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Abstract 
 

Self-adaptation endows a software system with the 

ability to satisfy certain objectives by automatically 

modifying its behavior.  While many promising 

approaches for the construction of self-adaptive 

software systems have been developed, the majority of 

them ignore the uncertainty underlying the adaptation 

decisions. This has been one of the key inhibitors to 

wide-spread adoption of self-adaption techniques in 

risk-averse real-world settings. In this paper, we 

describe an approach, called POssIbilistic SElf-

aDaptation (POISED), for tackling the challenge 

posed by uncertainty in making adaptation decisions. 

POISED builds on possibility theory to assess the 

positive and negative consequences of uncertainty. It 

makes adaptation decisions that result in the best range 

of potential behavior. We demonstrate POISED’s 

application to the problem of improving a software 

system’s quality attributes via runtime reconfiguration 

of its customizable software components. We have 

extensively evaluated POISED using a prototype of a 

robotic software system. 

 

Keywords 
 

Uncertainty, Self-Adaptation, Software Architecture 

 

1. Introduction 

 

Self-adaptation has been shown effective in dealing 

with the changing dynamics of many application 

domains, such as mobile and pervasive systems. In 

response to changes, a self-adaptive software system 

modifies itself to maintain certain objectives [1,12]. 

While the benefits of such systems are plenty, their 

development has shown to be significantly more 

challenging than traditional software systems [1]. One 

key culprit is that self-adaptation is subject to 

uncertainty [1].  

We distinguish between the external and internal 

uncertainty. External uncertainty arises from the 

environment or domain in which the software is 

deployed. For example, the external uncertainty for a 

software system deployed in an unmanned vehicle 

may include the likelihood of certain weather 

conditions occurring. Software self-adaptation is one 

approach in dealing with the effects of external 

uncertainty, e.g., in a snow storm the vehicle’s 

navigator component may be replaced with a more 

conservative navigator to avoid a collision. On the 

other hand, internal uncertainty is rooted in the 

difficulty of determining the impact of adaptation on 

the system’s quality objectives, e.g., determining the 

impact of replacing a software component on the 

system’s responsiveness, battery usage, etc. While 

both sources of uncertainty are of great concern, in 

this paper we focus our attention on the challenges 

posed by internal uncertainty.  

Uncertainty can be observed in every facet of 

adaptation, albeit at varying degrees. It follows from 

the fact that the system’s user, adaptation logic, and 

business logic are loosely coupled, introducing 

numerous sources of uncertainty [3]. Consider that 

users often find it difficult to accurately express their 

quality preferences using complex utility functions, 

sensors employed for monitoring often have 
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uncontrollable noise, analytical models used for 

assessing the system’s quality attributes by definition 

make simplifying assumptions that may not hold at 

runtime, and so on. All of these factors challenge the 

confidence with which the adaptation decisions are 

made. A key observation is that while the level of 

uncertainty could vary, no self-adaptive software 

system is ever completely free of it.  

The research community has made great strides in 

tackling the complexity of constructing self-adaptive 

software systems [1,12]. However, as corroborated by 

others [1], there is a dearth of applicable techniques 

for dealing with uncertainty in this setting. A few 

researchers have recently begun to address uncertainty 

issues in requirements specification [2,21] and 

resource prediction [17], but no approach we are 

aware of has tackled the challenge posed by 

uncertainty in making adaptation decisions. We 

believe this has been one of the primary obstacles to 

wide-spread adoption of self-adaptation in risk-averse 

domains.   

This is precisely the challenge we have aimed to 

address in this paper. We present a general 

quantitative approach for tackling the complexity of 

automatically making adaptation decisions under 

uncertainty, called POssIbilistic SElf-aDaptation 

(POISED). Estimates of uncertainty in the elements 

comprising a self-adaptive software system are 

incorporated in possibilistic analysis of the adaptation 

choices. Possibilistic analysis is founded on the 

principles of fuzzy mathematics [22], which provides 

a sound basis for representing uncertainty, as well as 

dealing with its negative and positive consequences on 

the adaptation choices. POISED redefines the 

conventional definition of optimal solution to one that 

has the best range of behavior. In turn, the solution 

selected by POISED has the highest likelihood of 

satisfying the system’s quality objectives, even if due 

to uncertainty, properties expected of the system are 

not borne out in practice.  

We demonstrate POISED by applying it to the 

problem of improving a software system’s quality 

attributes via runtime reconfiguration of its 

customizable software components. We have 

evaluated POISED under numerous circumstances and 

using a prototype of a robotic software system. The 

results demonstrate POISED’s ability to deal with 

uncertainty by making adaptation decisions that are 

superior to those of the conventional approach. 

The remainder of this paper is organized as 

follows. Section  0 exemplifies the sources of 

uncertainty via a robotic software system. Section  3 

provides an overview of POISED. Section  0 formally 

presents the self-adaptation problem that we have used 

to describe and evaluate POISED. Section  5 describes 

several techniques for quantifying uncertainty in self-

adaptive software. Section  6 presents our possibilistic 

analysis approach. Section  7 details the evaluation of 

our work. The paper concludes with an overview of 

the related literature and avenues of future research. 

 

2. Motivationg Example 

 

We use a subset of a robotic software system 

developed in our previous work [13] to motivate and 

describe this research. The robotic software is part of a 

distributed search and rescue system aimed at 

supporting the government agencies in dealing with 

emergency crises (e.g., fire, hurricane). Figure 1b 

provides an abridged view of the robotic system’s 

architecture. The software components comprising the 

robotic system range from abstractions of the physical 

entities, such as software controlled sensors and 

actuators on board the robot, to purely logical 

functionalities, such as image detection and 

navigation. The bold path in Figure 1b indicates the 

Maneuver execution scenario, which aims to prevent 

the robot from hitting obstacles. The Camera feed is 

sent to Obstacle Detector, which runs an image 

processing algorithm to detect obstacles. This 

information in turn is sent to Navigator to plan the 

change in the direction. Finally, the navigation plan is 

sent to the Controller to be put into effect. 

The software components comprising this system 

are customizable in the sense that they can be 

configured to operate in different modes of operation. 

Figure 1a shows some of the available configuration 

dimensions for the robot’s software components. For 

instance, Power is a configuration dimension for the 

Controller component. A Controller could operate in 

either Energy Saving or Full Power mode. A 

component may have many configuration dimensions.  

The configuration of a software component 

determines its quality attributes (e.g., response time) 

and resource usage (e.g., memory), which in turn 

impact the properties of the whole system. For 

instance, given the resource constrained nature of the 

mobile robotic system, it is reasonable to expect the 

configuration decisions of each component to have a 

significant impact on the system’s performance as well 

as its battery life. Such configuration decisions often 

cannot be made prior to the system’s deployment, 

since the runtime properties (e.g., available network 

bandwidth) may not be known ahead of time. One 

approach to solving this problem is to determine the 

optimal configuration at runtime and effect it through 

self-adaptation of the system. 
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As shown in Figure 1c, for making runtime 

decisions, utility functions capturing the user’s 

satisfaction with different levels of quality attribute 

(e.g., availability) are used. The adaptation logic 

would use analytical models to estimate the effect of 

each configuration decision on the system’s quality 

attributes and find a configuration that achieves the 

maximum utility. For example, an analytical model 

may be used to quantify the response time for 

Maneuver scenario given the configuration of its 

components.  

The above approach is rather myopic, since it does 

not consider the uncertainty of information used in 

making adaptation decisions. Consider that almost 

every facet of the approach outlined above faces some 

form of uncertainty:  

• Uncertainty in System Parameters: The 

monitoring data obtained form a running system 

rarely corresponds to a single value, but rather a 

distribution of values obtained over the 

observation period.  For instance, a sensor 

monitoring the available network bandwidth may 

return a slightly different number every time a 

sample is collected. This variation could be either 

due to actual changes in the bandwidth or the 

error (noise) in the employed probes.   

• Uncertainty in Analytical Models: Analytical 

models often make simplifying assumptions, and 

thus provide only estimates of the system’s 

behavior. For instance, an analytical model 

quantifying the system’s response time may 

account for the dominant factors, such as 

execution time of components, and ignore others, 

such as the transmission delay difference between 

TCP and UDP. Response time estimates 

provisioned by such a formulation are not only 

error-prone, but also the magnitude of error varies 

depending on the circumstances. Both the 

estimation error and its variation contribute to the 

uncertainty of adaptation decisions made using 

such models. 

 

Figure 1. A subset of the robotic software system: (a) configuration dimensions and alternatives for components of the 

robot, (b) software architecture, where the bold path indicates the components participating in the Maneuver execution 

scenario, and (c) utility functions defined in terms of quality attributes. 
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• Uncertainty in User Preferences: Eliciting user’s 

preferences in terms of utility functions, such as 

those depicted in Figure 1c, is a well-known 

challenge [1]. Often users have difficulty 

expressing their preferences and thus the overall 

accuracy of the utility functions remains 

subjective, making the analysis based on them 

prone to uncertainty. 

 

3. Approach 
 

Figure 2a shows the typical behavior of a self-adaptive 

system that does not incorporate uncertainty in its 

analysis, which in this paper we abstractly refer to as 

the traditional approach. The system is initially 

executing with utility �� prior to time ��. At time ��, 
due to either an internal or external change, the 

system’s utility drops to ��. During �� the self-
adaptation logic detects this drop in utility, finds and 

effects an optimal configuration, which is 

conventionally defined as the one achieving the 

maximum utility. As shown in Figure 2a, this 

corresponds to ��, which represents the expected 
utility of the best configuration for the system. In 

practice, however, the actual utility of the system may 

vary between the two dashed lines, representing the 

likely positive and negative consequences of 

uncertainty during ��. By not accounting for 

uncertainty in the analysis, the approach is vulnerable 

to gross overestimation of the utility.  

The centerpiece of POISED is the 

reconceptualization of what is traditionally considered 

as the optimal solution (adaptation decision), such that 

the uncertainty is incorporated into the analysis. We 

illustrate the insights underlying POISED using Figure 

2b. Similar to the scenario of Figure 2a, a new 

configuration is effected at time ��, except this time 

we select the configuration that concurrently satisfies 

the following three objectives: (1) maximizes ��, 
which represents the most likely utility for the system 

under uncertainty; (2) maximizes the positive 

consequence of uncertainty, which represents the 

likelihood of the solution being better than ��; and (3) 
minimizes the negative consequence of uncertainty, 

which represents the likelihood of the solution being 

worse than ��.  
The details of our approach, including how the 

likelihood of each objective is calculated, are 

described in Sections  5 and  6. However, we can make 

several general observations. As depicted in Figure 2, 

concurrent satisfaction of the three objectives outlined 

above may result in a smaller value of expected utility 

(i.e., ��� in POISED compared to that of the 

traditional approach. But since the information used to 

estimate the expected utility is uncertain, expected 

utility is not guaranteed to occur in practice. We argue 

the true quality of a solution is determined by the 

range of possible utility. As depicted here and 

evaluated in Section  7, POISED’s objective is to find 
solutions with a better range. 

The above discussion assumes one could quantify 

the range of utility under uncertainty. There are two 

general approaches to estimating uncertainty: 

probability theory and possibility theory. Probability 

theory is concerned with the analysis of random 

phenomena and forms the foundation of statistics. 

Possibility theory is founded on the concept of fuzzy 

set [22]. In a fuzzy set, the elements have a degree of 

membership. Degree of membership is a value 

between zero and one: a value of zero indicates the 

 
Figure 2. Impact of uncertainty on the utility of a self-adaptive software system: (a) traditional selection of optimal 

configuration, (b) POISED’s selection of optimal configuration. 
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element is certainly not a member of the set, a value of 

one indicates the element is certainly a member of the 

set, and a value in between indicates the extent of 

certainty that the element is a member of the set. In 

possibility theory, the concept of possibility is defined 

as the degree of membership, which plays a similar 

role as that of probability in statistics. The most 

optimistic and most pessimistic values have a degree 

of membership of zero, while the most possible value 

has a degree of membership of one. While the notion 

of probability and possibility are related, it is 

important to note that the two concepts are distinct. 

Probability theory deals with the statistical 

characteristic of data, while possibility theory focuses 

on the meaning of data [22]. 

For an illustration of this difference, consider 

Figures 3 and 4 in which the uncertainty in available 

network bandwidth is modeled using possibility and 

probability distributions, respectively. The details of 

how such functions can be obtained in the first place 

are described in Section  5. Possibility distribution 

models a fuzzy variable, while probability distribution 

models a random variable.  Possibility distribution in 

Figure 3 returns the degree of membership, while 

probability distribution in Figure 4 returns the 

probability density.  

While uncertainty can be quantified using both 

approaches, POISED relies on possibility theory in its 

analysis. Possibility theory is widely used for handling 

uncertainty in many fields of engineering, including 

control theory, robotics, and artificial intelligence. One 

advantage of possibility theory is that the 

representation of uncertainty and the operations 

defined on it are more convenient than that of 

probability theory. For example, performing simple 

algebraic operations, such as addition and subtraction, 

on random variables require special considerations 

(e.g., Central Limit Theorem), and are not always 

possible. On the contrary, in fuzzy mathematics, 

which is founded on possibility theory, variables can 

be simply operated on using traditional algebraic 

operators. Moreover, in general, fuzzy mathematical 

problems can be solved much more efficiently than 

statistical problems [10], making them desirable in 

many practical engineering problems, including self-

adaptive systems. In the remainder of this paper we 

describe how POISED’s research objectives 

established earlier in this section can be realized 

through possibilistic analysis. 

 

4. Self-Adaptation Problem 
 

In this section, we provide a formal specification of 

the self-adaptation problem introduced in Section  0. 

As mentioned earlier, we use the following adaptation 

problem as an example for demonstrating and 

evaluating POISED. However, note that the 

underlying concepts and techniques in POISED are 

generally applicable to any self-adaptation problem.  

 

4.1 Configuration  
 

A system like the one depicted in Figure 1b consists of 

several software components, which we denote as set �. Each component � 	 � may have several 

configuration dimensions, which we denote as set 
� . 
Configuration dimensions correspond to the knobs 

depicted in Figure 1a. Each configuration dimension � 	 
�  may have 
� configuration alternatives. For 
example, Video Quality dimension of the Camera 

component in Figure 1 is comprised of the following 

alternatives: 60%, 70%, 80%, 90%, and 95%. 

Configuration alternatives within the same dimension 

are mutually exclusive, e.g., Video Quality could be 

exactly in one of the 5 possible alternatives at any 

point in time. 

We define the configuration space of component � 	 � as the Cartesian product of all the available 
configuration alternatives for that component: ���������� � ��	����	��������,�,�! 
Where � represents a decision variable with a binary 
domain and indicates whether an alternative has been 

selected or not. 

A system may have several execution scenarios, 

which we denote as set �. Each scenario " 	 � 
involves a subset of the system’s components (i.e., " # �). For instance, the Maneuver scenario in Figure 
1b consists of the four bolded components. The 

configuration space of each scenario is the Cartesian 

product of the configuration space of all the 

components that participate in it: ���������$ � ��	$���������� 
We use ��������� with no subscript to denote 

the set of all possible configurations of components in 

a system (i.e., " % �): ��������� � ��	&����������  
 

4.2 Quality Attribute 
 

We use ' to denote the set of quality attributes, which 

are quantifiable non-functional properties (e.g., 

response time) of interest  in the system. A quality 

attribute may take either discrete or continuous values. 

For example, response time may take continuous 

values bigger than 0, while security may take an 

enumeration of discrete values. 

The quality attributes of an execution scenario are 

determined by the configuration of components 
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participating in that scenario. For example, the 

response time of the Maneuver scenario depicted in 

Figure 1b is affected by the configuration of its four 

components. Given a configuration of a scenario, a 

quality attribute is estimated via an analytical formula 

(model). These analytical formulas are used by the 

adaptation logic for making decisions. We represent 

an analytical formula estimating the configuration’s 

impact on quality attribute ( 	 ' of execution 

scenario " 	 � as: ')$,*+ : ���������$ - ���.(� 
The tilde is the conventional notation for 

representing uncertainty. Detailed description of 

analytical models for estimating quality attributes is 

beyond the scope of this paper. Numerous previous 

studies (e.g., [5,7,15]) have developed analytical 

approaches for estimating quality attributes in terms of 

the system’s architectural configuration. Regardless of 

the approach, the analytical models are only estimates, 

and thus a source of uncertainty.  

 

4.3 Resource  
 

We use set / to denote the different computing 

resources (e.g., memory, CPU) utilized by the 

software system. For each resource 0 	 /, we use �����1234+  to represent the maximum available 

computing resource. While in some cases the available 

resource is a known constant (e.g., physical memory 

on a host), in other cases the available resource may 

fluctuate (e.g., network bandwidth), and thus introduce 

uncertainty.   

The configuration of a system determines its 

resource usage. For example, consider that in the 

robotics system, when the Power dimension of the 

Controller component is configured to operate at Full 

Power, the system’s battery consumption increases. 

We represent an analytical formula estimating the 

configuration’s impact on the system’s resource 0 	 / 
as follows: /)5 4: ��������� - ���.0� 

Numerous previous studies (e.g., [17-19]) have 

developed resource usage models that can be used in 

such setting. While sophisticated models may reduce 

the inaccuracy, they are not ever completely free of it, 

challenging the confidence with which adaptation 

decisions are made.      

 

4.4 User Preference 
 

Similar to the previous research [7,17,18,20], we use 

utility functions to represent the user’s preferences for 

changes in the quality attributes. A utility function 

representing the user’s satisfaction with quality 

attribute ( 	 ' of an execution scenario " 	 � is 
represented as follows: �7$,*+ : 0���')$,*+ ! - 80,1; 

A higher value indicates more user satisfaction 

with the system.  

Finally, given a vector ���<<<<<<<= 	 ���������, we 
define the overall utility �> to be the cumulative 

satisfaction of all the user-specified preferences: �> � ∑ ∑ �7$,*+ @')$,*+ � ���$<<<<<<<<= !AB*	CB$	D   Eq. 1 

Where ���$<<<<<<<<= is defined as the projection of ���<<<<<<<= from ��������� onto ���������$: ���$<<<<<<<<= % �0�EFG<<<=� ���<<<<<<<= !, 
and H$<<= is the identity vector for ���������$. In other 
words, since not every component participates in 

every execution scenario of interest s, the above 

projection removes the unnecessary elements from 

vector ���<<<<<<<= to derive ���$<<<<<<<<=. The assumption in the 

formulation of Eq. 1 is that if the user has not 

specified a preference for a quality attribute of an 

execution scenario, the corresponding utility function 

returns only zero.  

 

4.5 Optimization Problem 
 

The objective of the adaptation logic is to find a 

configuration that maximizes the system’s overall 

utility: �0I���� �JK<<<<<<<<=	&LJKDM��N !�> Eq. 2 

The solution maximizing the above objective 

should satisfy two constraints. First, ensure that the 

solution satisfies the mutual exclusive relationship 

among the configuration alternatives: B� 	 �, � 	 
� ,       ∑ ��,�,��	�� % 1  Eq. 3 

Second, ensure that the resource usage does not 

exceed the available resources: B0 	 /,      /)45 � ���<<<<<<<= ! O �����123+ 4 Eq. 4 

For simplicity, the above formulation assumes the 

capacity of all resources is uncertain. But as you may 

recall from Section  4.3, this may not always be the 

case. 

 

5. Quantifying Uncertainty 
 

Before uncertainty can be dealt with in the analysis, 

we need to be able to quantify uncertainty for a given 

configuration of the system. POISED’s accuracy 

depends on the ability to: (1) identify the sources of 

uncertainty, and (2) estimate the level of uncertainty. 

To put it boldly, our approach addresses “known 

unknowns”, and not “unknown unknowns”. However, 

even if the two conditions are partially satisfied (i.e., 

only some sources of uncertainty are identified and 
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estimated), POISED produces better results than the 

traditional approach through the incorporation of 

known uncertainties.  

We describe two exemplifying ways of estimating 

uncertainty in an adaptation problem: eliciting it from 

the stakeholders (e.g., user, engineer, domain expert), 

and observing it in the running system. These 

techniques are not intended to be exhaustive, or even 

generally applicable, but rather concrete examples to 

illustrate the feasibility of our work. In this section, we 

first describe how the uncertainty in both user-

specified and monitored elements of the system can be 

estimated and represented. We then describe how the 

uncertainty in the individual elements can be 

combined to quantify the uncertainty for the entire 

system.  

 

5.1 Eliciting Uncertainty from 

Stakeholders 
 

Stakeholders may provide the input for many different 

aspects of a self-adaptation problem. One of the most 

crucial and commonly elicited inputs is the user’s 

quality preferences. It is commonly agreed that 

eliciting user’s preferences in terms of complex utility 

functions is challenging [1]. The specification of such 

utility functions is highly subjective and inevitably 

prone to uncertainty. The engineer may also provide 

the input for certain software properties that cannot be 

easily monitored. For instance, the maximum memory 

consumed by a software component is a property that 

may be available from the component’s source code, 

but not easily obtainable through runtime monitoring. 

Similarly, the engineer may provide the input for 

certain systems parameters, such as the available 

network bandwidth, based on a combination of past 

experiences, hardware specification, similar systems, 

etc.      

For the inputs provided by the stakeholders, it is 

also reasonable to ask them to estimate the range of 

uncertainty based on their perceived level of variation 

in the input. For illustration, 

Figure 3 shows how an engineer 

may estimate the range of 

uncertainty in the network 

bandwidth in the form of a 

triangular possibility 

distribution. Possibility 

distribution can be modeled in 

different ways (e.g., Gaussian, 

Triangular) [22], but for 

simplicity we use only triangular 

distribution in this paper. The 

horizontal axis marks the 

network bandwidth, while the 

vertical axis marks the possibility (i.e., degree of 

membership). This distribution indicates that the range 

of feasible values for network bandwidth is anywhere 

between the most pessimistic, denoted with �����P23QRM
, and the most optimistic, denoted with �����P23QRL . In a triangular distribution, as we reach 

the boundaries, the possibility of getting the expected 

value drops to 0.  The most possible value is �����P23QRS , which always has the value of 1.  

In the example of Figure 3, the engineer sets the 

most possible value equal to the expected network 

bandwidth, which may be based on the engineer’s past 

experiences, similar systems, etc. The most pessimistic 

value is set to 0, representing network failure, and the 

most optimistic value to the ideal network bandwidth, 

as advertized by the network router manufacturer. By 

connecting the most pessimistic and optimistic points 

with the most possible point, we arrive at the 

triangular possibility distribution representing the 

uncertainty in the network bandwidth. A similar 

approach could be used for eliciting and quantifying 

uncertainty in the other types of input specified by the 

stakeholders.       

 

5.2 Measuring Uncertainty via 

Monitoring  
 

A self-adaptive software system often relies on 

monitoring to reason about changes in the execution 

condition. Dynamically fluctuating system parameters 

are one type of phenomena in this setting that are 

monitored. For instance, consider that while capacity 

of certain resources (e.g., available physical memory) 

may be known prior to system’s deployment, other 

resources (e.g., available battery charge) may change 

at runtime, and thus would need to be collected during 

the system’s execution. On top of the uncertainty 

created by the fluctuations in the monitored 

phenomenon, monitoring is also impacted by the error 

in the (software and hardware) sensors used for data 

collection. Such an error is in particular unavoidable 

 

Figure 3. Triangular possibility distribution. 
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with sensors that take samples of a physical 

phenomenon. Even if the observed phenomenon is 

constant, the collected data may vary, due to noisy 

sensors.    

System parameters may not be the only elements 

that need to be monitored. As shown in [7], analytical 

models used for decision making are abstractions of 

the system and by definition make simplifying 

assumptions, which if not held at runtime may make 

the estimates inaccurate. The inaccuracy of an 

analytical model could be determined by comparing its 

estimates (i.e., ')5 , /)5 ) against the actual behavior of 

the system. This can be done either prior to system’s 

deployment by benchmarking the system, or through 

runtime observation.  

We estimate the uncertainty corresponding to any 

monitored phenomenon as a probability distribution. 

For example, if the engineer is not able to estimate the 

uncertainty of network bandwidth using the approach 

described in Section  5.1, we can estimate it by 

monitoring the variations and constructing the 

equivalent probability distribution. Figure 4 shows the 

probability distribution corresponding to the data 

collected for variations in the available network 

bandwidth (i.e., �����P23QR). There are numerous 

approaches for deriving a probability density function 

[9] that represents the probability distribution of 

collected data, including Q-Q plot [9] that could be 

used to estimate well-known (e.g., normal, beta) 

distributions, and Quantile-Regression [11] that could 

be used to estimate arbitrary complex distributions. In 

our experiments we found Q-Q plot to be sufficient, as 

monitoring data often follows one of the well-known 

distributions.  

The majority of existing approaches (e.g., 

[5,7,15,18]) ignore the probability distribution of the 

collected data, and simply use the mean value in the 

analysis. By basing the analysis on the mean behavior 

of the system, they essentially ignore the statistical 

characteristics of the data, and thus the underlying 

uncertainty. 

  

5.3 Quantifying the 

Overall Uncertainty  
 

From the estimates of uncertainty 

in the elements comprising a 

self-adaptive software system, 

we can estimate the overall 

uncertainty in the system’s 

ability to satisfy its objectives 

(i.e., uncertainty in the overall 

utility). As mentioned in Section 

 3, for efficient and effective 

analysis of uncertainty, we have 

adopted the possibilistic model of uncertainty in 

POISED. However, to quantify the overall uncertainty 

under the possibility theory, and as a fuzzy variable, 

we also need the uncertainty associated with each of 

the elements to be expressed as a fuzzy variable.    

As you may recall from Section  5.1, the approach 

for estimating uncertainty in the inputs provided by 

the stakeholder already produces fuzzy variables. 

Recall that a possibility distribution, such as the one 

depicted in Figure 3, defines a fuzzy variable. On the 

other hand, we need to transform the probability 

distribution representing the uncertainty in monitored 

elements to the equivalent possibility distribution.  

We demonstrate this transformation via the 

network bandwidth example. From the probability 

distribution of Figure 4, we can derive the 

corresponding possibility distribution of Figure 3 as 

follows: (1) calculate the confidence interval [9] and 

mode [9] of probability distribution, (2) set the most 

pessimistic value equal to the low confidence limit of 

the probability distribution, (3) set the most optimistic 

value equal to the high confidence limit of the 

probability distribution, (4) set the most possible value 

equal to the mode of probability distribution, (5) 

connect the most pessimistic and optimistic points 

with the most possible point to arrive at the triangular 

possibility distribution of the collected data. This 

approach could be used to derive the possibility 

distribution for all of the monitored elements.   

The possibility distribution derived this way is an 

approximation of the probability distribution. This is 

because the most pessimistic and optimistic values are 

determined based on the confidence limits, which are 

not the absolute pessimistic and optimistic values for a 

probability distribution. While in theory the two may 

not be identical, in practice, selecting a large 

confidence level (e.g., 99%) results in negligible 

difference. 

Using the possibility distributions quantifying the 

uncertainty in the individual elements of our problem, 

we quantify the overall uncertainty in system’s ability 

 

Figure 4. Probability distribution. 
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to satisfy its overall utility (see Eq. 1) via a possibility 

distribution:  

TUV
UW �M � ∑ ∑ �7$,*M @')$,*M � ���$<<<<<<<<= !AB*	CB$	D�S � ∑ ∑ �7$,*S @')$,*S � ���$<<<<<<<<= !AB*	CB$	D�L � ∑ ∑ �7$,*L @')$,*L � ���$<<<<<<<<= !AB*	CB$	D

X  
Where ���<<<<<<<= 	 ���������, and �M , �S, and �L 

denote the most pessimistic, possible, and optimistic 

values for the overall utility of the system, 

respectively. The insight is that the most pessimistic 

overall utility �M occurs when all of the quality 
estimates ') and user preferences �7 are also 
pessimistic. Similar insight holds for �S  and �L. For 
the sake of simplicity, this formulation assumes the 

utility functions are monotonic, which is very often the 

case with the user-specified preferences [20]. If not, 

by taking the derivative of the functions we could find 

their extremums; details of which are elided for 

brevity. 

 

6. Possibilistic Analysis 
 

Now we can describe how the self-adaptation problem 

of Section  0 can be transformed to a Possibilistic 

Linear Programming (PLP) [10] problem and solved 

effectively via conventional mathematical 

programming solvers. 

 

6.1 Possibilistic Formulation of the 

Problem 
 

As you may recall from Section  3, POISED manages 

the uncertainty by finding a solution that has the best 

range of overall utility, where the range depends on 

the level of uncertainty in the system. This is achieved 

by pursuing three concurrent objectives: (1) select a 

configuration that maximizes  \S � �S , (2) minimize 

negative consequence of uncertainty \M � |�S ^ �M|, 
and (3) maximize positive consequence of uncertainty \L � |�L ^ �S|. In essence, the objective is to find a 
configuration that has the highest likelihood of 

satisfying the user’s preferences given the level of 

uncertainty. We thus rewrite the objective of Eq. 2 as a 

PLP problem as follows: 

_ �0I�P�� �JK<<<<<<<<=	&LJKDM��N ! \M�0I���� �JK<<<<<<<<=	&LJKDM��N !  \S�0I���� �JK<<<<<<<<=	&LJKDM��N !  \L
X Eq. 5 

The next step is the formulation of constraints with 

uncertainty, which in our problem corresponds to Eq. 

4 that ensures the resource usage does not exceed the 

available capacity. In Section  5.3, we described how 
the range of uncertainty in resource estimate and 

capacity can be quantified in the form of a triangular 

possibility distribution. Since we are dealing with a 

constraint, we would like to assess it under the worst 

case scenario. Using the possibility distributions, we 

can reformulate Eq. 4 as follows: B0 	 /,      /)4M� ���<<<<<<<= ! O �����P234M Eq. 6 

In the above formulation, /)4M is the maximum 

expected resource usage, while �����P234M is the 
minimum expected resource capacity. Note that while 

both /)4M and �����P234M represent the most 

pessimistic points in the corresponding possibility 

distributions, the two are semantically inverse of one 

another. Finally, as you may recall from Section  4.3, 
the capacity of certain resources may be a crisp value 

(e.g., available physical memory), in which case we 

would simply replace �����P234M with the crisp value 
of  �����P234  in Eq. 6. 
 

6.2 Solving the Possibilistic Problem  
 

The PLP problem is an instance of a Multi-Objective 

Linear Programming (MOLP) problem, and to solve it 

using commonly available linear programming 

solvers, we first need to transform it to an equivalent 

Single-Objective Linear Programming (SOLP) 

problem.  To that end, we use Zimmermann’s linear 

membership function [22], which is a linear function ` 
for each objective \ that normalizes its output between 

0 and 1: E 	 a�, �, �b,       `cd: ����\e! - 80,1; 
However, for defining each function ` normalizing 

the output of z, we first need to determine the two 

extremums for each objective function \: given a 
configuration, the extremum maximizing the objective 

is called Positive Ideal Solution (7H�), and the one 
minimizing the objective is called Negative Ideal 

Solution (fH�). Note that the definitions of fH� and 7H� are reversed when we are dealing with a 

minimization objective (i.e., \M in Eq. 5). 
We can obtain these values by performing the 

following six single objective optimizations: 

TU
UUU
UV
UUU
UU
W \MgFD � �0I�P� � �JK<<<<<<<<=	&LJKD�M�N ! \M

 \MhFD � �0I��� � �JK<<<<<<<<=	&LJKD�M�N ! \M
\SgFD � �0I��� � �JK<<<<<<<<=	&LJKD�M�N ! \S
\ShFD � �0I�P� � �JK<<<<<<<<=	&LJKD�M�N ! \S
\LgFD � �0I��� � �JK<<<<<<<<=	&LJKD�M�N ! \L
\LhFD � �0I�P� � �JK<<<<<<<<=	&LJKD�M�N ! \L

X 
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We specify ` to return 1 for the 7H� value, 0 for 
the fH� value, and proportionally linear between the 
two extremums: 

`ci
TU
V
UW 1 \M j \MgFD \MhFD ^ \M\MhFD ^ \MgFD \MgFD O \M\M O \MhFD 0  \M k \MhFD

X

`cl
TUV
UW 1 \S k \SgFD \S ^ \ShFD\SgFD ^ \ShFD \ShFD O \S\S O \SgFD 0  \S j \ShFD

X
 

Function `cm is specified similar to `cl. Figure 5 

shows two instances of `ci and `clthat normalize the 

possible outputs of \M and \S, respectively.  

We can now specify the SOLP problem equivalent 

to MOLP problem of Eq. 5 as follows:  �0I���� �JK<<<<<<<<=	&LJKD�M�N ! n 

Subject to:     E 	 a�, �, �b, `cd o n 

In the above formulation, we have reformulated the 

objective to maximize the auxiliary decision variable n 	 80,1; representing the overall satisfaction with the 
three normalized objectives `ci, `cl, and `cm. In other 
words, the auxiliary objective is to find a configuration 

that maximizes n, which is constrained by the three 

normalized objectives, resulting first in their 

optimization. 

In the above formulation, the three objectives 

(expressed as constraints) have the same importance. 

However, in certain applications domains, some of the 

objectives may have a higher priority.  For instance, in 

a safety critical system, minimizing \M may take 

precedence over maximizing \L, since a solution 
capable of providing certain guarantees in the worst 

case scenario would be desirable. This may not be 

necessarily the case in other domains that are willing 

to tolerate higher risks with the potential of higher 

utility.  

We achieve this by assigning weights pM, pS, and pL to objectives `ci, `cl, and `cm, respectively.  The 
weights specify the important of each objective, and pM q pS q pL % 1. Thus the final complete 

optimization problem, including the constraints (Eq. 3 

and 6), can be formulated as follows:  

 �0I���� �JK<<<<<<<<=	&LJKD�M�N ! n 

Subject to: E 	 a�, �, �b,        �1 ^ pe!`cd o n  
 B� 	 �, � 	 
� ,       ∑ ��,�,��	�� % 1 
                      B0 	 /,      /)4M� ���<<<<<<<= ! O �����P234M 

To give a normalized objective `cd more priority 

over others, we make the corresponding constraint 

(i.e., `cd o n ) more restrictive than others. For that 

reason, in the above formulation, we multiply each 

normalized objective `cd with 1 ^ pe , where as the 
value of pe  increases, the related constraint becomes 

more restrictive. 

 

7. Evaluation 
 
We have evaluated POISED on an extended version of 

the robotic software system described in Section  0 that 
was developed in our previous work [13]. The robotic 

software used in our experiments was comprised of 12 

software components/connectors, and 50 different 

configuration alternatives. In POISED we treat 

components and connectors the same, as they are both 

configurable. The self-adaptation logic was tasked 

with satisfying 5 user preferences in terms of utility 

expressed as sigmoid functions; therefore, the 

maximum achievable overall utility (recall Eq. 1) was 

5.  We used an implementation of the robotic software 

running on top of Prism-MW [14], which is a 

middleware platform with extensive support for 

runtime monitoring and adaptation. In [13] interested 

reader may find additional details about the robotic 

software.  

For the experiments we setup a controlled 

environment to allow us create and measure the effect 

of uncertainty in the system. For that purpose, we used 

 

Figure 5. The Zimmermann’s linear membership functions: (a) the membership function for rs, and (b) the 
membership function for rt. 
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XTEAM [6], an architectural modeling, analysis, and 

simulation environment that has been integrated with 

Prism-MW [14]. Through this integration, the 

XTEAM models are kept in sync with the software 

running on top of Prism-MW, and vice versa. 

Moreover, XTEAM can also be used to control the 

execution of the software running on Prism-MW, 

including the ability to fix the workload, and configure 

the software and hardware properties. We used 

XTEAM to simulate uncertainty by controlling the 

extent of random changes in the system parameters 

(e.g., available network bandwidth, memory 

consumption of configuration alternatives). However, 

neither the robotic software nor POISED were 

controlled, which allowed them to behave as they 

would in practice. Figure 6 depicts the high-level 

architectural model of the robot in XTEAM.  

The analytical models used in our experiments were 

derived using the reinforcement learning technique 

developed in our recent work [7]. The adaptation logic 

was realized as a three step model interpreter engine 

that: (1) generates the PLP from the runtime model of 

the system, (2) solves it using the conventional linear 

programming solvers (e.g., [16]), and (3) changes the 

runtime model using the XTEAM’s API [6], which 

automatically effects the changes to the software 

running on Prism-MW [14].  

 

7.1 Quality Trade-Offs 
 

We compared the quality of solutions selected by 

POISED with the traditional approach in 10 different 

experiments. For each experiment, we applied both 

approaches on the same robotic adaptation problem. 

As you may recall from Section  3, the traditional 
approach is representative of the majority of existing 

literature that ignore the uncertainty in the adaptation 

decisions (i.e., base the analysis on purely crisp values 

obtained by calculating the mean behavior of the 

system properties).  

We performed two types of comparison: (1) For 

each experiment, we compared the expected quality of 

solutions (configurations) selected by each approach. 

We refer to these results as expected, since they are 

based on the likely consequences of uncertainty on the 

selected solution. (2) We then executed the software 

system in the selected configuration, and observed the 

actual quality of solution. We refer to these results as 

actual, since they are based on the data collected from 

the system after the solution was put into effect.   

We show the expected results in Figure 7a. The 

triangular possibility distribution values correspond to 

the solution selected by each approach. We observe a 

similar pattern to what was hypothesized in Figure 2. 

While POISED’s solution may have a slightly lower 

mode compared to that of the traditional approach, the 

overall range is always better—POISED’s most 

pessimistic and optimistic points are higher than that 

of traditional approach. This is expected, since 

traditional approach aims to maximize the mean 

behavior of the system, while POISED aims to 

maximize the range of behavior. 
We complemented the expected ranges of the 

system’s behavior with the actual results obtained in 

30 different executions of the system under each 

 

Figure 6. XTEAM model of the robot software. 
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configuration. The results are shown in Figure 7b.  For 

a fair comparison, in each experiment, we used 

XTEAM to fix the application workload, as well as the 

range of uncertainty in the execution context (e.g., 

network bandwidth, memory usage). By “fixing the 

range of uncertainty” we mean controlling the range of 

random behavior within each source of uncertainty. 

Thus, different executions still resulted in different 

observed behaviors.  We can see that the observed 

utilities are very closely correlated to the 

corresponding possibility distribution in Figure 7. The 

results show that in practice POSIED is more likely to 

select a solution with better overall utility. Note that 

for a meaningful comparison, in this set of 

experiments, we did not specify stringent resource 

constraints, which as shown next could significantly 

influence the outcome of both approaches.  

 

7.2 Violation of Resource Constraints 
 

We evaluated POISED’s ability to satisfy the 

resource constraints under uncertainty, and 

compared its results against the traditional 

approach. We ran both approaches on the same 

adaptation problem but with varying levels of 

uncertainty in the available memory. The overall 

utility mode corresponding to the solution selected 

by each approach is shown in Figure 8. The robotic 

software system corresponding to each selected 

configuration was then executed 30 times. We 

instrumented our controlled environment to throttle 

the available memory. Parenthesized annotations in 

Figure 8 show the number of times a memory 

violation was observed in the actual execution of the 

software system.  

We can make several observations from this result. 

POISED incorporates the uncertainty in the resource 

usage estimates, and aims to satisfy the worst case 

(most pessimistic) formulation of resource constraints. 

Therefore, as the available memory decreases, 

POISED continues to select solutions that do not 

violate the memory constraint, but naturally have a 

lower utility compared to that of traditional approach. 

On the other hand, since traditional approach ignores 

the underlying uncertainty in the estimates, as the 

 

Figure 8. Impact of uncertainty on the overall utility and 

resource constraints. 

 

Figure 7. Comparison of POISED with traditional approach in 10 different experiments: (a) possibility distribution for 

the selected configuration, where a dash marker indicates the most pessimistic, possible, and optimistic values from low 

to high, (b) 30 actual observations for each selected configuration. 
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available memory decreases, the likelihood of 

selecting configurations that would violate the 

memory constraint increases. This pattern persists 

until the available memory decreases to 80MB, 

which is less than the mean of the memory usage 

estimate for those configurations in ��������� 
that have high utility. Therefore, the traditional 

approach is forced to select one of the 

configurations with a relatively low utility. 

However, even then, since it does not consider the 

range of uncertainty, 15 of the 30 actual executions 

of the configuration violate the memory constraint. 

 

7.3 Effect of Weights 
 

In the above experiments, we placed the same 

amount of weight on each of the three objectives 

(i.e., pM %  pS % pL % ��). However, as you may 

recall from Section 6.2, this may not always be the 

case. We evaluated the sensitivity of POISED to 

these weights on an instance of the robotic software. 

For a meaningful comparison, with the exception of 

weights, all other attributes of the system were fixed, 

including the range of uncertainty. Figure 9 shows the 

overall utility for the experiments. The solid bar shows 

the triangular possibility distribution corresponding to 

the configuration selected by POISED under each 

weight assignment. The dots depict the observed 

overall utility as a result of 30 actual execution of the 

software in the selected configuration. 

The results show the sensitivity of solutions found 

by POISED to the weights placed on each objective. 

In the two experiments with high pM, we see POISED 
selects a conservative solution, i.e., puts more 

emphasis on minimizing the negative consequence of 

uncertainty (recall \M from Section  6.1). On the 

contrary, in the two experiments with high pL, we 
see POISED selects a risky solution, i.e., puts more 

emphasis on maximizing the positive consequences 

of uncertainty (recall \L from Section  6.1). Both 

approaches come at the cost of achieving mediocre 

overall utility mode (most possible).  

In the two experiments with high pS, we see 

POISED selects a solution with the best overall 

utility mode (recall \S from Section  6.1), while 

ignoring the negative and positive consequences of 

uncertainty. Finally, in the last experiment, with a 

balanced assignment of weights, the solution 

achieves neither the best �S, nor does it provide 

guarantees on the consequences of uncertainty. But 

since all of the objectives are considered at the same 

time, it achieves the best set of trade-offs: very 

close to the best overall utility mode, and higher 

possibility of underestimating the overall utility, as 

opposed to overestimating it. At the same time, we can 

envision situations in which placing emphasis on one 

of the objectives may be more appropriate, which 

POISED allows for naturally. 

 

7.4 Sensitivity to Uncertainty Estimates  
 

We performed a set of experiments to evaluate the 

sensitivity of POISED to the accuracy of uncertainty 

estimates. Figure 10 shows the results of these 

experiments. For all of the experiments we used 

XTEAM to fix the range of uncertainty in the system 

parameters, as well as the workload. We changed the 

accuracy of uncertainty estimates used in our analysis. 

 

Figure 10. Impact of the accuracy of uncertainty estimates on 

the quality of POISED solutions. 

 

Figure 9. Impact of weights on the selected configuration. 
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To that end, we simply changed the confidence level 

used for transforming the probability distribution 

corresponding to the monitored data to the equivalent 

possibility distribution (recall Section  5.3). As one 
decreases the confidence level in a probability 

distribution, such as the one depicted in Figure 4, low 

confidence and high confidence limits converge to 

mode, resulting in underestimation of the range of 

uncertainty.  

The confidence levels shown on the horizontal axis 

of Figure 10 denote the accuracy of uncertainty 

estimates. As we decrease the confidence level from 

95% to 0%, thereby making the uncertainty estimates 

less accurate, POISED makes configuration selections 

whose overall utilities are not borne out in practice. 

More specifically, since by decreasing the confidence 

level we underestimate the uncertainty, the actual 

results underperform the expected utility. 

Overestimating uncertainty would have the opposite 

effect.  

Finally, note that in the experiment with 0% 

accuracy, the most pessimistic, possible, and 

optimistic points are overlapping. Therefore, by not 

considering the range of uncertainty, POISED is 

essentially behaving similar to the traditional 

approach. Comparing the results of experiment with 

0% accuracy to others, corroborates our assertions in 

Section  5 that even with partially accurate estimates of 

uncertainty, POISED selects solutions that are better 

than the traditional approach.   

 

7.5  Performance Trade-Offs 
 

We performed a series of benchmarks to compare the 

execution time of traditional approach with that of 

POISED. The results are shown in Table 1. It took 

POISED longer to compute the optimal solution than 

that of the traditional approach. This result is not 

surprising, since as you may recall from Section  6.2, 
POISED requires 6 additional optimizations to 

calculate 7H� and fH� values pairs for the three 
objective functions. While it takes longer to execute 

POISED, it is still a reasonable approach for our 

problem. It took 4.6 seconds to find the optimal 

configuration in a very large problem, consisting of 

100 components and 20 different configuration 

alternatives, for a total of 20100 % 1.2 v 10130 possible 

combinations.    

 

8. Related Work 
 

The literature in this area of research is extensive. In 

lieu of enumerating all of the related studies, we refer 

the reader to [1] and [12] for a comprehensive analysis 

of the state-of-the-art in self-adaptation. We focus our 

discussion here to those works that are of utmost 

relevance. The challenge posed by uncertainty in the 

construction of dependable self-adaptive software 

system is an established concept [1]. A few recent 

works [2-4,7,17,21] have aimed to tackle the different 

facets of this challenge as follows. 

Whittle et al. [21] introduced RELAX, a formal 

requirements specification language that relies on 

Fuzzy Branching Temporal Logic to specify the 

uncertainty inherent in self-adaptive systems. In a 

subsequent publication [2], Cheng et al. extended 

RELAX with goal modeling to specify the uncertainty 

in the objectives. We believe our approach is 

complementary to their work, as both RELAX and 

POISED are based on fuzzy mathematics, but target 

different phases of software life-cycle.  

Chuang and Chan [4] presented a QoS 

management framework that uses a hierarchical fuzzy 

control model. Their work aims at making it easier for 

the users to specify their QoS requirements, which are 

then translated into fuzzy rules. Unlike POISED, their 

objective is QoS rule satisfaction, and does not target 

the challenge of making adaptation decisions under 

uncertainty.  

Dynamic configuration of resource-aware services 

was studied by Poladian et al. [18], where they showed 

how to select an appropriate set of services to carry 

out a user task, and allocate resources among those 

services at runtime. In a subsequent publication, the 

work was extended to make anticipatory decisions 

[17], and considered the inaccuracy of future resource 

usage predictions in making adaptation decisions. 

Unlike POISED, their approach does not employ 

possibilistic analysis in incorporating the effect of 

uncertainty in decisions.   

Table 1. Execution time of POISED versus traditional 

approach. 

Problem 
Execution Time 

(ms) 

# of 

Comp 

# of 

Conf 

Tradit-

ional 
POISED 

8 4 2 30 

10 5 6 51 

18 7 10 70 

25 8 20 180 

37 9 28 298 

50 10 30 370 

62 13 60 630 

75 15 130 1520 

88 17 290 3740 

100 20 400 4600 
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Cheng and Garlan [3] described three specific 

sources of uncertainty (problem-state identification, 

strategy selection, and strategy outcome) in self-

adaptation and provided high-level guidelines for 

mitigating them in Rainbow [8]. In this paper, we have 

presented a novel approach for tackling the challenge 

of strategy outcome, i.e., the impact of uncertainty on 

the selected solution, and techniques to deal with it.  

Finally, in our recent work [7], we presented 

FUSION, a learning based approach to engineering 

self-adaptive systems. Instead of relying on static 

analytical models that are subject to wrong 

assumptions, FUSION uses machine learning to self-

tune the adaptive behavior of the system to 

unanticipated changes, but does not address making 

adaptation decisions under uncertainty. 

 

9. Conclusion and Future Work 

 
This paper presented a novel quantitative approach, 

called POISED, for making adaptation decisions under 

uncertainty. Unlike any other related work, POISED 

adopts a possibilistic method to assess the positive and 

negative consequences of uncertainty in its analysis. 

The centerpiece of our work is the reconceptualization 

of what is typically considered to be the optimal 

solution as one that has the best range of possible 

behavior. POISED’s analysis can be made as risk-

averse as desired via a set of knobs (weights). While 

POISED is a general approach that can be applied to 

many types of adaptation problems, it was described 

and extensively evaluated in the context of a self-

adaptation problem aimed at improving a system’s 

quality attributes via runtime reconfiguration of its 

customizable software components.  

Our focus so far has been on the internal 

uncertainty, which is the uncertainty associated with 

adaptation decisions aimed at satisfying the system’s 

quality objectives. In future, we plan to investigate 

applicability of POISED to external uncertainty, 

which is the uncertainty associated with decisions 

aimed at satisfying the domain objectives. We also 

believe POISED could complement the existing 

efforts aimed at alleviating uncertainty in other facets 

of self-adaptation. We envision an integration of 

RELAX [2,21] with POISED to be a fruitful avenue of 

future work, as it would allow the traceability of 

uncertainty from the system’s requirements 

specification to its execution. Proactively adaptive 

software systems, such as those described in [5,17], 

face another form of uncertainty—the inaccuracy of 

future predictions. Investigating the synergy between 

POISED and such emerging approaches is another 

interesting avenue of future work. 
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