of these factors challenge the

confidence with which the adaptation decisions are

made. A key observation is that while the level of

uncertainty could vary, no self-adaptive software

system is ever completely free of it.

The research community has made great strides in

tackling the complexity of constructing self-adaptive

software systems [1,12]. However, as corroborated by

others [1], there is a dearth of applicable techniques

for dealing with uncertainty in this setting. A few

researchers have recently begun to address uncertainty

issues in requirements specification [2,21] and

resource prediction [17], but no approach we are

aware of has tackled the challenge posed by

uncertainty in making adaptation decisions. We

believe this has been one of the primary obstacles to

wide-spread adoption of self-adaptation in risk-averse

domains.

This is precisely the challenge we have aimed to

address in this paper. We present a general

quantitative approach for tackling the complexity of

automatically making adaptation decisions under

uncertainty, called POssIbilistic SElf-aDaptation

(POISED). Estimates of uncertainty in the elements

comprising a self-adaptive software system are

incorporated in possibilistic analysis of the adaptation

choices. Possibilistic analysis is founded on the

principles of fuzzy mathematics [22], which provides

a sound basis for representing uncertainty, as well as

dealing with its negative and positive consequences on

the adaptation choices. POISED redefines the

conventional definition of optimal solution to one that

has the best range of behavior. In turn, the solution

selected by POISED has the highest likelihood of

satisfying the system’s quality objectives, even if due

to uncertainty, properties expected of the system are

not borne out in practice.

We demonstrate POISED by applying it to the

problem of improving a software system’s quality

attributes via runtime reconfiguration of its

customizable software components. We have

evaluated POISED under numerous circumstances and

using a prototype of a robotic software system. The

results demonstrate POISED’s ability to deal with

uncertainty by making adaptation decisions that are

superior to those of the conventional approach.

The remainder of this paper is organized as

follows. Section 0 exemplifies the sources of

uncertainty via a robotic software system. Section 3

provides an overview of POISED. Section 0 formally

presents the self-adaptation problem that we have used

to describe and evaluate POISED. Section 5 describes

several techniques for quantifying uncertainty in self-

adaptive software. Section 6 presents our possibilistic

analysis approach. Section 7 details the evaluation of

our work. The paper concludes with an overview of

the related literature and avenues of future research.

2. Motivationg Example

We use a subset of a robotic software system

developed in our previous work [13] to motivate and

describe this research. The robotic software is part of a

distributed search and rescue system aimed at

supporting the government agencies in dealing with

emergency crises (e.g., fire, hurricane). Figure 1b

provides an abridged view of the robotic system’s

architecture. The software components comprising the

robotic system range from abstractions of the physical

entities, such as software controlled sensors and

actuators on board the robot, to purely logical

functionalities, such as image detection and

navigation. The bold path in Figure 1b indicates the

Maneuver execution scenario, which aims to prevent

the robot from hitting obstacles. The Camera feed is

sent to Obstacle Detector, which runs an image

processing algorithm to detect obstacles. This

information in turn is sent to Navigator to plan the

change in the direction. Finally, the navigation plan is

sent to the Controller to be put into effect.

The software components comprising this system

are customizable in the sense that they can be

configured to operate in different modes of operation.

Figure 1a shows some of the available configuration

dimensions for the robot’s software components. For

instance, Power is a configuration dimension for the

Controller component. A Controller could operate in

either Energy Saving or Full Power mode. A

component may have many configuration dimensions.

The configuration of a software component

determines its quality attributes (e.g., response time)

and resource usage (e.g., memory), which in turn

impact the properties of the whole system. For

instance, given the resource constrained nature of the

mobile robotic system, it is reasonable to expect the

configuration decisions of each component to have a

significant impact on the system’s performance as well

as its battery life. Such configuration decisions often

cannot be made prior to the system’s deployment,

since the runtime properties (e.g., available network

bandwidth) may not be known ahead of time. One

approach to solving this problem is to determine the

optimal configuration at runtime and effect it through

self-adaptation of the system.

 3

As shown in Figure 1c, for making runtime

decisions, utility functions capturing the user’s

satisfaction with different levels of quality attribute

(e.g., availability) are used. The adaptation logic

would use analytical models to estimate the effect of

each configuration decision on the system’s quality

attributes and find a configuration that achieves the

maximum utility. For example, an analytical model

may be used to quantify the response time for

Maneuver scenario given the configuration of its

components.

The above approach is rather myopic, since it does

not consider the uncertainty of information used in

making adaptation decisions. Consider that almost

every facet of the approach outlined above faces some

form of uncertainty:

• Uncertainty in System Parameters: The

monitoring data obtained form a running system

rarely corresponds to a single value, but rather a

distribution of values obtained over the

observation period. For instance, a sensor

monitoring the available network bandwidth may

return a slightly different number every time a

sample is collected. This variation could be either

due to actual changes in the bandwidth or the

error (noise) in the employed probes.

• Uncertainty in Analytical Models: Analytical

models often make simplifying assumptions, and

thus provide only estimates of the system’s

behavior. For instance, an analytical model

quantifying the system’s response time may

account for the dominant factors, such as

execution time of components, and ignore others,

such as the transmission delay difference between

TCP and UDP. Response time estimates

provisioned by such a formulation are not only

error-prone, but also the magnitude of error varies

depending on the circumstances. Both the

estimation error and its variation contribute to the

uncertainty of adaptation decisions made using

such models.

Figure 1. A subset of the robotic software system: (a) configuration dimensions and alternatives for components of the

robot, (b) software architecture, where the bold path indicates the components participating in the Maneuver execution

scenario, and (c) utility functions defined in terms of quality attributes.

 4

• Uncertainty in User Preferences: Eliciting user’s

preferences in terms of utility functions, such as

those depicted in Figure 1c, is a well-known

challenge [1]. Often users have difficulty

expressing their preferences and thus the overall

accuracy of the utility functions remains

subjective, making the analysis based on them

prone to uncertainty.

3. Approach

Figure 2a shows the typical behavior of a self-adaptive

system that does not incorporate uncertainty in its

analysis, which in this paper we abstractly refer to as

the traditional approach. The system is initially

executing with utility �� prior to time ��. At time ��,
due to either an internal or external change, the

system’s utility drops to ��. During �� the self-
adaptation logic detects this drop in utility, finds and

effects an optimal configuration, which is

conventionally defined as the one achieving the

maximum utility. As shown in Figure 2a, this

corresponds to ��, which represents the expected
utility of the best configuration for the system. In

practice, however, the actual utility of the system may

vary between the two dashed lines, representing the

likely positive and negative consequences of

uncertainty during ��. By not accounting for

uncertainty in the analysis, the approach is vulnerable

to gross overestimation of the utility.

The centerpiece of POISED is the

reconceptualization of what is traditionally considered

as the optimal solution (adaptation decision), such that

the uncertainty is incorporated into the analysis. We

illustrate the insights underlying POISED using Figure

2b. Similar to the scenario of Figure 2a, a new

configuration is effected at time ��, except this time

we select the configuration that concurrently satisfies

the following three objectives: (1) maximizes ��,
which represents the most likely utility for the system

under uncertainty; (2) maximizes the positive

consequence of uncertainty, which represents the

likelihood of the solution being better than ��; and (3)
minimizes the negative consequence of uncertainty,

which represents the likelihood of the solution being

worse than ��.
The details of our approach, including how the

likelihood of each objective is calculated, are

described in Sections 5 and 6. However, we can make

several general observations. As depicted in Figure 2,

concurrent satisfaction of the three objectives outlined

above may result in a smaller value of expected utility

(i.e., ��� in POISED compared to that of the

traditional approach. But since the information used to

estimate the expected utility is uncertain, expected

utility is not guaranteed to occur in practice. We argue

the true quality of a solution is determined by the

range of possible utility. As depicted here and

evaluated in Section 7, POISED’s objective is to find
solutions with a better range.

The above discussion assumes one could quantify

the range of utility under uncertainty. There are two

general approaches to estimating uncertainty:

probability theory and possibility theory. Probability

theory is concerned with the analysis of random

phenomena and forms the foundation of statistics.

Possibility theory is founded on the concept of fuzzy

set [22]. In a fuzzy set, the elements have a degree of

membership. Degree of membership is a value

between zero and one: a value of zero indicates the

Figure 2. Impact of uncertainty on the utility of a self-adaptive software system: (a) traditional selection of optimal

configuration, (b) POISED’s selection of optimal configuration.

 5

element is certainly not a member of the set, a value of

one indicates the element is certainly a member of the

set, and a value in between indicates the extent of

certainty that the element is a member of the set. In

possibility theory, the concept of possibility is defined

as the degree of membership, which plays a similar

role as that of probability in statistics. The most

optimistic and most pessimistic values have a degree

of membership of zero, while the most possible value

has a degree of membership of one. While the notion

of probability and possibility are related, it is

important to note that the two concepts are distinct.

Probability theory deals with the statistical

characteristic of data, while possibility theory focuses

on the meaning of data [22].

For an illustration of this difference, consider

Figures 3 and 4 in which the uncertainty in available

network bandwidth is modeled using possibility and

probability distributions, respectively. The details of

how such functions can be obtained in the first place

are described in Section 5. Possibility distribution

models a fuzzy variable, while probability distribution

models a random variable. Possibility distribution in

Figure 3 returns the degree of membership, while

probability distribution in Figure 4 returns the

probability density.

While uncertainty can be quantified using both

approaches, POISED relies on possibility theory in its

analysis. Possibility theory is widely used for handling

uncertainty in many fields of engineering, including

control theory, robotics, and artificial intelligence. One

advantage of possibility theory is that the

representation of uncertainty and the operations

defined on it are more convenient than that of

probability theory. For example, performing simple

algebraic operations, such as addition and subtraction,

on random variables require special considerations

(e.g., Central Limit Theorem), and are not always

possible. On the contrary, in fuzzy mathematics,

which is founded on possibility theory, variables can

be simply operated on using traditional algebraic

operators. Moreover, in general, fuzzy mathematical

problems can be solved much more efficiently than

statistical problems [10], making them desirable in

many practical engineering problems, including self-

adaptive systems. In the remainder of this paper we

describe how POISED’s research objectives

established earlier in this section can be realized

through possibilistic analysis.

4. Self-Adaptation Problem

In this section, we provide a formal specification of

the self-adaptation problem introduced in Section 0.

As mentioned earlier, we use the following adaptation

problem as an example for demonstrating and

evaluating POISED. However, note that the

underlying concepts and techniques in POISED are

generally applicable to any self-adaptation problem.

4.1 Configuration

A system like the one depicted in Figure 1b consists of

several software components, which we denote as set �. Each component � 	 � may have several

configuration dimensions, which we denote as set
� .
Configuration dimensions correspond to the knobs

depicted in Figure 1a. Each configuration dimension � 	
� may have
� configuration alternatives. For
example, Video Quality dimension of the Camera

component in Figure 1 is comprised of the following

alternatives: 60%, 70%, 80%, 90%, and 95%.

Configuration alternatives within the same dimension

are mutually exclusive, e.g., Video Quality could be

exactly in one of the 5 possible alternatives at any

point in time.

We define the configuration space of component � 	 � as the Cartesian product of all the available
configuration alternatives for that component: ���������� � ��	����	��������,�,�!
Where � represents a decision variable with a binary
domain and indicates whether an alternative has been

selected or not.

A system may have several execution scenarios,

which we denote as set �. Each scenario " 	 �
involves a subset of the system’s components (i.e., " # �). For instance, the Maneuver scenario in Figure
1b consists of the four bolded components. The

configuration space of each scenario is the Cartesian

product of the configuration space of all the

components that participate in it: ���������$ � ��	$����������
We use ��������� with no subscript to denote

the set of all possible configurations of components in

a system (i.e., " % �): ��������� � ��	&����������

4.2 Quality Attribute

We use ' to denote the set of quality attributes, which

are quantifiable non-functional properties (e.g.,

response time) of interest in the system. A quality

attribute may take either discrete or continuous values.

For example, response time may take continuous

values bigger than 0, while security may take an

enumeration of discrete values.

The quality attributes of an execution scenario are

determined by the configuration of components

 6

participating in that scenario. For example, the

response time of the Maneuver scenario depicted in

Figure 1b is affected by the configuration of its four

components. Given a configuration of a scenario, a

quality attribute is estimated via an analytical formula

(model). These analytical formulas are used by the

adaptation logic for making decisions. We represent

an analytical formula estimating the configuration’s

impact on quality attribute (' of execution

scenario " 	 � as: ')$,*+ : ���������$ - ���.(�
The tilde is the conventional notation for

representing uncertainty. Detailed description of

analytical models for estimating quality attributes is

beyond the scope of this paper. Numerous previous

studies (e.g., [5,7,15]) have developed analytical

approaches for estimating quality attributes in terms of

the system’s architectural configuration. Regardless of

the approach, the analytical models are only estimates,

and thus a source of uncertainty.

4.3 Resource

We use set / to denote the different computing

resources (e.g., memory, CPU) utilized by the

software system. For each resource 0 	 /, we use �����1234+ to represent the maximum available

computing resource. While in some cases the available

resource is a known constant (e.g., physical memory

on a host), in other cases the available resource may

fluctuate (e.g., network bandwidth), and thus introduce

uncertainty.

The configuration of a system determines its

resource usage. For example, consider that in the

robotics system, when the Power dimension of the

Controller component is configured to operate at Full

Power, the system’s battery consumption increases.

We represent an analytical formula estimating the

configuration’s impact on the system’s resource 0 	 /
as follows: /)5 4: ��������� - ���.0�

Numerous previous studies (e.g., [17-19]) have

developed resource usage models that can be used in

such setting. While sophisticated models may reduce

the inaccuracy, they are not ever completely free of it,

challenging the confidence with which adaptation

decisions are made.

4.4 User Preference

Similar to the previous research [7,17,18,20], we use

utility functions to represent the user’s preferences for

changes in the quality attributes. A utility function

representing the user’s satisfaction with quality

attribute (' of an execution scenario " 	 � is
represented as follows: �7$,*+ : 0���')$,*+ ! - 80,1;

A higher value indicates more user satisfaction

with the system.

Finally, given a vector ���<<<<<<<= 	 ���������, we
define the overall utility �> to be the cumulative

satisfaction of all the user-specified preferences: �> � ∑ ∑ �7$,*+ @')$,*+ � ���$<<<<<<<<= !AB*	CB$	D Eq. 1

Where ���$<<<<<<<<= is defined as the projection of ���<<<<<<<= from ��������� onto ���������$: ���$<<<<<<<<= % �0�EFG<<<=� ���<<<<<<<= !,
and H$<<= is the identity vector for ���������$. In other
words, since not every component participates in

every execution scenario of interest s, the above

projection removes the unnecessary elements from

vector ���<<<<<<<= to derive ���$<<<<<<<<=. The assumption in the

formulation of Eq. 1 is that if the user has not

specified a preference for a quality attribute of an

execution scenario, the corresponding utility function

returns only zero.

4.5 Optimization Problem

The objective of the adaptation logic is to find a

configuration that maximizes the system’s overall

utility: �0I���� �JK<<<<<<<<=	&LJKDM��N !�> Eq. 2

The solution maximizing the above objective

should satisfy two constraints. First, ensure that the

solution satisfies the mutual exclusive relationship

among the configuration alternatives: B� 	 �, � 	
� , ∑ ��,�,��	�� % 1 Eq. 3

Second, ensure that the resource usage does not

exceed the available resources: B0 	 /, /)45 � ���<<<<<<<= ! O �����123+ 4 Eq. 4

For simplicity, the above formulation assumes the

capacity of all resources is uncertain. But as you may

recall from Section 4.3, this may not always be the

case.

5. Quantifying Uncertainty

Before uncertainty can be dealt with in the analysis,

we need to be able to quantify uncertainty for a given

configuration of the system. POISED’s accuracy

depends on the ability to: (1) identify the sources of

uncertainty, and (2) estimate the level of uncertainty.

To put it boldly, our approach addresses “known

unknowns”, and not “unknown unknowns”. However,

even if the two conditions are partially satisfied (i.e.,

only some sources of uncertainty are identified and

 7

estimated), POISED produces better results than the

traditional approach through the incorporation of

known uncertainties.

We describe two exemplifying ways of estimating

uncertainty in an adaptation problem: eliciting it from

the stakeholders (e.g., user, engineer, domain expert),

and observing it in the running system. These

techniques are not intended to be exhaustive, or even

generally applicable, but rather concrete examples to

illustrate the feasibility of our work. In this section, we

first describe how the uncertainty in both user-

specified and monitored elements of the system can be

estimated and represented. We then describe how the

uncertainty in the individual elements can be

combined to quantify the uncertainty for the entire

system.

5.1 Eliciting Uncertainty from

Stakeholders

Stakeholders may provide the input for many different

aspects of a self-adaptation problem. One of the most

crucial and commonly elicited inputs is the user’s

quality preferences. It is commonly agreed that

eliciting user’s preferences in terms of complex utility

functions is challenging [1]. The specification of such

utility functions is highly subjective and inevitably

prone to uncertainty. The engineer may also provide

the input for certain software properties that cannot be

easily monitored. For instance, the maximum memory

consumed by a software component is a property that

may be available from the component’s source code,

but not easily obtainable through runtime monitoring.

Similarly, the engineer may provide the input for

certain systems parameters, such as the available

network bandwidth, based on a combination of past

experiences, hardware specification, similar systems,

etc.

For the inputs provided by the stakeholders, it is

also reasonable to ask them to estimate the range of

uncertainty based on their perceived level of variation

in the input. For illustration,

Figure 3 shows how an engineer

may estimate the range of

uncertainty in the network

bandwidth in the form of a

triangular possibility

distribution. Possibility

distribution can be modeled in

different ways (e.g., Gaussian,

Triangular) [22], but for

simplicity we use only triangular

distribution in this paper. The

horizontal axis marks the

network bandwidth, while the

vertical axis marks the possibility (i.e., degree of

membership). This distribution indicates that the range

of feasible values for network bandwidth is anywhere

between the most pessimistic, denoted with �����P23QRM
, and the most optimistic, denoted with �����P23QRL . In a triangular distribution, as we reach

the boundaries, the possibility of getting the expected

value drops to 0. The most possible value is �����P23QRS , which always has the value of 1.

In the example of Figure 3, the engineer sets the

most possible value equal to the expected network

bandwidth, which may be based on the engineer’s past

experiences, similar systems, etc. The most pessimistic

value is set to 0, representing network failure, and the

most optimistic value to the ideal network bandwidth,

as advertized by the network router manufacturer. By

connecting the most pessimistic and optimistic points

with the most possible point, we arrive at the

triangular possibility distribution representing the

uncertainty in the network bandwidth. A similar

approach could be used for eliciting and quantifying

uncertainty in the other types of input specified by the

stakeholders.

5.2 Measuring Uncertainty via

Monitoring

A self-adaptive software system often relies on

monitoring to reason about changes in the execution

condition. Dynamically fluctuating system parameters

are one type of phenomena in this setting that are

monitored. For instance, consider that while capacity

of certain resources (e.g., available physical memory)

may be known prior to system’s deployment, other

resources (e.g., available battery charge) may change

at runtime, and thus would need to be collected during

the system’s execution. On top of the uncertainty

created by the fluctuations in the monitored

phenomenon, monitoring is also impacted by the error

in the (software and hardware) sensors used for data

collection. Such an error is in particular unavoidable

Figure 3. Triangular possibility distribution.

 8

with sensors that take samples of a physical

phenomenon. Even if the observed phenomenon is

constant, the collected data may vary, due to noisy

sensors.

System parameters may not be the only elements

that need to be monitored. As shown in [7], analytical

models used for decision making are abstractions of

the system and by definition make simplifying

assumptions, which if not held at runtime may make

the estimates inaccurate. The inaccuracy of an

analytical model could be determined by comparing its

estimates (i.e., ')5 , /)5) against the actual behavior of

the system. This can be done either prior to system’s

deployment by benchmarking the system, or through

runtime observation.

We estimate the uncertainty corresponding to any

monitored phenomenon as a probability distribution.

For example, if the engineer is not able to estimate the

uncertainty of network bandwidth using the approach

described in Section 5.1, we can estimate it by

monitoring the variations and constructing the

equivalent probability distribution. Figure 4 shows the

probability distribution corresponding to the data

collected for variations in the available network

bandwidth (i.e., �����P23QR). There are numerous

approaches for deriving a probability density function

[9] that represents the probability distribution of

collected data, including Q-Q plot [9] that could be

used to estimate well-known (e.g., normal, beta)

distributions, and Quantile-Regression [11] that could

be used to estimate arbitrary complex distributions. In

our experiments we found Q-Q plot to be sufficient, as

monitoring data often follows one of the well-known

distributions.

The majority of existing approaches (e.g.,

[5,7,15,18]) ignore the probability distribution of the

collected data, and simply use the mean value in the

analysis. By basing the analysis on the mean behavior

of the system, they essentially ignore the statistical

characteristics of the data, and thus the underlying

uncertainty.

5.3 Quantifying the

Overall Uncertainty

From the estimates of uncertainty

in the elements comprising a

self-adaptive software system,

we can estimate the overall

uncertainty in the system’s

ability to satisfy its objectives

(i.e., uncertainty in the overall

utility). As mentioned in Section

 3, for efficient and effective

analysis of uncertainty, we have

adopted the possibilistic model of uncertainty in

POISED. However, to quantify the overall uncertainty

under the possibility theory, and as a fuzzy variable,

we also need the uncertainty associated with each of

the elements to be expressed as a fuzzy variable.

As you may recall from Section 5.1, the approach

for estimating uncertainty in the inputs provided by

the stakeholder already produces fuzzy variables.

Recall that a possibility distribution, such as the one

depicted in Figure 3, defines a fuzzy variable. On the

other hand, we need to transform the probability

distribution representing the uncertainty in monitored

elements to the equivalent possibility distribution.

We demonstrate this transformation via the

network bandwidth example. From the probability

distribution of Figure 4, we can derive the

corresponding possibility distribution of Figure 3 as

follows: (1) calculate the confidence interval [9] and

mode [9] of probability distribution, (2) set the most

pessimistic value equal to the low confidence limit of

the probability distribution, (3) set the most optimistic

value equal to the high confidence limit of the

probability distribution, (4) set the most possible value

equal to the mode of probability distribution, (5)

connect the most pessimistic and optimistic points

with the most possible point to arrive at the triangular

possibility distribution of the collected data. This

approach could be used to derive the possibility

distribution for all of the monitored elements.

The possibility distribution derived this way is an

approximation of the probability distribution. This is

because the most pessimistic and optimistic values are

determined based on the confidence limits, which are

not the absolute pessimistic and optimistic values for a

probability distribution. While in theory the two may

not be identical, in practice, selecting a large

confidence level (e.g., 99%) results in negligible

difference.

Using the possibility distributions quantifying the

uncertainty in the individual elements of our problem,

we quantify the overall uncertainty in system’s ability

Figure 4. Probability distribution.

 9

to satisfy its overall utility (see Eq. 1) via a possibility

distribution:

TUV
UW �M � ∑ ∑ �7$,*M @')$,*M � ���$<<<<<<<<= !AB*	CB$	D�S � ∑ ∑ �7$,*S @')$,*S � ���$<<<<<<<<= !AB*	CB$	D�L � ∑ ∑ �7$,*L @')$,*L � ���$<<<<<<<<= !AB*	CB$	D

X
Where ���<<<<<<<= 	 ���������, and �M , �S, and �L

denote the most pessimistic, possible, and optimistic

values for the overall utility of the system,

respectively. The insight is that the most pessimistic

overall utility �M occurs when all of the quality
estimates ') and user preferences �7 are also
pessimistic. Similar insight holds for �S and �L. For
the sake of simplicity, this formulation assumes the

utility functions are monotonic, which is very often the

case with the user-specified preferences [20]. If not,

by taking the derivative of the functions we could find

their extremums; details of which are elided for

brevity.

6. Possibilistic Analysis

Now we can describe how the self-adaptation problem

of Section 0 can be transformed to a Possibilistic

Linear Programming (PLP) [10] problem and solved

effectively via conventional mathematical

programming solvers.

6.1 Possibilistic Formulation of the

Problem

As you may recall from Section 3, POISED manages

the uncertainty by finding a solution that has the best

range of overall utility, where the range depends on

the level of uncertainty in the system. This is achieved

by pursuing three concurrent objectives: (1) select a

configuration that maximizes \S � �S , (2) minimize

negative consequence of uncertainty \M � |�S ^ �M|,
and (3) maximize positive consequence of uncertainty \L � |�L ^ �S|. In essence, the objective is to find a
configuration that has the highest likelihood of

satisfying the user’s preferences given the level of

uncertainty. We thus rewrite the objective of Eq. 2 as a

PLP problem as follows:

_ �0I�P�� �JK<<<<<<<<=	&LJKDM��N ! \M�0I���� �JK<<<<<<<<=	&LJKDM��N ! \S�0I���� �JK<<<<<<<<=	&LJKDM��N ! \L
X Eq. 5

The next step is the formulation of constraints with

uncertainty, which in our problem corresponds to Eq.

4 that ensures the resource usage does not exceed the

available capacity. In Section 5.3, we described how
the range of uncertainty in resource estimate and

capacity can be quantified in the form of a triangular

possibility distribution. Since we are dealing with a

constraint, we would like to assess it under the worst

case scenario. Using the possibility distributions, we

can reformulate Eq. 4 as follows: B0 	 /, /)4M� ���<<<<<<<= ! O �����P234M Eq. 6

In the above formulation, /)4M is the maximum

expected resource usage, while �����P234M is the
minimum expected resource capacity. Note that while

both /)4M and �����P234M represent the most

pessimistic points in the corresponding possibility

distributions, the two are semantically inverse of one

another. Finally, as you may recall from Section 4.3,
the capacity of certain resources may be a crisp value

(e.g., available physical memory), in which case we

would simply replace �����P234M with the crisp value
of �����P234 in Eq. 6.

6.2 Solving the Possibilistic Problem

The PLP problem is an instance of a Multi-Objective

Linear Programming (MOLP) problem, and to solve it

using commonly available linear programming

solvers, we first need to transform it to an equivalent

Single-Objective Linear Programming (SOLP)

problem. To that end, we use Zimmermann’s linear

membership function [22], which is a linear function `
for each objective \ that normalizes its output between

0 and 1: E 	 a�, �, �b, `cd: ����\e! - 80,1;
However, for defining each function ` normalizing

the output of z, we first need to determine the two

extremums for each objective function \: given a
configuration, the extremum maximizing the objective

is called Positive Ideal Solution (7H�), and the one
minimizing the objective is called Negative Ideal

Solution (fH�). Note that the definitions of fH� and 7H� are reversed when we are dealing with a

minimization objective (i.e., \M in Eq. 5).
We can obtain these values by performing the

following six single objective optimizations:

TU
UUU
UV
UUU
UU
W \MgFD � �0I�P� � �JK<<<<<<<<=	&LJKD�M�N ! \M

 \MhFD � �0I��� � �JK<<<<<<<<=	&LJKD�M�N ! \M
\SgFD � �0I��� � �JK<<<<<<<<=	&LJKD�M�N ! \S
\ShFD � �0I�P� � �JK<<<<<<<<=	&LJKD�M�N ! \S
\LgFD � �0I��� � �JK<<<<<<<<=	&LJKD�M�N ! \L
\LhFD � �0I�P� � �JK<<<<<<<<=	&LJKD�M�N ! \L

X

 10

We specify ` to return 1 for the 7H� value, 0 for
the fH� value, and proportionally linear between the
two extremums:

`ci
TU
V
UW 1 \M j \MgFD \MhFD ^ \M\MhFD ^ \MgFD \MgFD O \M\M O \MhFD 0 \M k \MhFD

X

`cl
TUV
UW 1 \S k \SgFD \S ^ \ShFD\SgFD ^ \ShFD \ShFD O \S\S O \SgFD 0 \S j \ShFD

X

Function `cm is specified similar to `cl. Figure 5

shows two instances of `ci and `clthat normalize the

possible outputs of \M and \S, respectively.

We can now specify the SOLP problem equivalent

to MOLP problem of Eq. 5 as follows: �0I���� �JK<<<<<<<<=	&LJKD�M�N ! n

Subject to: E 	 a�, �, �b, `cd o n

In the above formulation, we have reformulated the

objective to maximize the auxiliary decision variable n 	 80,1; representing the overall satisfaction with the
three normalized objectives `ci, `cl, and `cm. In other
words, the auxiliary objective is to find a configuration

that maximizes n, which is constrained by the three

normalized objectives, resulting first in their

optimization.

In the above formulation, the three objectives

(expressed as constraints) have the same importance.

However, in certain applications domains, some of the

objectives may have a higher priority. For instance, in

a safety critical system, minimizing \M may take

precedence over maximizing \L, since a solution
capable of providing certain guarantees in the worst

case scenario would be desirable. This may not be

necessarily the case in other domains that are willing

to tolerate higher risks with the potential of higher

utility.

We achieve this by assigning weights pM, pS, and pL to objectives `ci, `cl, and `cm, respectively. The
weights specify the important of each objective, and pM q pS q pL % 1. Thus the final complete

optimization problem, including the constraints (Eq. 3

and 6), can be formulated as follows:

 �0I���� �JK<<<<<<<<=	&LJKD�M�N ! n

Subject to: E 	 a�, �, �b, �1 ^ pe!`cd o n
 B� 	 �, � 	
� , ∑ ��,�,��	�� % 1
 B0 	 /, /)4M� ���<<<<<<<= ! O �����P234M

To give a normalized objective `cd more priority

over others, we make the corresponding constraint

(i.e., `cd o n) more restrictive than others. For that

reason, in the above formulation, we multiply each

normalized objective `cd with 1 ^ pe , where as the
value of pe increases, the related constraint becomes

more restrictive.

7. Evaluation

We have evaluated POISED on an extended version of

the robotic software system described in Section 0 that
was developed in our previous work [13]. The robotic

software used in our experiments was comprised of 12

software components/connectors, and 50 different

configuration alternatives. In POISED we treat

components and connectors the same, as they are both

configurable. The self-adaptation logic was tasked

with satisfying 5 user preferences in terms of utility

expressed as sigmoid functions; therefore, the

maximum achievable overall utility (recall Eq. 1) was

5. We used an implementation of the robotic software

running on top of Prism-MW [14], which is a

middleware platform with extensive support for

runtime monitoring and adaptation. In [13] interested

reader may find additional details about the robotic

software.

For the experiments we setup a controlled

environment to allow us create and measure the effect

of uncertainty in the system. For that purpose, we used

Figure 5. The Zimmermann’s linear membership functions: (a) the membership function for rs, and (b) the
membership function for rt.

 11

XTEAM [6], an architectural modeling, analysis, and

simulation environment that has been integrated with

Prism-MW [14]. Through this integration, the

XTEAM models are kept in sync with the software

running on top of Prism-MW, and vice versa.

Moreover, XTEAM can also be used to control the

execution of the software running on Prism-MW,

including the ability to fix the workload, and configure

the software and hardware properties. We used

XTEAM to simulate uncertainty by controlling the

extent of random changes in the system parameters

(e.g., available network bandwidth, memory

consumption of configuration alternatives). However,

neither the robotic software nor POISED were

controlled, which allowed them to behave as they

would in practice. Figure 6 depicts the high-level

architectural model of the robot in XTEAM.

The analytical models used in our experiments were

derived using the reinforcement learning technique

developed in our recent work [7]. The adaptation logic

was realized as a three step model interpreter engine

that: (1) generates the PLP from the runtime model of

the system, (2) solves it using the conventional linear

programming solvers (e.g., [16]), and (3) changes the

runtime model using the XTEAM’s API [6], which

automatically effects the changes to the software

running on Prism-MW [14].

7.1 Quality Trade-Offs

We compared the quality of solutions selected by

POISED with the traditional approach in 10 different

experiments. For each experiment, we applied both

approaches on the same robotic adaptation problem.

As you may recall from Section 3, the traditional
approach is representative of the majority of existing

literature that ignore the uncertainty in the adaptation

decisions (i.e., base the analysis on purely crisp values

obtained by calculating the mean behavior of the

system properties).

We performed two types of comparison: (1) For

each experiment, we compared the expected quality of

solutions (configurations) selected by each approach.

We refer to these results as expected, since they are

based on the likely consequences of uncertainty on the

selected solution. (2) We then executed the software

system in the selected configuration, and observed the

actual quality of solution. We refer to these results as

actual, since they are based on the data collected from

the system after the solution was put into effect.

We show the expected results in Figure 7a. The

triangular possibility distribution values correspond to

the solution selected by each approach. We observe a

similar pattern to what was hypothesized in Figure 2.

While POISED’s solution may have a slightly lower

mode compared to that of the traditional approach, the

overall range is always better—POISED’s most

pessimistic and optimistic points are higher than that

of traditional approach. This is expected, since

traditional approach aims to maximize the mean

behavior of the system, while POISED aims to

maximize the range of behavior.
We complemented the expected ranges of the

system’s behavior with the actual results obtained in

30 different executions of the system under each

Figure 6. XTEAM model of the robot software.

 12

configuration. The results are shown in Figure 7b. For

a fair comparison, in each experiment, we used

XTEAM to fix the application workload, as well as the

range of uncertainty in the execution context (e.g.,

network bandwidth, memory usage). By “fixing the

range of uncertainty” we mean controlling the range of

random behavior within each source of uncertainty.

Thus, different executions still resulted in different

observed behaviors. We can see that the observed

utilities are very closely correlated to the

corresponding possibility distribution in Figure 7. The

results show that in practice POSIED is more likely to

select a solution with better overall utility. Note that

for a meaningful comparison, in this set of

experiments, we did not specify stringent resource

constraints, which as shown next could significantly

influence the outcome of both approaches.

7.2 Violation of Resource Constraints

We evaluated POISED’s ability to satisfy the

resource constraints under uncertainty, and

compared its results against the traditional

approach. We ran both approaches on the same

adaptation problem but with varying levels of

uncertainty in the available memory. The overall

utility mode corresponding to the solution selected

by each approach is shown in Figure 8. The robotic

software system corresponding to each selected

configuration was then executed 30 times. We

instrumented our controlled environment to throttle

the available memory. Parenthesized annotations in

Figure 8 show the number of times a memory

violation was observed in the actual execution of the

software system.

We can make several observations from this result.

POISED incorporates the uncertainty in the resource

usage estimates, and aims to satisfy the worst case

(most pessimistic) formulation of resource constraints.

Therefore, as the available memory decreases,

POISED continues to select solutions that do not

violate the memory constraint, but naturally have a

lower utility compared to that of traditional approach.

On the other hand, since traditional approach ignores

the underlying uncertainty in the estimates, as the

Figure 8. Impact of uncertainty on the overall utility and

resource constraints.

Figure 7. Comparison of POISED with traditional approach in 10 different experiments: (a) possibility distribution for

the selected configuration, where a dash marker indicates the most pessimistic, possible, and optimistic values from low

to high, (b) 30 actual observations for each selected configuration.

 13

available memory decreases, the likelihood of

selecting configurations that would violate the

memory constraint increases. This pattern persists

until the available memory decreases to 80MB,

which is less than the mean of the memory usage

estimate for those configurations in ���������
that have high utility. Therefore, the traditional

approach is forced to select one of the

configurations with a relatively low utility.

However, even then, since it does not consider the

range of uncertainty, 15 of the 30 actual executions

of the configuration violate the memory constraint.

7.3 Effect of Weights

In the above experiments, we placed the same

amount of weight on each of the three objectives

(i.e., pM % pS % pL % ��). However, as you may

recall from Section 6.2, this may not always be the

case. We evaluated the sensitivity of POISED to

these weights on an instance of the robotic software.

For a meaningful comparison, with the exception of

weights, all other attributes of the system were fixed,

including the range of uncertainty. Figure 9 shows the

overall utility for the experiments. The solid bar shows

the triangular possibility distribution corresponding to

the configuration selected by POISED under each

weight assignment. The dots depict the observed

overall utility as a result of 30 actual execution of the

software in the selected configuration.

The results show the sensitivity of solutions found

by POISED to the weights placed on each objective.

In the two experiments with high pM, we see POISED
selects a conservative solution, i.e., puts more

emphasis on minimizing the negative consequence of

uncertainty (recall \M from Section 6.1). On the

contrary, in the two experiments with high pL, we
see POISED selects a risky solution, i.e., puts more

emphasis on maximizing the positive consequences

of uncertainty (recall \L from Section 6.1). Both

approaches come at the cost of achieving mediocre

overall utility mode (most possible).

In the two experiments with high pS, we see

POISED selects a solution with the best overall

utility mode (recall \S from Section 6.1), while

ignoring the negative and positive consequences of

uncertainty. Finally, in the last experiment, with a

balanced assignment of weights, the solution

achieves neither the best �S, nor does it provide

guarantees on the consequences of uncertainty. But

since all of the objectives are considered at the same

time, it achieves the best set of trade-offs: very

close to the best overall utility mode, and higher

possibility of underestimating the overall utility, as

opposed to overestimating it. At the same time, we can

envision situations in which placing emphasis on one

of the objectives may be more appropriate, which

POISED allows for naturally.

7.4 Sensitivity to Uncertainty Estimates

We performed a set of experiments to evaluate the

sensitivity of POISED to the accuracy of uncertainty

estimates. Figure 10 shows the results of these

experiments. For all of the experiments we used

XTEAM to fix the range of uncertainty in the system

parameters, as well as the workload. We changed the

accuracy of uncertainty estimates used in our analysis.

Figure 10. Impact of the accuracy of uncertainty estimates on

the quality of POISED solutions.

Figure 9. Impact of weights on the selected configuration.

 14

To that end, we simply changed the confidence level

used for transforming the probability distribution

corresponding to the monitored data to the equivalent

possibility distribution (recall Section 5.3). As one
decreases the confidence level in a probability

distribution, such as the one depicted in Figure 4, low

confidence and high confidence limits converge to

mode, resulting in underestimation of the range of

uncertainty.

The confidence levels shown on the horizontal axis

of Figure 10 denote the accuracy of uncertainty

estimates. As we decrease the confidence level from

95% to 0%, thereby making the uncertainty estimates

less accurate, POISED makes configuration selections

whose overall utilities are not borne out in practice.

More specifically, since by decreasing the confidence

level we underestimate the uncertainty, the actual

results underperform the expected utility.

Overestimating uncertainty would have the opposite

effect.

Finally, note that in the experiment with 0%

accuracy, the most pessimistic, possible, and

optimistic points are overlapping. Therefore, by not

considering the range of uncertainty, POISED is

essentially behaving similar to the traditional

approach. Comparing the results of experiment with

0% accuracy to others, corroborates our assertions in

Section 5 that even with partially accurate estimates of

uncertainty, POISED selects solutions that are better

than the traditional approach.

7.5 Performance Trade-Offs

We performed a series of benchmarks to compare the

execution time of traditional approach with that of

POISED. The results are shown in Table 1. It took

POISED longer to compute the optimal solution than

that of the traditional approach. This result is not

surprising, since as you may recall from Section 6.2,
POISED requires 6 additional optimizations to

calculate 7H� and fH� values pairs for the three
objective functions. While it takes longer to execute

POISED, it is still a reasonable approach for our

problem. It took 4.6 seconds to find the optimal

configuration in a very large problem, consisting of

100 components and 20 different configuration

alternatives, for a total of 20100 % 1.2 v 10130 possible

combinations.

8. Related Work

The literature in this area of research is extensive. In

lieu of enumerating all of the related studies, we refer

the reader to [1] and [12] for a comprehensive analysis

of the state-of-the-art in self-adaptation. We focus our

discussion here to those works that are of utmost

relevance. The challenge posed by uncertainty in the

construction of dependable self-adaptive software

system is an established concept [1]. A few recent

works [2-4,7,17,21] have aimed to tackle the different

facets of this challenge as follows.

Whittle et al. [21] introduced RELAX, a formal

requirements specification language that relies on

Fuzzy Branching Temporal Logic to specify the

uncertainty inherent in self-adaptive systems. In a

subsequent publication [2], Cheng et al. extended

RELAX with goal modeling to specify the uncertainty

in the objectives. We believe our approach is

complementary to their work, as both RELAX and

POISED are based on fuzzy mathematics, but target

different phases of software life-cycle.

Chuang and Chan [4] presented a QoS

management framework that uses a hierarchical fuzzy

control model. Their work aims at making it easier for

the users to specify their QoS requirements, which are

then translated into fuzzy rules. Unlike POISED, their

objective is QoS rule satisfaction, and does not target

the challenge of making adaptation decisions under

uncertainty.

Dynamic configuration of resource-aware services

was studied by Poladian et al. [18], where they showed

how to select an appropriate set of services to carry

out a user task, and allocate resources among those

services at runtime. In a subsequent publication, the

work was extended to make anticipatory decisions

[17], and considered the inaccuracy of future resource

usage predictions in making adaptation decisions.

Unlike POISED, their approach does not employ

possibilistic analysis in incorporating the effect of

uncertainty in decisions.

Table 1. Execution time of POISED versus traditional

approach.

Problem
Execution Time

(ms)

of

Comp

of

Conf

Tradit-

ional
POISED

8 4 2 30

10 5 6 51

18 7 10 70

25 8 20 180

37 9 28 298

50 10 30 370

62 13 60 630

75 15 130 1520

88 17 290 3740

100 20 400 4600

 15

Cheng and Garlan [3] described three specific

sources of uncertainty (problem-state identification,

strategy selection, and strategy outcome) in self-

adaptation and provided high-level guidelines for

mitigating them in Rainbow [8]. In this paper, we have

presented a novel approach for tackling the challenge

of strategy outcome, i.e., the impact of uncertainty on

the selected solution, and techniques to deal with it.

Finally, in our recent work [7], we presented

FUSION, a learning based approach to engineering

self-adaptive systems. Instead of relying on static

analytical models that are subject to wrong

assumptions, FUSION uses machine learning to self-

tune the adaptive behavior of the system to

unanticipated changes, but does not address making

adaptation decisions under uncertainty.

9. Conclusion and Future Work

This paper presented a novel quantitative approach,

called POISED, for making adaptation decisions under

uncertainty. Unlike any other related work, POISED

adopts a possibilistic method to assess the positive and

negative consequences of uncertainty in its analysis.

The centerpiece of our work is the reconceptualization

of what is typically considered to be the optimal

solution as one that has the best range of possible

behavior. POISED’s analysis can be made as risk-

averse as desired via a set of knobs (weights). While

POISED is a general approach that can be applied to

many types of adaptation problems, it was described

and extensively evaluated in the context of a self-

adaptation problem aimed at improving a system’s

quality attributes via runtime reconfiguration of its

customizable software components.

Our focus so far has been on the internal

uncertainty, which is the uncertainty associated with

adaptation decisions aimed at satisfying the system’s

quality objectives. In future, we plan to investigate

applicability of POISED to external uncertainty,

which is the uncertainty associated with decisions

aimed at satisfying the domain objectives. We also

believe POISED could complement the existing

efforts aimed at alleviating uncertainty in other facets

of self-adaptation. We envision an integration of

RELAX [2,21] with POISED to be a fruitful avenue of

future work, as it would allow the traceability of

uncertainty from the system’s requirements

specification to its execution. Proactively adaptive

software systems, such as those described in [5,17],

face another form of uncertainty—the inaccuracy of

future predictions. Investigating the synergy between

POISED and such emerging approaches is another

interesting avenue of future work.

10. Acknowledgments

This work is partially supported by grant CCF-

0820060 from the National Science Foundation.

11. References

[1] Cheng, B. et al. 2009. Software Engineering for

Self-Adaptive Systems: A Research Roadmap.

Software Engineering for Self-Adaptive Systems,

LNCS Hot Topics. 1-26.

[2] Cheng, B.H., Sawyer, P., Bencomo, N. and

Whittle, J. 2009. A Goal-Based Modeling

Approach to Develop Requirements of an

Adaptive System with Environmental

Uncertainty. Int'l Conf. on Model Driven

Engineering Languages and Systems (Denver,

Colorado, October 2009), 468-483.

[3] Cheng, S.W. and Garlan, D. 2007. Handling

uncertainty in autonomic systems. Int'l Wrkshp.

on Living with Uncertainty (Atlanta, Georgia,

November 2007).

[4] Chuang, S. and Chan, A.T.S. 2008. Dynamic

QoS Adaptation for Mobile Middleware. IEEE

Transactions on Software Engineering. 34, 6

(Dec. 2008), 738-752.

[5] Cooray, D., Malek, S., Roshandel, R. and

Kilgore, D. 2010. RESISTing Reliability

Degradation through Proactive Reconfiguration.

Int'l Conf. on Automated Software Engineering

(Antwerp, Belgium, September 2010).

[6] Edwards, G., Malek, S. and Medvidovic, N.

2007. Scenario-Driven Dynamic Analysis of

Distributed Architectures. Int'l Conf. on

Fundamental Approaches to Software

Engineering (Braga, Portugal, March 2007),

125-139.

[7] Elkhodary, A., Esfahani, N. and Malek, S. 2010.

FUSION: A Framework for Engineering Self-

Tuning Self-Adaptive Software Systems. Int'l

Symp. on the Foundations of Software

Engineering (Santa Fe, New Mexico, November

2010).

[8] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl,

B. and Steenkiste, P. 2004. Rainbow:

Architecture-Based Self-Adaptation with

Reusable Infrastructure. IEEE Computer. 37, 10

(Oct. 2004), 46-54.

[9] Gibbons, J.D. and Chakraborti, S. 2003.

Nonparametric Statistical Inference (4th

Edition). CRC Press.

[10] Inuiguchi, M. and Ramík, J. 2000. Possibilistic

linear programming: a brief review of fuzzy

 16

mathematical programming and a comparison

with stochastic programming in portfolio

selection problem. Fuzzy Sets Syst. 111, 1 (Apr.

2000), 3-28.

[11] Koenker, R. 2005. Quantile regression.

Cambridge University Press.

[12] Kramer, J. and Magee, J. 2007. Self-Managed

Systems: an Architectural Challenge. Int'l Conf.

on Software Engineering (Minneapolis,

Minnesota, May 2007), 259-268.

[13] Malek, S., Edwards, G., Brun, Y., Tajalli, H.,

Garcia, J., Krka, I., Medvidovic, N., Mikic-

Rakic, M. and Sukhatme, G.S. 2010. An

architecture-driven software mobility

framework. J. Syst. Softw. 83, 6 (Jun. 2010),

972-989.

[14] Malek, S., Seo, C., Ravula, S., Petrus, B. and

Medvidovic, N. 2007. Reconceptualizing a

Family of Heterogeneous Embedded Systems

via Explicit Architectural Support. Int'l Conf. on

Software Engineering (Minneapolis, Minnesota,

May 2007), 591-601.

[15] Menascé, D.A., Sousa, J.P., Malek, S. and

Gomaa, H. 2010. QoS Architectural Patterns for

Self-Architecting Software Systems. Int'l Conf.

on Autonomic Computing (Washington, DC,

June 2010).

[16] NEOS Server for Optimization. http://www-

neos.mcs.anl.gov/. Accessed: 08-17-2010.

[17] Poladian, V., Garlan, D., Shaw, M.,

Satyanarayanan, M., Schmerl, B. and Sousa, J.

2007. Leveraging Resource Prediction for

Anticipatory Dynamic Configuration. Int'l Conf.

on Self-Adaptive and Self-Organizing Systems

(Boston, Massachusetts, July 2007), 214-223.

[18] Poladian, V., Sousa, J.P., Garlan, D. and Shaw,

M. 2004. Dynamic Configuration of Resource-

Aware Services. Int'l Conf. on Software

Engineering (Scotland, UK, May 2004), 604-

613.

[19] Seo, C., Malek, S. and Medvidovic, N. 2008.

Component-Level Energy Consumption

Estimation for Distributed Java-Based Software

Systems. Int'l Symp. on Component Based

Software Engineering (Karlsruhe, Germany,

October 2008).

[20] Walsh, W.E., Tesauro, G., Kephart, J.O. and

Das, R. 2004. Utility Functions in Autonomic

Systems. Int'l Conf. on Autonomic Computing

(New York, New York, May 2004), 70-77.

[21] Whittle, J., Sawyer, P., Bencomo, N., Cheng,

B.H.C. and Bruel, J. 2009. RELAX:

Incorporating Uncertainty into the Specification

of Self-Adaptive Systems. Int'l Requirements

Engineering Conf. (Atlanta, Georgia, September

2009), 79-88.

[22] Zimmermann, H. 2001. Fuzzy Set Theory and its

Applications (4th Edition). Springer.

